/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #ifndef _SYS_CRYPTO_IMPL_H #define _SYS_CRYPTO_IMPL_H /* * Kernel Cryptographic Framework private implementation definitions. */ #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif #define KCF_MODULE "kcf" /* * Prefixes convention: structures internal to the kernel cryptographic * framework start with 'kcf_'. Exposed structure start with 'crypto_'. */ /* Provider stats. Not protected. */ typedef struct kcf_prov_stats { kstat_named_t ps_ops_total; kstat_named_t ps_ops_passed; kstat_named_t ps_ops_failed; kstat_named_t ps_ops_busy_rval; } kcf_prov_stats_t; /* * Keep all the information needed by the scheduler from * this provider. */ typedef struct kcf_sched_info { /* The number of operations dispatched. */ uint64_t ks_ndispatches; /* The number of operations that failed. */ uint64_t ks_nfails; /* The number of operations that returned CRYPTO_BUSY. */ uint64_t ks_nbusy_rval; } kcf_sched_info_t; /* * pd_irefcnt approximates the number of inflight requests to the * provider. Though we increment this counter during registration for * other purposes, that base value is mostly same across all providers. * So, it is a good measure of the load on a provider when it is not * in a busy state. Once a provider notifies it is busy, requests * back up in the taskq. So, we use tq_nalloc in that case which gives * the number of task entries in the task queue. Note that we do not * acquire any locks here as it is not critical to get the exact number * and the lock contention may be too costly for this code path. */ #define KCF_PROV_LOAD(pd) ((pd)->pd_irefcnt) #define KCF_PROV_INCRSTATS(pd, error) { \ (pd)->pd_sched_info.ks_ndispatches++; \ if (error == CRYPTO_BUSY) \ (pd)->pd_sched_info.ks_nbusy_rval++; \ else if (error != CRYPTO_SUCCESS) \ (pd)->pd_sched_info.ks_nfails++; \ } /* * The following two macros should be * #define KCF_OPS_CLASSSIZE (KCF_LAST_OPSCLASS - KCF_FIRST_OPSCLASS + 2) * #define KCF_MAXMECHTAB KCF_MAXCIPHER * * However, doing that would involve reorganizing the header file a bit. * When impl.h is broken up (bug# 4703218), this will be done. For now, * we hardcode these values. */ #define KCF_OPS_CLASSSIZE 4 #define KCF_MAXMECHTAB 32 /* * Valid values for the state of a provider. The order of * the elements is important. * * Routines which get a provider or the list of providers * should pick only those that are in KCF_PROV_READY state. */ typedef enum { KCF_PROV_ALLOCATED = 1, /* * state < KCF_PROV_READY means the provider can not * be used at all. */ KCF_PROV_READY, /* * state > KCF_PROV_READY means the provider can not * be used for new requests. */ KCF_PROV_FAILED, /* * Threads setting the following two states should do so only * if the current state < KCF_PROV_DISABLED. */ KCF_PROV_DISABLED, KCF_PROV_REMOVED, KCF_PROV_FREED } kcf_prov_state_t; #define KCF_IS_PROV_USABLE(pd) ((pd)->pd_state == KCF_PROV_READY) #define KCF_IS_PROV_REMOVED(pd) ((pd)->pd_state >= KCF_PROV_REMOVED) /* * A provider descriptor structure. There is one such structure per * provider. It is allocated and initialized at registration time and * freed when the provider unregisters. * * pd_sid: Session ID of the provider used by kernel clients. * This is valid only for session-oriented providers. * pd_refcnt: Reference counter to this provider descriptor * pd_irefcnt: References held by the framework internal structs * pd_lock: lock protects pd_state * pd_state: State value of the provider * pd_ops_vector: The ops vector specified by Provider * pd_mech_indx: Lookup table which maps a core framework mechanism * number to an index in pd_mechanisms array * pd_mechanisms: Array of mechanisms supported by the provider, specified * by the provider during registration * pd_sched_info: Scheduling information associated with the provider * pd_mech_list_count: The number of entries in pi_mechanisms, specified * by the provider during registration * pd_remove_cv: cv to wait on while the provider queue drains * pd_description: Provider description string * pd_hash_limit Maximum data size that hash mechanisms of this provider * can support. * pd_kcf_prov_handle: KCF-private handle assigned by KCF * pd_prov_id: Identification # assigned by KCF to provider * pd_kstat: kstat associated with the provider * pd_ks_data: kstat data */ typedef struct kcf_provider_desc { crypto_session_id_t pd_sid; uint_t pd_refcnt; uint_t pd_irefcnt; kmutex_t pd_lock; kcf_prov_state_t pd_state; kcondvar_t pd_resume_cv; const crypto_ops_t *pd_ops_vector; ushort_t pd_mech_indx[KCF_OPS_CLASSSIZE]\ [KCF_MAXMECHTAB]; const crypto_mech_info_t *pd_mechanisms; kcf_sched_info_t pd_sched_info; uint_t pd_mech_list_count; kcondvar_t pd_remove_cv; const char *pd_description; uint_t pd_hash_limit; crypto_kcf_provider_handle_t pd_kcf_prov_handle; crypto_provider_id_t pd_prov_id; kstat_t *pd_kstat; kcf_prov_stats_t pd_ks_data; } kcf_provider_desc_t; /* atomic operations in linux implicitly form a memory barrier */ #define membar_exit() /* * If a component has a reference to a kcf_provider_desc_t, * it REFHOLD()s. A new provider descriptor which is referenced only * by the providers table has a reference counter of one. */ #define KCF_PROV_REFHOLD(desc) { \ atomic_add_32(&(desc)->pd_refcnt, 1); \ ASSERT((desc)->pd_refcnt != 0); \ } #define KCF_PROV_IREFHOLD(desc) { \ atomic_add_32(&(desc)->pd_irefcnt, 1); \ ASSERT((desc)->pd_irefcnt != 0); \ } #define KCF_PROV_IREFRELE(desc) { \ ASSERT((desc)->pd_irefcnt != 0); \ membar_exit(); \ if (atomic_add_32_nv(&(desc)->pd_irefcnt, -1) == 0) { \ cv_broadcast(&(desc)->pd_remove_cv); \ } \ } #define KCF_PROV_REFHELD(desc) ((desc)->pd_refcnt >= 1) #define KCF_PROV_REFRELE(desc) { \ ASSERT((desc)->pd_refcnt != 0); \ membar_exit(); \ if (atomic_add_32_nv(&(desc)->pd_refcnt, -1) == 0) { \ kcf_provider_zero_refcnt((desc)); \ } \ } /* * An element in a mechanism provider descriptors chain. * The kcf_prov_mech_desc_t is duplicated in every chain the provider belongs * to. This is a small tradeoff memory vs mutex spinning time to access the * common provider field. */ typedef struct kcf_prov_mech_desc { struct kcf_mech_entry *pm_me; /* Back to the head */ struct kcf_prov_mech_desc *pm_next; /* Next in the chain */ crypto_mech_info_t pm_mech_info; /* Provider mech info */ kcf_provider_desc_t *pm_prov_desc; /* Common desc. */ } kcf_prov_mech_desc_t; /* * A mechanism entry in an xxx_mech_tab[]. me_pad was deemed * to be unnecessary and removed. */ typedef struct kcf_mech_entry { crypto_mech_name_t me_name; /* mechanism name */ crypto_mech_type_t me_mechid; /* Internal id for mechanism */ kcf_prov_mech_desc_t *me_sw_prov; /* provider */ avl_node_t me_node; } kcf_mech_entry_t; /* * If a component has a reference to a kcf_policy_desc_t, * it REFHOLD()s. A new policy descriptor which is referenced only * by the policy table has a reference count of one. */ #define KCF_POLICY_REFHOLD(desc) { \ atomic_add_32(&(desc)->pd_refcnt, 1); \ ASSERT((desc)->pd_refcnt != 0); \ } /* * Releases a reference to a policy descriptor. When the last * reference is released, the descriptor is freed. */ #define KCF_POLICY_REFRELE(desc) { \ ASSERT((desc)->pd_refcnt != 0); \ membar_exit(); \ if (atomic_add_32_nv(&(desc)->pd_refcnt, -1) == 0) \ kcf_policy_free_desc(desc); \ } /* * Global tables. The sizes are from the predefined PKCS#11 v2.20 mechanisms, * with a margin of few extra empty entry points */ #define KCF_MAXDIGEST 16 /* Digests */ #define KCF_MAXCIPHER 64 /* Ciphers */ #define KCF_MAXMAC 40 /* Message authentication codes */ typedef enum { KCF_DIGEST_CLASS = 1, KCF_CIPHER_CLASS, KCF_MAC_CLASS, } kcf_ops_class_t; #define KCF_FIRST_OPSCLASS KCF_DIGEST_CLASS #define KCF_LAST_OPSCLASS KCF_MAC_CLASS /* The table of all the kcf_xxx_mech_tab[]s, indexed by kcf_ops_class */ typedef struct kcf_mech_entry_tab { int met_size; /* Size of the met_tab[] */ kcf_mech_entry_t *met_tab; /* the table */ } kcf_mech_entry_tab_t; extern const kcf_mech_entry_tab_t kcf_mech_tabs_tab[]; #define KCF_MECHID(class, index) \ (((crypto_mech_type_t)(class) << 32) | (crypto_mech_type_t)(index)) #define KCF_MECH2CLASS(mech_type) ((kcf_ops_class_t)((mech_type) >> 32)) #define KCF_MECH2INDEX(mech_type) ((int)((mech_type) & 0xFFFFFFFF)) #define KCF_TO_PROV_MECH_INDX(pd, mech_type) \ ((pd)->pd_mech_indx[KCF_MECH2CLASS(mech_type)] \ [KCF_MECH2INDEX(mech_type)]) #define KCF_TO_PROV_MECHINFO(pd, mech_type) \ ((pd)->pd_mechanisms[KCF_TO_PROV_MECH_INDX(pd, mech_type)]) #define KCF_TO_PROV_MECHNUM(pd, mech_type) \ (KCF_TO_PROV_MECHINFO(pd, mech_type).cm_mech_number) /* ps_refcnt is protected by cm_lock in the crypto_minor structure */ typedef struct crypto_provider_session { struct crypto_provider_session *ps_next; crypto_session_id_t ps_session; kcf_provider_desc_t *ps_provider; kcf_provider_desc_t *ps_real_provider; uint_t ps_refcnt; } crypto_provider_session_t; typedef struct crypto_session_data { kmutex_t sd_lock; kcondvar_t sd_cv; uint32_t sd_flags; int sd_pre_approved_amount; crypto_ctx_t *sd_digest_ctx; crypto_ctx_t *sd_encr_ctx; crypto_ctx_t *sd_decr_ctx; crypto_ctx_t *sd_sign_ctx; crypto_ctx_t *sd_verify_ctx; crypto_ctx_t *sd_sign_recover_ctx; crypto_ctx_t *sd_verify_recover_ctx; kcf_provider_desc_t *sd_provider; void *sd_find_init_cookie; crypto_provider_session_t *sd_provider_session; } crypto_session_data_t; #define CRYPTO_SESSION_IN_USE 0x00000001 #define CRYPTO_SESSION_IS_BUSY 0x00000002 #define CRYPTO_SESSION_IS_CLOSED 0x00000004 #define KCF_MAX_PIN_LEN 1024 /* * Per-minor info. * * cm_lock protects everything in this structure except for cm_refcnt. */ typedef struct crypto_minor { uint_t cm_refcnt; kmutex_t cm_lock; kcondvar_t cm_cv; crypto_session_data_t **cm_session_table; uint_t cm_session_table_count; kcf_provider_desc_t **cm_provider_array; uint_t cm_provider_count; crypto_provider_session_t *cm_provider_session; } crypto_minor_t; /* * Return codes for internal functions */ #define KCF_SUCCESS 0x0 /* Successful call */ #define KCF_INVALID_MECH_NUMBER 0x1 /* invalid mechanism number */ #define KCF_INVALID_MECH_NAME 0x2 /* invalid mechanism name */ #define KCF_INVALID_MECH_CLASS 0x3 /* invalid mechanism class */ #define KCF_MECH_TAB_FULL 0x4 /* Need more room in the mech tabs. */ #define KCF_INVALID_INDX ((ushort_t)-1) /* * Wrappers for ops vectors. In the wrapper definitions below, the pd * argument always corresponds to a pointer to a provider descriptor * of type kcf_prov_desc_t. */ #define KCF_PROV_DIGEST_OPS(pd) ((pd)->pd_ops_vector->co_digest_ops) #define KCF_PROV_CIPHER_OPS(pd) ((pd)->pd_ops_vector->co_cipher_ops) #define KCF_PROV_MAC_OPS(pd) ((pd)->pd_ops_vector->co_mac_ops) #define KCF_PROV_CTX_OPS(pd) ((pd)->pd_ops_vector->co_ctx_ops) /* * Wrappers for crypto_digest_ops(9S) entry points. */ #define KCF_PROV_DIGEST_INIT(pd, ctx, mech) ( \ (KCF_PROV_DIGEST_OPS(pd) && KCF_PROV_DIGEST_OPS(pd)->digest_init) ? \ KCF_PROV_DIGEST_OPS(pd)->digest_init(ctx, mech) : \ CRYPTO_NOT_SUPPORTED) /* * Wrappers for crypto_cipher_ops(9S) entry points. */ #define KCF_PROV_ENCRYPT_INIT(pd, ctx, mech, key, template) ( \ (KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->encrypt_init) ? \ KCF_PROV_CIPHER_OPS(pd)->encrypt_init(ctx, mech, key, template) : \ CRYPTO_NOT_SUPPORTED) #define KCF_PROV_ENCRYPT_ATOMIC(pd, session, mech, key, plaintext, ciphertext, \ template) ( \ (KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->encrypt_atomic) ? \ KCF_PROV_CIPHER_OPS(pd)->encrypt_atomic( \ session, mech, key, plaintext, ciphertext, template) : \ CRYPTO_NOT_SUPPORTED) #define KCF_PROV_DECRYPT_ATOMIC(pd, session, mech, key, ciphertext, plaintext, \ template) ( \ (KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->decrypt_atomic) ? \ KCF_PROV_CIPHER_OPS(pd)->decrypt_atomic( \ session, mech, key, ciphertext, plaintext, template) : \ CRYPTO_NOT_SUPPORTED) /* * Wrappers for crypto_mac_ops(9S) entry points. */ #define KCF_PROV_MAC_INIT(pd, ctx, mech, key, template) ( \ (KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac_init) ? \ KCF_PROV_MAC_OPS(pd)->mac_init(ctx, mech, key, template) \ : CRYPTO_NOT_SUPPORTED) /* * The _ (underscore) in _mac is needed to avoid replacing the * function mac(). */ #define KCF_PROV_MAC_UPDATE(pd, ctx, data) ( \ (KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac_update) ? \ KCF_PROV_MAC_OPS(pd)->mac_update(ctx, data) : \ CRYPTO_NOT_SUPPORTED) #define KCF_PROV_MAC_FINAL(pd, ctx, mac) ( \ (KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac_final) ? \ KCF_PROV_MAC_OPS(pd)->mac_final(ctx, mac) : \ CRYPTO_NOT_SUPPORTED) #define KCF_PROV_MAC_ATOMIC(pd, session, mech, key, data, mac, template) ( \ (KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac_atomic) ? \ KCF_PROV_MAC_OPS(pd)->mac_atomic( \ session, mech, key, data, mac, template) : \ CRYPTO_NOT_SUPPORTED) /* * Wrappers for crypto_ctx_ops(9S) entry points. */ #define KCF_PROV_CREATE_CTX_TEMPLATE(pd, mech, key, template, size) ( \ (KCF_PROV_CTX_OPS(pd) && KCF_PROV_CTX_OPS(pd)->create_ctx_template) ? \ KCF_PROV_CTX_OPS(pd)->create_ctx_template( \ mech, key, template, size) : \ CRYPTO_NOT_SUPPORTED) #define KCF_PROV_FREE_CONTEXT(pd, ctx) ( \ (KCF_PROV_CTX_OPS(pd) && KCF_PROV_CTX_OPS(pd)->free_context) ? \ KCF_PROV_CTX_OPS(pd)->free_context(ctx) : CRYPTO_NOT_SUPPORTED) /* Miscellaneous */ extern void kcf_destroy_mech_tabs(void); extern void kcf_init_mech_tabs(void); extern int kcf_add_mech_provider(short, kcf_provider_desc_t *, kcf_prov_mech_desc_t **); extern void kcf_remove_mech_provider(const char *, kcf_provider_desc_t *); extern int kcf_get_mech_entry(crypto_mech_type_t, kcf_mech_entry_t **); extern kcf_provider_desc_t *kcf_alloc_provider_desc(void); extern void kcf_provider_zero_refcnt(kcf_provider_desc_t *); extern void kcf_free_provider_desc(kcf_provider_desc_t *); extern void undo_register_provider(kcf_provider_desc_t *, boolean_t); extern int crypto_put_output_data(uchar_t *, crypto_data_t *, int); extern int crypto_update_iov(void *, crypto_data_t *, crypto_data_t *, int (*cipher)(void *, caddr_t, size_t, crypto_data_t *)); extern int crypto_update_uio(void *, crypto_data_t *, crypto_data_t *, int (*cipher)(void *, caddr_t, size_t, crypto_data_t *)); /* Access to the provider's table */ extern void kcf_prov_tab_destroy(void); extern void kcf_prov_tab_init(void); extern int kcf_prov_tab_add_provider(kcf_provider_desc_t *); extern int kcf_prov_tab_rem_provider(crypto_provider_id_t); extern kcf_provider_desc_t *kcf_prov_tab_lookup(crypto_provider_id_t); extern int kcf_get_sw_prov(crypto_mech_type_t, kcf_provider_desc_t **, kcf_mech_entry_t **, boolean_t); #ifdef __cplusplus } #endif #endif /* _SYS_CRYPTO_IMPL_H */