/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include <sys/zfs_context.h> #include <modes/modes.h> #include <sys/crypto/common.h> #include <sys/crypto/impl.h> #include <sys/byteorder.h> /* * Encrypt and decrypt multiple blocks of data in counter mode. */ int ctr_mode_contiguous_blocks(ctr_ctx_t *ctx, char *data, size_t length, crypto_data_t *out, size_t block_size, int (*cipher)(const void *ks, const uint8_t *pt, uint8_t *ct), void (*xor_block)(uint8_t *, uint8_t *)) { size_t remainder = length; size_t need = 0; uint8_t *datap = (uint8_t *)data; uint8_t *blockp; uint8_t *lastp; void *iov_or_mp; offset_t offset; uint8_t *out_data_1; uint8_t *out_data_2; size_t out_data_1_len; uint64_t lower_counter, upper_counter; if (length + ctx->ctr_remainder_len < block_size) { /* accumulate bytes here and return */ bcopy(datap, (uint8_t *)ctx->ctr_remainder + ctx->ctr_remainder_len, length); ctx->ctr_remainder_len += length; ctx->ctr_copy_to = datap; return (CRYPTO_SUCCESS); } lastp = (uint8_t *)ctx->ctr_cb; if (out != NULL) crypto_init_ptrs(out, &iov_or_mp, &offset); do { /* Unprocessed data from last call. */ if (ctx->ctr_remainder_len > 0) { need = block_size - ctx->ctr_remainder_len; if (need > remainder) return (CRYPTO_DATA_LEN_RANGE); bcopy(datap, &((uint8_t *)ctx->ctr_remainder) [ctx->ctr_remainder_len], need); blockp = (uint8_t *)ctx->ctr_remainder; } else { blockp = datap; } /* ctr_cb is the counter block */ cipher(ctx->ctr_keysched, (uint8_t *)ctx->ctr_cb, (uint8_t *)ctx->ctr_tmp); lastp = (uint8_t *)ctx->ctr_tmp; /* * Increment Counter. */ lower_counter = ntohll(ctx->ctr_cb[1] & ctx->ctr_lower_mask); lower_counter = htonll(lower_counter + 1); lower_counter &= ctx->ctr_lower_mask; ctx->ctr_cb[1] = (ctx->ctr_cb[1] & ~(ctx->ctr_lower_mask)) | lower_counter; /* wrap around */ if (lower_counter == 0) { upper_counter = ntohll(ctx->ctr_cb[0] & ctx->ctr_upper_mask); upper_counter = htonll(upper_counter + 1); upper_counter &= ctx->ctr_upper_mask; ctx->ctr_cb[0] = (ctx->ctr_cb[0] & ~(ctx->ctr_upper_mask)) | upper_counter; } /* * XOR encrypted counter block with the current clear block. */ xor_block(blockp, lastp); if (out == NULL) { if (ctx->ctr_remainder_len > 0) { bcopy(lastp, ctx->ctr_copy_to, ctx->ctr_remainder_len); bcopy(lastp + ctx->ctr_remainder_len, datap, need); } } else { crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, &out_data_1_len, &out_data_2, block_size); /* copy block to where it belongs */ bcopy(lastp, out_data_1, out_data_1_len); if (out_data_2 != NULL) { bcopy(lastp + out_data_1_len, out_data_2, block_size - out_data_1_len); } /* update offset */ out->cd_offset += block_size; } /* Update pointer to next block of data to be processed. */ if (ctx->ctr_remainder_len != 0) { datap += need; ctx->ctr_remainder_len = 0; } else { datap += block_size; } remainder = (size_t)&data[length] - (size_t)datap; /* Incomplete last block. */ if (remainder > 0 && remainder < block_size) { bcopy(datap, ctx->ctr_remainder, remainder); ctx->ctr_remainder_len = remainder; ctx->ctr_copy_to = datap; goto out; } ctx->ctr_copy_to = NULL; } while (remainder > 0); out: return (CRYPTO_SUCCESS); } int ctr_mode_final(ctr_ctx_t *ctx, crypto_data_t *out, int (*encrypt_block)(const void *, const uint8_t *, uint8_t *)) { uint8_t *lastp; void *iov_or_mp; offset_t offset; uint8_t *out_data_1; uint8_t *out_data_2; size_t out_data_1_len; uint8_t *p; int i; if (out->cd_length < ctx->ctr_remainder_len) return (CRYPTO_DATA_LEN_RANGE); encrypt_block(ctx->ctr_keysched, (uint8_t *)ctx->ctr_cb, (uint8_t *)ctx->ctr_tmp); lastp = (uint8_t *)ctx->ctr_tmp; p = (uint8_t *)ctx->ctr_remainder; for (i = 0; i < ctx->ctr_remainder_len; i++) { p[i] ^= lastp[i]; } crypto_init_ptrs(out, &iov_or_mp, &offset); crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, &out_data_1_len, &out_data_2, ctx->ctr_remainder_len); bcopy(p, out_data_1, out_data_1_len); if (out_data_2 != NULL) { bcopy((uint8_t *)p + out_data_1_len, out_data_2, ctx->ctr_remainder_len - out_data_1_len); } out->cd_offset += ctx->ctr_remainder_len; ctx->ctr_remainder_len = 0; return (CRYPTO_SUCCESS); } int ctr_init_ctx(ctr_ctx_t *ctr_ctx, ulong_t count, uint8_t *cb, void (*copy_block)(uint8_t *, uint8_t *)) { uint64_t upper_mask = 0; uint64_t lower_mask = 0; if (count == 0 || count > 128) { return (CRYPTO_MECHANISM_PARAM_INVALID); } /* upper 64 bits of the mask */ if (count >= 64) { count -= 64; upper_mask = (count == 64) ? UINT64_MAX : (1ULL << count) - 1; lower_mask = UINT64_MAX; } else { /* now the lower 63 bits */ lower_mask = (1ULL << count) - 1; } ctr_ctx->ctr_lower_mask = htonll(lower_mask); ctr_ctx->ctr_upper_mask = htonll(upper_mask); copy_block(cb, (uchar_t *)ctr_ctx->ctr_cb); ctr_ctx->ctr_lastp = (uint8_t *)&ctr_ctx->ctr_cb[0]; ctr_ctx->ctr_flags |= CTR_MODE; return (CRYPTO_SUCCESS); } /* ARGSUSED */ void * ctr_alloc_ctx(int kmflag) { ctr_ctx_t *ctr_ctx; if ((ctr_ctx = kmem_zalloc(sizeof (ctr_ctx_t), kmflag)) == NULL) return (NULL); ctr_ctx->ctr_flags = CTR_MODE; return (ctr_ctx); }