/*****************************************************************************\ * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. * Copyright (C) 2007 The Regents of the University of California. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Written by Brian Behlendorf . * UCRL-CODE-235197 * * This file is part of the SPL, Solaris Porting Layer. * For details, see . * * The SPL is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * The SPL is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with the SPL. If not, see . ***************************************************************************** * Solaris Porting Layer (SPL) Kmem Implementation. \*****************************************************************************/ #include #include #ifdef SS_DEBUG_SUBSYS #undef SS_DEBUG_SUBSYS #endif #define SS_DEBUG_SUBSYS SS_KMEM /* * The minimum amount of memory measured in pages to be free at all * times on the system. This is similar to Linux's zone->pages_min * multiplied by the number of zones and is sized based on that. */ pgcnt_t minfree = 0; EXPORT_SYMBOL(minfree); /* * The desired amount of memory measured in pages to be free at all * times on the system. This is similar to Linux's zone->pages_low * multiplied by the number of zones and is sized based on that. * Assuming all zones are being used roughly equally, when we drop * below this threshold asynchronous page reclamation is triggered. */ pgcnt_t desfree = 0; EXPORT_SYMBOL(desfree); /* * When above this amount of memory measures in pages the system is * determined to have enough free memory. This is similar to Linux's * zone->pages_high multiplied by the number of zones and is sized based * on that. Assuming all zones are being used roughly equally, when * asynchronous page reclamation reaches this threshold it stops. */ pgcnt_t lotsfree = 0; EXPORT_SYMBOL(lotsfree); /* Unused always 0 in this implementation */ pgcnt_t needfree = 0; EXPORT_SYMBOL(needfree); pgcnt_t swapfs_minfree = 0; EXPORT_SYMBOL(swapfs_minfree); pgcnt_t swapfs_reserve = 0; EXPORT_SYMBOL(swapfs_reserve); vmem_t *heap_arena = NULL; EXPORT_SYMBOL(heap_arena); vmem_t *zio_alloc_arena = NULL; EXPORT_SYMBOL(zio_alloc_arena); vmem_t *zio_arena = NULL; EXPORT_SYMBOL(zio_arena); #ifndef HAVE_GET_VMALLOC_INFO get_vmalloc_info_t get_vmalloc_info_fn = SYMBOL_POISON; EXPORT_SYMBOL(get_vmalloc_info_fn); #endif /* HAVE_GET_VMALLOC_INFO */ #ifdef HAVE_PGDAT_HELPERS # ifndef HAVE_FIRST_ONLINE_PGDAT first_online_pgdat_t first_online_pgdat_fn = SYMBOL_POISON; EXPORT_SYMBOL(first_online_pgdat_fn); # endif /* HAVE_FIRST_ONLINE_PGDAT */ # ifndef HAVE_NEXT_ONLINE_PGDAT next_online_pgdat_t next_online_pgdat_fn = SYMBOL_POISON; EXPORT_SYMBOL(next_online_pgdat_fn); # endif /* HAVE_NEXT_ONLINE_PGDAT */ # ifndef HAVE_NEXT_ZONE next_zone_t next_zone_fn = SYMBOL_POISON; EXPORT_SYMBOL(next_zone_fn); # endif /* HAVE_NEXT_ZONE */ #else /* HAVE_PGDAT_HELPERS */ # ifndef HAVE_PGDAT_LIST struct pglist_data *pgdat_list_addr = SYMBOL_POISON; EXPORT_SYMBOL(pgdat_list_addr); # endif /* HAVE_PGDAT_LIST */ #endif /* HAVE_PGDAT_HELPERS */ #ifdef NEED_GET_ZONE_COUNTS # ifndef HAVE_GET_ZONE_COUNTS get_zone_counts_t get_zone_counts_fn = SYMBOL_POISON; EXPORT_SYMBOL(get_zone_counts_fn); # endif /* HAVE_GET_ZONE_COUNTS */ unsigned long spl_global_page_state(spl_zone_stat_item_t item) { unsigned long active; unsigned long inactive; unsigned long free; get_zone_counts(&active, &inactive, &free); switch (item) { case SPL_NR_FREE_PAGES: return free; case SPL_NR_INACTIVE: return inactive; case SPL_NR_ACTIVE: return active; default: ASSERT(0); /* Unsupported */ } return 0; } #else # ifdef HAVE_GLOBAL_PAGE_STATE unsigned long spl_global_page_state(spl_zone_stat_item_t item) { unsigned long pages = 0; switch (item) { case SPL_NR_FREE_PAGES: # ifdef HAVE_ZONE_STAT_ITEM_NR_FREE_PAGES pages += global_page_state(NR_FREE_PAGES); # endif break; case SPL_NR_INACTIVE: # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE pages += global_page_state(NR_INACTIVE); # endif # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_ANON pages += global_page_state(NR_INACTIVE_ANON); # endif # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_FILE pages += global_page_state(NR_INACTIVE_FILE); # endif break; case SPL_NR_ACTIVE: # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE pages += global_page_state(NR_ACTIVE); # endif # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_ANON pages += global_page_state(NR_ACTIVE_ANON); # endif # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_FILE pages += global_page_state(NR_ACTIVE_FILE); # endif break; default: ASSERT(0); /* Unsupported */ } return pages; } # else # error "Both global_page_state() and get_zone_counts() unavailable" # endif /* HAVE_GLOBAL_PAGE_STATE */ #endif /* NEED_GET_ZONE_COUNTS */ EXPORT_SYMBOL(spl_global_page_state); #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK) invalidate_inodes_t invalidate_inodes_fn = SYMBOL_POISON; EXPORT_SYMBOL(invalidate_inodes_fn); #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */ #ifndef HAVE_SHRINK_DCACHE_MEMORY shrink_dcache_memory_t shrink_dcache_memory_fn = SYMBOL_POISON; EXPORT_SYMBOL(shrink_dcache_memory_fn); #endif /* HAVE_SHRINK_DCACHE_MEMORY */ #ifndef HAVE_SHRINK_ICACHE_MEMORY shrink_icache_memory_t shrink_icache_memory_fn = SYMBOL_POISON; EXPORT_SYMBOL(shrink_icache_memory_fn); #endif /* HAVE_SHRINK_ICACHE_MEMORY */ pgcnt_t spl_kmem_availrmem(void) { /* The amount of easily available memory */ return (spl_global_page_state(SPL_NR_FREE_PAGES) + spl_global_page_state(SPL_NR_INACTIVE)); } EXPORT_SYMBOL(spl_kmem_availrmem); size_t vmem_size(vmem_t *vmp, int typemask) { struct vmalloc_info vmi; size_t size = 0; ASSERT(vmp == NULL); ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE)); get_vmalloc_info(&vmi); if (typemask & VMEM_ALLOC) size += (size_t)vmi.used; if (typemask & VMEM_FREE) size += (size_t)(VMALLOC_TOTAL - vmi.used); return size; } EXPORT_SYMBOL(vmem_size); int kmem_debugging(void) { return 0; } EXPORT_SYMBOL(kmem_debugging); #ifndef HAVE_KVASPRINTF /* Simplified asprintf. */ char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap) { unsigned int len; char *p; va_list aq; va_copy(aq, ap); len = vsnprintf(NULL, 0, fmt, aq); va_end(aq); p = kmalloc(len+1, gfp); if (!p) return NULL; vsnprintf(p, len+1, fmt, ap); return p; } EXPORT_SYMBOL(kvasprintf); #endif /* HAVE_KVASPRINTF */ char * kmem_vasprintf(const char *fmt, va_list ap) { va_list aq; char *ptr; do { va_copy(aq, ap); ptr = kvasprintf(GFP_KERNEL, fmt, aq); va_end(aq); } while (ptr == NULL); return ptr; } EXPORT_SYMBOL(kmem_vasprintf); char * kmem_asprintf(const char *fmt, ...) { va_list ap; char *ptr; do { va_start(ap, fmt); ptr = kvasprintf(GFP_KERNEL, fmt, ap); va_end(ap); } while (ptr == NULL); return ptr; } EXPORT_SYMBOL(kmem_asprintf); static char * __strdup(const char *str, int flags) { char *ptr; int n; n = strlen(str); ptr = kmalloc_nofail(n + 1, flags); if (ptr) memcpy(ptr, str, n + 1); return ptr; } char * strdup(const char *str) { return __strdup(str, KM_SLEEP); } EXPORT_SYMBOL(strdup); void strfree(char *str) { kfree(str); } EXPORT_SYMBOL(strfree); /* * Memory allocation interfaces and debugging for basic kmem_* * and vmem_* style memory allocation. When DEBUG_KMEM is enabled * the SPL will keep track of the total memory allocated, and * report any memory leaked when the module is unloaded. */ #ifdef DEBUG_KMEM /* Shim layer memory accounting */ # ifdef HAVE_ATOMIC64_T atomic64_t kmem_alloc_used = ATOMIC64_INIT(0); unsigned long long kmem_alloc_max = 0; atomic64_t vmem_alloc_used = ATOMIC64_INIT(0); unsigned long long vmem_alloc_max = 0; # else /* HAVE_ATOMIC64_T */ atomic_t kmem_alloc_used = ATOMIC_INIT(0); unsigned long long kmem_alloc_max = 0; atomic_t vmem_alloc_used = ATOMIC_INIT(0); unsigned long long vmem_alloc_max = 0; # endif /* HAVE_ATOMIC64_T */ EXPORT_SYMBOL(kmem_alloc_used); EXPORT_SYMBOL(kmem_alloc_max); EXPORT_SYMBOL(vmem_alloc_used); EXPORT_SYMBOL(vmem_alloc_max); /* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked * but also the location of every alloc and free. When the SPL module is * unloaded a list of all leaked addresses and where they were allocated * will be dumped to the console. Enabling this feature has a significant * impact on performance but it makes finding memory leaks straight forward. * * Not surprisingly with debugging enabled the xmem_locks are very highly * contended particularly on xfree(). If we want to run with this detailed * debugging enabled for anything other than debugging we need to minimize * the contention by moving to a lock per xmem_table entry model. */ # ifdef DEBUG_KMEM_TRACKING # define KMEM_HASH_BITS 10 # define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS) # define VMEM_HASH_BITS 10 # define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS) typedef struct kmem_debug { struct hlist_node kd_hlist; /* Hash node linkage */ struct list_head kd_list; /* List of all allocations */ void *kd_addr; /* Allocation pointer */ size_t kd_size; /* Allocation size */ const char *kd_func; /* Allocation function */ int kd_line; /* Allocation line */ } kmem_debug_t; spinlock_t kmem_lock; struct hlist_head kmem_table[KMEM_TABLE_SIZE]; struct list_head kmem_list; spinlock_t vmem_lock; struct hlist_head vmem_table[VMEM_TABLE_SIZE]; struct list_head vmem_list; EXPORT_SYMBOL(kmem_lock); EXPORT_SYMBOL(kmem_table); EXPORT_SYMBOL(kmem_list); EXPORT_SYMBOL(vmem_lock); EXPORT_SYMBOL(vmem_table); EXPORT_SYMBOL(vmem_list); static kmem_debug_t * kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits, const void *addr) { struct hlist_head *head; struct hlist_node *node; struct kmem_debug *p; unsigned long flags; SENTRY; spin_lock_irqsave(lock, flags); head = &table[hash_ptr(addr, bits)]; hlist_for_each_entry_rcu(p, node, head, kd_hlist) { if (p->kd_addr == addr) { hlist_del_init(&p->kd_hlist); list_del_init(&p->kd_list); spin_unlock_irqrestore(lock, flags); return p; } } spin_unlock_irqrestore(lock, flags); SRETURN(NULL); } void * kmem_alloc_track(size_t size, int flags, const char *func, int line, int node_alloc, int node) { void *ptr = NULL; kmem_debug_t *dptr; unsigned long irq_flags; SENTRY; /* Function may be called with KM_NOSLEEP so failure is possible */ dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t), flags & ~__GFP_ZERO); if (unlikely(dptr == NULL)) { SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug " "kmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n", sizeof(kmem_debug_t), flags, func, line, kmem_alloc_used_read(), kmem_alloc_max); } else { /* * Marked unlikely because we should never be doing this, * we tolerate to up 2 pages but a single page is best. */ if (unlikely((size > PAGE_SIZE*2) && !(flags & KM_NODEBUG))) { SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "large " "kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n", (unsigned long long) size, flags, func, line, kmem_alloc_used_read(), kmem_alloc_max); spl_debug_dumpstack(NULL); } /* * We use __strdup() below because the string pointed to by * __FUNCTION__ might not be available by the time we want * to print it since the module might have been unloaded. * This can only fail in the KM_NOSLEEP case. */ dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO); if (unlikely(dptr->kd_func == NULL)) { kfree(dptr); SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug __strdup() at %s:%d failed (%lld/%llu)\n", func, line, kmem_alloc_used_read(), kmem_alloc_max); goto out; } /* Use the correct allocator */ if (node_alloc) { ASSERT(!(flags & __GFP_ZERO)); ptr = kmalloc_node_nofail(size, flags, node); } else if (flags & __GFP_ZERO) { ptr = kzalloc_nofail(size, flags & ~__GFP_ZERO); } else { ptr = kmalloc_nofail(size, flags); } if (unlikely(ptr == NULL)) { kfree(dptr->kd_func); kfree(dptr); SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem_alloc" "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n", (unsigned long long) size, flags, func, line, kmem_alloc_used_read(), kmem_alloc_max); goto out; } kmem_alloc_used_add(size); if (unlikely(kmem_alloc_used_read() > kmem_alloc_max)) kmem_alloc_max = kmem_alloc_used_read(); INIT_HLIST_NODE(&dptr->kd_hlist); INIT_LIST_HEAD(&dptr->kd_list); dptr->kd_addr = ptr; dptr->kd_size = size; dptr->kd_line = line; spin_lock_irqsave(&kmem_lock, irq_flags); hlist_add_head_rcu(&dptr->kd_hlist, &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]); list_add_tail(&dptr->kd_list, &kmem_list); spin_unlock_irqrestore(&kmem_lock, irq_flags); SDEBUG_LIMIT(SD_INFO, "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n", (unsigned long long) size, flags, func, line, ptr, kmem_alloc_used_read(), kmem_alloc_max); } out: SRETURN(ptr); } EXPORT_SYMBOL(kmem_alloc_track); void kmem_free_track(const void *ptr, size_t size) { kmem_debug_t *dptr; SENTRY; ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr, (unsigned long long) size); dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr); /* Must exist in hash due to kmem_alloc() */ ASSERT(dptr); /* Size must match */ ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), " "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size, (unsigned long long) size, dptr->kd_func, dptr->kd_line); kmem_alloc_used_sub(size); SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr, (unsigned long long) size, kmem_alloc_used_read(), kmem_alloc_max); kfree(dptr->kd_func); memset(dptr, 0x5a, sizeof(kmem_debug_t)); kfree(dptr); memset(ptr, 0x5a, size); kfree(ptr); SEXIT; } EXPORT_SYMBOL(kmem_free_track); void * vmem_alloc_track(size_t size, int flags, const char *func, int line) { void *ptr = NULL; kmem_debug_t *dptr; unsigned long irq_flags; SENTRY; ASSERT(flags & KM_SLEEP); /* Function may be called with KM_NOSLEEP so failure is possible */ dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t), flags & ~__GFP_ZERO); if (unlikely(dptr == NULL)) { SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug " "vmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n", sizeof(kmem_debug_t), flags, func, line, vmem_alloc_used_read(), vmem_alloc_max); } else { /* * We use __strdup() below because the string pointed to by * __FUNCTION__ might not be available by the time we want * to print it, since the module might have been unloaded. * This can never fail because we have already asserted * that flags is KM_SLEEP. */ dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO); if (unlikely(dptr->kd_func == NULL)) { kfree(dptr); SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug __strdup() at %s:%d failed (%lld/%llu)\n", func, line, vmem_alloc_used_read(), vmem_alloc_max); goto out; } /* Use the correct allocator */ if (flags & __GFP_ZERO) { ptr = vzalloc_nofail(size, flags & ~__GFP_ZERO); } else { ptr = vmalloc_nofail(size, flags); } if (unlikely(ptr == NULL)) { kfree(dptr->kd_func); kfree(dptr); SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem_alloc" "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n", (unsigned long long) size, flags, func, line, vmem_alloc_used_read(), vmem_alloc_max); goto out; } vmem_alloc_used_add(size); if (unlikely(vmem_alloc_used_read() > vmem_alloc_max)) vmem_alloc_max = vmem_alloc_used_read(); INIT_HLIST_NODE(&dptr->kd_hlist); INIT_LIST_HEAD(&dptr->kd_list); dptr->kd_addr = ptr; dptr->kd_size = size; dptr->kd_line = line; spin_lock_irqsave(&vmem_lock, irq_flags); hlist_add_head_rcu(&dptr->kd_hlist, &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]); list_add_tail(&dptr->kd_list, &vmem_list); spin_unlock_irqrestore(&vmem_lock, irq_flags); SDEBUG_LIMIT(SD_INFO, "vmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n", (unsigned long long) size, flags, func, line, ptr, vmem_alloc_used_read(), vmem_alloc_max); } out: SRETURN(ptr); } EXPORT_SYMBOL(vmem_alloc_track); void vmem_free_track(const void *ptr, size_t size) { kmem_debug_t *dptr; SENTRY; ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr, (unsigned long long) size); dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr); /* Must exist in hash due to vmem_alloc() */ ASSERT(dptr); /* Size must match */ ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), " "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size, (unsigned long long) size, dptr->kd_func, dptr->kd_line); vmem_alloc_used_sub(size); SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr, (unsigned long long) size, vmem_alloc_used_read(), vmem_alloc_max); kfree(dptr->kd_func); memset(dptr, 0x5a, sizeof(kmem_debug_t)); kfree(dptr); memset(ptr, 0x5a, size); vfree(ptr); SEXIT; } EXPORT_SYMBOL(vmem_free_track); # else /* DEBUG_KMEM_TRACKING */ void * kmem_alloc_debug(size_t size, int flags, const char *func, int line, int node_alloc, int node) { void *ptr; SENTRY; /* * Marked unlikely because we should never be doing this, * we tolerate to up 2 pages but a single page is best. */ if (unlikely((size > PAGE_SIZE * 2) && !(flags & KM_NODEBUG))) { SDEBUG(SD_CONSOLE | SD_WARNING, "large kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n", (unsigned long long) size, flags, func, line, kmem_alloc_used_read(), kmem_alloc_max); dump_stack(); } /* Use the correct allocator */ if (node_alloc) { ASSERT(!(flags & __GFP_ZERO)); ptr = kmalloc_node_nofail(size, flags, node); } else if (flags & __GFP_ZERO) { ptr = kzalloc_nofail(size, flags & (~__GFP_ZERO)); } else { ptr = kmalloc_nofail(size, flags); } if (unlikely(ptr == NULL)) { SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n", (unsigned long long) size, flags, func, line, kmem_alloc_used_read(), kmem_alloc_max); } else { kmem_alloc_used_add(size); if (unlikely(kmem_alloc_used_read() > kmem_alloc_max)) kmem_alloc_max = kmem_alloc_used_read(); SDEBUG_LIMIT(SD_INFO, "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n", (unsigned long long) size, flags, func, line, ptr, kmem_alloc_used_read(), kmem_alloc_max); } SRETURN(ptr); } EXPORT_SYMBOL(kmem_alloc_debug); void kmem_free_debug(const void *ptr, size_t size) { SENTRY; ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr, (unsigned long long) size); kmem_alloc_used_sub(size); SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr, (unsigned long long) size, kmem_alloc_used_read(), kmem_alloc_max); kfree(ptr); SEXIT; } EXPORT_SYMBOL(kmem_free_debug); void * vmem_alloc_debug(size_t size, int flags, const char *func, int line) { void *ptr; SENTRY; ASSERT(flags & KM_SLEEP); /* Use the correct allocator */ if (flags & __GFP_ZERO) { ptr = vzalloc_nofail(size, flags & (~__GFP_ZERO)); } else { ptr = vmalloc_nofail(size, flags); } if (unlikely(ptr == NULL)) { SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n", (unsigned long long) size, flags, func, line, vmem_alloc_used_read(), vmem_alloc_max); } else { vmem_alloc_used_add(size); if (unlikely(vmem_alloc_used_read() > vmem_alloc_max)) vmem_alloc_max = vmem_alloc_used_read(); SDEBUG_LIMIT(SD_INFO, "vmem_alloc(%llu, 0x%x) = %p " "(%lld/%llu)\n", (unsigned long long) size, flags, ptr, vmem_alloc_used_read(), vmem_alloc_max); } SRETURN(ptr); } EXPORT_SYMBOL(vmem_alloc_debug); void vmem_free_debug(const void *ptr, size_t size) { SENTRY; ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr, (unsigned long long) size); vmem_alloc_used_sub(size); SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr, (unsigned long long) size, vmem_alloc_used_read(), vmem_alloc_max); vfree(ptr); SEXIT; } EXPORT_SYMBOL(vmem_free_debug); # endif /* DEBUG_KMEM_TRACKING */ #endif /* DEBUG_KMEM */ /* * Slab allocation interfaces * * While the Linux slab implementation was inspired by the Solaris * implementation I cannot use it to emulate the Solaris APIs. I * require two features which are not provided by the Linux slab. * * 1) Constructors AND destructors. Recent versions of the Linux * kernel have removed support for destructors. This is a deal * breaker for the SPL which contains particularly expensive * initializers for mutex's, condition variables, etc. We also * require a minimal level of cleanup for these data types unlike * many Linux data type which do need to be explicitly destroyed. * * 2) Virtual address space backed slab. Callers of the Solaris slab * expect it to work well for both small are very large allocations. * Because of memory fragmentation the Linux slab which is backed * by kmalloc'ed memory performs very badly when confronted with * large numbers of large allocations. Basing the slab on the * virtual address space removes the need for contiguous pages * and greatly improve performance for large allocations. * * For these reasons, the SPL has its own slab implementation with * the needed features. It is not as highly optimized as either the * Solaris or Linux slabs, but it should get me most of what is * needed until it can be optimized or obsoleted by another approach. * * One serious concern I do have about this method is the relatively * small virtual address space on 32bit arches. This will seriously * constrain the size of the slab caches and their performance. * * XXX: Improve the partial slab list by carefully maintaining a * strict ordering of fullest to emptiest slabs based on * the slab reference count. This guarantees the when freeing * slabs back to the system we need only linearly traverse the * last N slabs in the list to discover all the freeable slabs. * * XXX: NUMA awareness for optionally allocating memory close to a * particular core. This can be advantageous if you know the slab * object will be short lived and primarily accessed from one core. * * XXX: Slab coloring may also yield performance improvements and would * be desirable to implement. */ struct list_head spl_kmem_cache_list; /* List of caches */ struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */ static int spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush); SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker); SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker, spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS); static void * kv_alloc(spl_kmem_cache_t *skc, int size, int flags) { void *ptr; ASSERT(ISP2(size)); if (skc->skc_flags & KMC_KMEM) ptr = (void *)__get_free_pages(flags, get_order(size)); else ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL); /* Resulting allocated memory will be page aligned */ ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); return ptr; } static void kv_free(spl_kmem_cache_t *skc, void *ptr, int size) { ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); ASSERT(ISP2(size)); /* * The Linux direct reclaim path uses this out of band value to * determine if forward progress is being made. Normally this is * incremented by kmem_freepages() which is part of the various * Linux slab implementations. However, since we are using none * of that infrastructure we are responsible for incrementing it. */ if (current->reclaim_state) current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT; if (skc->skc_flags & KMC_KMEM) free_pages((unsigned long)ptr, get_order(size)); else vfree(ptr); } /* * Required space for each aligned sks. */ static inline uint32_t spl_sks_size(spl_kmem_cache_t *skc) { return P2ROUNDUP_TYPED(sizeof(spl_kmem_slab_t), skc->skc_obj_align, uint32_t); } /* * Required space for each aligned object. */ static inline uint32_t spl_obj_size(spl_kmem_cache_t *skc) { uint32_t align = skc->skc_obj_align; return P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) + P2ROUNDUP_TYPED(sizeof(spl_kmem_obj_t), align, uint32_t); } /* * Lookup the spl_kmem_object_t for an object given that object. */ static inline spl_kmem_obj_t * spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj) { return obj + P2ROUNDUP_TYPED(skc->skc_obj_size, skc->skc_obj_align, uint32_t); } /* * Required space for each offslab object taking in to account alignment * restrictions and the power-of-two requirement of kv_alloc(). */ static inline uint32_t spl_offslab_size(spl_kmem_cache_t *skc) { return 1UL << (highbit(spl_obj_size(skc)) + 1); } /* * It's important that we pack the spl_kmem_obj_t structure and the * actual objects in to one large address space to minimize the number * of calls to the allocator. It is far better to do a few large * allocations and then subdivide it ourselves. Now which allocator * we use requires balancing a few trade offs. * * For small objects we use kmem_alloc() because as long as you are * only requesting a small number of pages (ideally just one) its cheap. * However, when you start requesting multiple pages with kmem_alloc() * it gets increasingly expensive since it requires contiguous pages. * For this reason we shift to vmem_alloc() for slabs of large objects * which removes the need for contiguous pages. We do not use * vmem_alloc() in all cases because there is significant locking * overhead in __get_vm_area_node(). This function takes a single * global lock when acquiring an available virtual address range which * serializes all vmem_alloc()'s for all slab caches. Using slightly * different allocation functions for small and large objects should * give us the best of both worlds. * * KMC_ONSLAB KMC_OFFSLAB * * +------------------------+ +-----------------+ * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+ * | skc_obj_size <-+ | | +-----------------+ | | * | spl_kmem_obj_t | | | | * | skc_obj_size <---+ | +-----------------+ | | * | spl_kmem_obj_t | | | skc_obj_size | <-+ | * | ... v | | spl_kmem_obj_t | | * +------------------------+ +-----------------+ v */ static spl_kmem_slab_t * spl_slab_alloc(spl_kmem_cache_t *skc, int flags) { spl_kmem_slab_t *sks; spl_kmem_obj_t *sko, *n; void *base, *obj; uint32_t obj_size, offslab_size = 0; int i, rc = 0; base = kv_alloc(skc, skc->skc_slab_size, flags); if (base == NULL) SRETURN(NULL); sks = (spl_kmem_slab_t *)base; sks->sks_magic = SKS_MAGIC; sks->sks_objs = skc->skc_slab_objs; sks->sks_age = jiffies; sks->sks_cache = skc; INIT_LIST_HEAD(&sks->sks_list); INIT_LIST_HEAD(&sks->sks_free_list); sks->sks_ref = 0; obj_size = spl_obj_size(skc); if (skc->skc_flags & KMC_OFFSLAB) offslab_size = spl_offslab_size(skc); for (i = 0; i < sks->sks_objs; i++) { if (skc->skc_flags & KMC_OFFSLAB) { obj = kv_alloc(skc, offslab_size, flags); if (!obj) SGOTO(out, rc = -ENOMEM); } else { obj = base + spl_sks_size(skc) + (i * obj_size); } ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); sko = spl_sko_from_obj(skc, obj); sko->sko_addr = obj; sko->sko_magic = SKO_MAGIC; sko->sko_slab = sks; INIT_LIST_HEAD(&sko->sko_list); list_add_tail(&sko->sko_list, &sks->sks_free_list); } list_for_each_entry(sko, &sks->sks_free_list, sko_list) if (skc->skc_ctor) skc->skc_ctor(sko->sko_addr, skc->skc_private, flags); out: if (rc) { if (skc->skc_flags & KMC_OFFSLAB) list_for_each_entry_safe(sko, n, &sks->sks_free_list, sko_list) kv_free(skc, sko->sko_addr, offslab_size); kv_free(skc, base, skc->skc_slab_size); sks = NULL; } SRETURN(sks); } /* * Remove a slab from complete or partial list, it must be called with * the 'skc->skc_lock' held but the actual free must be performed * outside the lock to prevent deadlocking on vmem addresses. */ static void spl_slab_free(spl_kmem_slab_t *sks, struct list_head *sks_list, struct list_head *sko_list) { spl_kmem_cache_t *skc; SENTRY; ASSERT(sks->sks_magic == SKS_MAGIC); ASSERT(sks->sks_ref == 0); skc = sks->sks_cache; ASSERT(skc->skc_magic == SKC_MAGIC); ASSERT(spin_is_locked(&skc->skc_lock)); /* * Update slab/objects counters in the cache, then remove the * slab from the skc->skc_partial_list. Finally add the slab * and all its objects in to the private work lists where the * destructors will be called and the memory freed to the system. */ skc->skc_obj_total -= sks->sks_objs; skc->skc_slab_total--; list_del(&sks->sks_list); list_add(&sks->sks_list, sks_list); list_splice_init(&sks->sks_free_list, sko_list); SEXIT; } /* * Traverses all the partial slabs attached to a cache and free those * which which are currently empty, and have not been touched for * skc_delay seconds to avoid thrashing. The count argument is * passed to optionally cap the number of slabs reclaimed, a count * of zero means try and reclaim everything. When flag is set we * always free an available slab regardless of age. */ static void spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag) { spl_kmem_slab_t *sks, *m; spl_kmem_obj_t *sko, *n; LIST_HEAD(sks_list); LIST_HEAD(sko_list); uint32_t size = 0; int i = 0; SENTRY; /* * Move empty slabs and objects which have not been touched in * skc_delay seconds on to private lists to be freed outside * the spin lock. This delay time is important to avoid thrashing * however when flag is set the delay will not be used. */ spin_lock(&skc->skc_lock); list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){ /* * All empty slabs are at the end of skc->skc_partial_list, * therefore once a non-empty slab is found we can stop * scanning. Additionally, stop when reaching the target * reclaim 'count' if a non-zero threshold is given. */ if ((sks->sks_ref > 0) || (count && i >= count)) break; if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) { spl_slab_free(sks, &sks_list, &sko_list); i++; } } spin_unlock(&skc->skc_lock); /* * The following two loops ensure all the object destructors are * run, any offslab objects are freed, and the slabs themselves * are freed. This is all done outside the skc->skc_lock since * this allows the destructor to sleep, and allows us to perform * a conditional reschedule when a freeing a large number of * objects and slabs back to the system. */ if (skc->skc_flags & KMC_OFFSLAB) size = spl_offslab_size(skc); list_for_each_entry_safe(sko, n, &sko_list, sko_list) { ASSERT(sko->sko_magic == SKO_MAGIC); if (skc->skc_dtor) skc->skc_dtor(sko->sko_addr, skc->skc_private); if (skc->skc_flags & KMC_OFFSLAB) kv_free(skc, sko->sko_addr, size); cond_resched(); } list_for_each_entry_safe(sks, m, &sks_list, sks_list) { ASSERT(sks->sks_magic == SKS_MAGIC); kv_free(skc, sks, skc->skc_slab_size); cond_resched(); } SEXIT; } static spl_kmem_emergency_t * spl_emergency_search(struct rb_root *root, void *obj) { struct rb_node *node = root->rb_node; spl_kmem_emergency_t *ske; unsigned long address = (unsigned long)obj; while (node) { ske = container_of(node, spl_kmem_emergency_t, ske_node); if (address < (unsigned long)ske->ske_obj) node = node->rb_left; else if (address > (unsigned long)ske->ske_obj) node = node->rb_right; else return ske; } return NULL; } static int spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske) { struct rb_node **new = &(root->rb_node), *parent = NULL; spl_kmem_emergency_t *ske_tmp; unsigned long address = (unsigned long)ske->ske_obj; while (*new) { ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node); parent = *new; if (address < (unsigned long)ske_tmp->ske_obj) new = &((*new)->rb_left); else if (address > (unsigned long)ske_tmp->ske_obj) new = &((*new)->rb_right); else return 0; } rb_link_node(&ske->ske_node, parent, new); rb_insert_color(&ske->ske_node, root); return 1; } /* * Allocate a single emergency object and track it in a red black tree. */ static int spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj) { spl_kmem_emergency_t *ske; int empty; SENTRY; /* Last chance use a partial slab if one now exists */ spin_lock(&skc->skc_lock); empty = list_empty(&skc->skc_partial_list); spin_unlock(&skc->skc_lock); if (!empty) SRETURN(-EEXIST); ske = kmalloc(sizeof(*ske), flags); if (ske == NULL) SRETURN(-ENOMEM); ske->ske_obj = kmalloc(skc->skc_obj_size, flags); if (ske->ske_obj == NULL) { kfree(ske); SRETURN(-ENOMEM); } spin_lock(&skc->skc_lock); empty = spl_emergency_insert(&skc->skc_emergency_tree, ske); if (likely(empty)) { skc->skc_obj_total++; skc->skc_obj_emergency++; if (skc->skc_obj_emergency > skc->skc_obj_emergency_max) skc->skc_obj_emergency_max = skc->skc_obj_emergency; } spin_unlock(&skc->skc_lock); if (unlikely(!empty)) { kfree(ske->ske_obj); kfree(ske); SRETURN(-EINVAL); } if (skc->skc_ctor) skc->skc_ctor(ske->ske_obj, skc->skc_private, flags); *obj = ske->ske_obj; SRETURN(0); } /* * Locate the passed object in the red black tree and free it. */ static int spl_emergency_free(spl_kmem_cache_t *skc, void *obj) { spl_kmem_emergency_t *ske; SENTRY; spin_lock(&skc->skc_lock); ske = spl_emergency_search(&skc->skc_emergency_tree, obj); if (likely(ske)) { rb_erase(&ske->ske_node, &skc->skc_emergency_tree); skc->skc_obj_emergency--; skc->skc_obj_total--; } spin_unlock(&skc->skc_lock); if (unlikely(ske == NULL)) SRETURN(-ENOENT); if (skc->skc_dtor) skc->skc_dtor(ske->ske_obj, skc->skc_private); kfree(ske->ske_obj); kfree(ske); SRETURN(0); } /* * Called regularly on all caches to age objects out of the magazines * which have not been access in skc->skc_delay seconds. This prevents * idle magazines from holding memory which might be better used by * other caches or parts of the system. The delay is present to * prevent thrashing the magazine. */ static void spl_magazine_age(void *data) { spl_kmem_magazine_t *skm = spl_get_work_data(data, spl_kmem_magazine_t, skm_work.work); spl_kmem_cache_t *skc = skm->skm_cache; ASSERT(skm->skm_magic == SKM_MAGIC); ASSERT(skc->skc_magic == SKC_MAGIC); ASSERT(skc->skc_mag[skm->skm_cpu] == skm); if (skm->skm_avail > 0 && time_after(jiffies, skm->skm_age + skc->skc_delay * HZ)) (void)spl_cache_flush(skc, skm, skm->skm_refill); if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)) schedule_delayed_work_on(skm->skm_cpu, &skm->skm_work, skc->skc_delay / 3 * HZ); } /* * Called regularly to keep a downward pressure on the size of idle * magazines and to release free slabs from the cache. This function * never calls the registered reclaim function, that only occurs * under memory pressure or with a direct call to spl_kmem_reap(). */ static void spl_cache_age(void *data) { spl_kmem_cache_t *skc = spl_get_work_data(data, spl_kmem_cache_t, skc_work.work); ASSERT(skc->skc_magic == SKC_MAGIC); spl_slab_reclaim(skc, skc->skc_reap, 0); if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)) schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ); } /* * Size a slab based on the size of each aligned object plus spl_kmem_obj_t. * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However, * for very small objects we may end up with more than this so as not * to waste space in the minimal allocation of a single page. Also for * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN, * lower than this and we will fail. */ static int spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size) { uint32_t sks_size, obj_size, max_size; if (skc->skc_flags & KMC_OFFSLAB) { *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB; *size = sizeof(spl_kmem_slab_t); } else { sks_size = spl_sks_size(skc); obj_size = spl_obj_size(skc); if (skc->skc_flags & KMC_KMEM) max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE; else max_size = (32 * 1024 * 1024); /* Power of two sized slab */ for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) { *objs = (*size - sks_size) / obj_size; if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB) SRETURN(0); } /* * Unable to satisfy target objects per slab, fall back to * allocating a maximally sized slab and assuming it can * contain the minimum objects count use it. If not fail. */ *size = max_size; *objs = (*size - sks_size) / obj_size; if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN) SRETURN(0); } SRETURN(-ENOSPC); } /* * Make a guess at reasonable per-cpu magazine size based on the size of * each object and the cost of caching N of them in each magazine. Long * term this should really adapt based on an observed usage heuristic. */ static int spl_magazine_size(spl_kmem_cache_t *skc) { uint32_t obj_size = spl_obj_size(skc); int size; SENTRY; /* Per-magazine sizes below assume a 4Kib page size */ if (obj_size > (PAGE_SIZE * 256)) size = 4; /* Minimum 4Mib per-magazine */ else if (obj_size > (PAGE_SIZE * 32)) size = 16; /* Minimum 2Mib per-magazine */ else if (obj_size > (PAGE_SIZE)) size = 64; /* Minimum 256Kib per-magazine */ else if (obj_size > (PAGE_SIZE / 4)) size = 128; /* Minimum 128Kib per-magazine */ else size = 256; SRETURN(size); } /* * Allocate a per-cpu magazine to associate with a specific core. */ static spl_kmem_magazine_t * spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu) { spl_kmem_magazine_t *skm; int size = sizeof(spl_kmem_magazine_t) + sizeof(void *) * skc->skc_mag_size; SENTRY; skm = kmem_alloc_node(size, KM_SLEEP, cpu_to_node(cpu)); if (skm) { skm->skm_magic = SKM_MAGIC; skm->skm_avail = 0; skm->skm_size = skc->skc_mag_size; skm->skm_refill = skc->skc_mag_refill; skm->skm_cache = skc; spl_init_delayed_work(&skm->skm_work, spl_magazine_age, skm); skm->skm_age = jiffies; skm->skm_cpu = cpu; } SRETURN(skm); } /* * Free a per-cpu magazine associated with a specific core. */ static void spl_magazine_free(spl_kmem_magazine_t *skm) { int size = sizeof(spl_kmem_magazine_t) + sizeof(void *) * skm->skm_size; SENTRY; ASSERT(skm->skm_magic == SKM_MAGIC); ASSERT(skm->skm_avail == 0); kmem_free(skm, size); SEXIT; } /* * Create all pre-cpu magazines of reasonable sizes. */ static int spl_magazine_create(spl_kmem_cache_t *skc) { int i; SENTRY; skc->skc_mag_size = spl_magazine_size(skc); skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2; for_each_online_cpu(i) { skc->skc_mag[i] = spl_magazine_alloc(skc, i); if (!skc->skc_mag[i]) { for (i--; i >= 0; i--) spl_magazine_free(skc->skc_mag[i]); SRETURN(-ENOMEM); } } /* Only after everything is allocated schedule magazine work */ for_each_online_cpu(i) schedule_delayed_work_on(i, &skc->skc_mag[i]->skm_work, skc->skc_delay / 3 * HZ); SRETURN(0); } /* * Destroy all pre-cpu magazines. */ static void spl_magazine_destroy(spl_kmem_cache_t *skc) { spl_kmem_magazine_t *skm; int i; SENTRY; for_each_online_cpu(i) { skm = skc->skc_mag[i]; (void)spl_cache_flush(skc, skm, skm->skm_avail); spl_magazine_free(skm); } SEXIT; } /* * Create a object cache based on the following arguments: * name cache name * size cache object size * align cache object alignment * ctor cache object constructor * dtor cache object destructor * reclaim cache object reclaim * priv cache private data for ctor/dtor/reclaim * vmp unused must be NULL * flags * KMC_NOTOUCH Disable cache object aging (unsupported) * KMC_NODEBUG Disable debugging (unsupported) * KMC_NOMAGAZINE Disable magazine (unsupported) * KMC_NOHASH Disable hashing (unsupported) * KMC_QCACHE Disable qcache (unsupported) * KMC_KMEM Force kmem backed cache * KMC_VMEM Force vmem backed cache * KMC_OFFSLAB Locate objects off the slab */ spl_kmem_cache_t * spl_kmem_cache_create(char *name, size_t size, size_t align, spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, spl_kmem_reclaim_t reclaim, void *priv, void *vmp, int flags) { spl_kmem_cache_t *skc; int rc, kmem_flags = KM_SLEEP; SENTRY; ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags); ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags); ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags); ASSERT(vmp == NULL); /* We may be called when there is a non-zero preempt_count or * interrupts are disabled is which case we must not sleep. */ if (current_thread_info()->preempt_count || irqs_disabled()) kmem_flags = KM_NOSLEEP; /* Allocate memory for a new cache an initialize it. Unfortunately, * this usually ends up being a large allocation of ~32k because * we need to allocate enough memory for the worst case number of * cpus in the magazine, skc_mag[NR_CPUS]. Because of this we * explicitly pass KM_NODEBUG to suppress the kmem warning */ skc = (spl_kmem_cache_t *)kmem_zalloc(sizeof(*skc), kmem_flags | KM_NODEBUG); if (skc == NULL) SRETURN(NULL); skc->skc_magic = SKC_MAGIC; skc->skc_name_size = strlen(name) + 1; skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags); if (skc->skc_name == NULL) { kmem_free(skc, sizeof(*skc)); SRETURN(NULL); } strncpy(skc->skc_name, name, skc->skc_name_size); skc->skc_ctor = ctor; skc->skc_dtor = dtor; skc->skc_reclaim = reclaim; skc->skc_private = priv; skc->skc_vmp = vmp; skc->skc_flags = flags; skc->skc_obj_size = size; skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN; skc->skc_delay = SPL_KMEM_CACHE_DELAY; skc->skc_reap = SPL_KMEM_CACHE_REAP; atomic_set(&skc->skc_ref, 0); INIT_LIST_HEAD(&skc->skc_list); INIT_LIST_HEAD(&skc->skc_complete_list); INIT_LIST_HEAD(&skc->skc_partial_list); skc->skc_emergency_tree = RB_ROOT; spin_lock_init(&skc->skc_lock); init_waitqueue_head(&skc->skc_waitq); skc->skc_slab_fail = 0; skc->skc_slab_create = 0; skc->skc_slab_destroy = 0; skc->skc_slab_total = 0; skc->skc_slab_alloc = 0; skc->skc_slab_max = 0; skc->skc_obj_total = 0; skc->skc_obj_alloc = 0; skc->skc_obj_max = 0; skc->skc_obj_deadlock = 0; skc->skc_obj_emergency = 0; skc->skc_obj_emergency_max = 0; if (align) { VERIFY(ISP2(align)); VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); /* Min alignment */ VERIFY3U(align, <=, PAGE_SIZE); /* Max alignment */ skc->skc_obj_align = align; } /* If none passed select a cache type based on object size */ if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) { if (spl_obj_size(skc) < (PAGE_SIZE / 8)) skc->skc_flags |= KMC_KMEM; else skc->skc_flags |= KMC_VMEM; } rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size); if (rc) SGOTO(out, rc); rc = spl_magazine_create(skc); if (rc) SGOTO(out, rc); spl_init_delayed_work(&skc->skc_work, spl_cache_age, skc); schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ); down_write(&spl_kmem_cache_sem); list_add_tail(&skc->skc_list, &spl_kmem_cache_list); up_write(&spl_kmem_cache_sem); SRETURN(skc); out: kmem_free(skc->skc_name, skc->skc_name_size); kmem_free(skc, sizeof(*skc)); SRETURN(NULL); } EXPORT_SYMBOL(spl_kmem_cache_create); /* * Register a move callback to for cache defragmentation. * XXX: Unimplemented but harmless to stub out for now. */ void spl_kmem_cache_set_move(spl_kmem_cache_t *skc, kmem_cbrc_t (move)(void *, void *, size_t, void *)) { ASSERT(move != NULL); } EXPORT_SYMBOL(spl_kmem_cache_set_move); /* * Destroy a cache and all objects associated with the cache. */ void spl_kmem_cache_destroy(spl_kmem_cache_t *skc) { DECLARE_WAIT_QUEUE_HEAD(wq); int i; SENTRY; ASSERT(skc->skc_magic == SKC_MAGIC); down_write(&spl_kmem_cache_sem); list_del_init(&skc->skc_list); up_write(&spl_kmem_cache_sem); /* Cancel any and wait for any pending delayed work */ VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags)); cancel_delayed_work_sync(&skc->skc_work); for_each_online_cpu(i) cancel_delayed_work_sync(&skc->skc_mag[i]->skm_work); flush_scheduled_work(); /* Wait until all current callers complete, this is mainly * to catch the case where a low memory situation triggers a * cache reaping action which races with this destroy. */ wait_event(wq, atomic_read(&skc->skc_ref) == 0); spl_magazine_destroy(skc); spl_slab_reclaim(skc, 0, 1); spin_lock(&skc->skc_lock); /* Validate there are no objects in use and free all the * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */ ASSERT3U(skc->skc_slab_alloc, ==, 0); ASSERT3U(skc->skc_obj_alloc, ==, 0); ASSERT3U(skc->skc_slab_total, ==, 0); ASSERT3U(skc->skc_obj_total, ==, 0); ASSERT3U(skc->skc_obj_emergency, ==, 0); ASSERT(list_empty(&skc->skc_complete_list)); kmem_free(skc->skc_name, skc->skc_name_size); spin_unlock(&skc->skc_lock); kmem_free(skc, sizeof(*skc)); SEXIT; } EXPORT_SYMBOL(spl_kmem_cache_destroy); /* * Allocate an object from a slab attached to the cache. This is used to * repopulate the per-cpu magazine caches in batches when they run low. */ static void * spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks) { spl_kmem_obj_t *sko; ASSERT(skc->skc_magic == SKC_MAGIC); ASSERT(sks->sks_magic == SKS_MAGIC); ASSERT(spin_is_locked(&skc->skc_lock)); sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list); ASSERT(sko->sko_magic == SKO_MAGIC); ASSERT(sko->sko_addr != NULL); /* Remove from sks_free_list */ list_del_init(&sko->sko_list); sks->sks_age = jiffies; sks->sks_ref++; skc->skc_obj_alloc++; /* Track max obj usage statistics */ if (skc->skc_obj_alloc > skc->skc_obj_max) skc->skc_obj_max = skc->skc_obj_alloc; /* Track max slab usage statistics */ if (sks->sks_ref == 1) { skc->skc_slab_alloc++; if (skc->skc_slab_alloc > skc->skc_slab_max) skc->skc_slab_max = skc->skc_slab_alloc; } return sko->sko_addr; } /* * Generic slab allocation function to run by the global work queues. * It is responsible for allocating a new slab, linking it in to the list * of partial slabs, and then waking any waiters. */ static void spl_cache_grow_work(void *data) { spl_kmem_alloc_t *ska = spl_get_work_data(data, spl_kmem_alloc_t, ska_work.work); spl_kmem_cache_t *skc = ska->ska_cache; spl_kmem_slab_t *sks; sks = spl_slab_alloc(skc, ska->ska_flags | __GFP_NORETRY | KM_NODEBUG); spin_lock(&skc->skc_lock); if (sks) { skc->skc_slab_total++; skc->skc_obj_total += sks->sks_objs; list_add_tail(&sks->sks_list, &skc->skc_partial_list); } atomic_dec(&skc->skc_ref); clear_bit(KMC_BIT_GROWING, &skc->skc_flags); clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); wake_up_all(&skc->skc_waitq); spin_unlock(&skc->skc_lock); kfree(ska); } /* * Returns non-zero when a new slab should be available. */ static int spl_cache_grow_wait(spl_kmem_cache_t *skc) { return !test_bit(KMC_BIT_GROWING, &skc->skc_flags); } static int spl_cache_reclaim_wait(void *word) { schedule(); return 0; } /* * No available objects on any slabs, create a new slab. */ static int spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj) { int remaining, rc; SENTRY; ASSERT(skc->skc_magic == SKC_MAGIC); might_sleep(); *obj = NULL; /* * Before allocating a new slab wait for any reaping to complete and * then return so the local magazine can be rechecked for new objects. */ if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) { rc = wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING, spl_cache_reclaim_wait, TASK_UNINTERRUPTIBLE); SRETURN(rc ? rc : -EAGAIN); } /* * This is handled by dispatching a work request to the global work * queue. This allows us to asynchronously allocate a new slab while * retaining the ability to safely fall back to a smaller synchronous * allocations to ensure forward progress is always maintained. */ if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) { spl_kmem_alloc_t *ska; ska = kmalloc(sizeof(*ska), flags); if (ska == NULL) { clear_bit(KMC_BIT_GROWING, &skc->skc_flags); wake_up_all(&skc->skc_waitq); SRETURN(-ENOMEM); } atomic_inc(&skc->skc_ref); ska->ska_cache = skc; ska->ska_flags = flags & ~__GFP_FS; spl_init_delayed_work(&ska->ska_work, spl_cache_grow_work, ska); schedule_delayed_work(&ska->ska_work, 0); } /* * The goal here is to only detect the rare case where a virtual slab * allocation has deadlocked. We must be careful to minimize the use * of emergency objects which are more expensive to track. Therefore, * we set a very long timeout for the asynchronous allocation and if * the timeout is reached the cache is flagged as deadlocked. From * this point only new emergency objects will be allocated until the * asynchronous allocation completes and clears the deadlocked flag. */ if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) { rc = spl_emergency_alloc(skc, flags, obj); } else { remaining = wait_event_timeout(skc->skc_waitq, spl_cache_grow_wait(skc), HZ); if (!remaining && test_bit(KMC_BIT_VMEM, &skc->skc_flags)) { spin_lock(&skc->skc_lock); if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) { set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); skc->skc_obj_deadlock++; } spin_unlock(&skc->skc_lock); } rc = -ENOMEM; } SRETURN(rc); } /* * Refill a per-cpu magazine with objects from the slabs for this cache. * Ideally the magazine can be repopulated using existing objects which have * been released, however if we are unable to locate enough free objects new * slabs of objects will be created. On success NULL is returned, otherwise * the address of a single emergency object is returned for use by the caller. */ static void * spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags) { spl_kmem_slab_t *sks; int count = 0, rc, refill; void *obj = NULL; SENTRY; ASSERT(skc->skc_magic == SKC_MAGIC); ASSERT(skm->skm_magic == SKM_MAGIC); refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail); spin_lock(&skc->skc_lock); while (refill > 0) { /* No slabs available we may need to grow the cache */ if (list_empty(&skc->skc_partial_list)) { spin_unlock(&skc->skc_lock); local_irq_enable(); rc = spl_cache_grow(skc, flags, &obj); local_irq_disable(); /* Emergency object for immediate use by caller */ if (rc == 0 && obj != NULL) SRETURN(obj); if (rc) SGOTO(out, rc); /* Rescheduled to different CPU skm is not local */ if (skm != skc->skc_mag[smp_processor_id()]) SGOTO(out, rc); /* Potentially rescheduled to the same CPU but * allocations may have occurred from this CPU while * we were sleeping so recalculate max refill. */ refill = MIN(refill, skm->skm_size - skm->skm_avail); spin_lock(&skc->skc_lock); continue; } /* Grab the next available slab */ sks = list_entry((&skc->skc_partial_list)->next, spl_kmem_slab_t, sks_list); ASSERT(sks->sks_magic == SKS_MAGIC); ASSERT(sks->sks_ref < sks->sks_objs); ASSERT(!list_empty(&sks->sks_free_list)); /* Consume as many objects as needed to refill the requested * cache. We must also be careful not to overfill it. */ while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++count) { ASSERT(skm->skm_avail < skm->skm_size); ASSERT(count < skm->skm_size); skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks); } /* Move slab to skc_complete_list when full */ if (sks->sks_ref == sks->sks_objs) { list_del(&sks->sks_list); list_add(&sks->sks_list, &skc->skc_complete_list); } } spin_unlock(&skc->skc_lock); out: SRETURN(NULL); } /* * Release an object back to the slab from which it came. */ static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj) { spl_kmem_slab_t *sks = NULL; spl_kmem_obj_t *sko = NULL; SENTRY; ASSERT(skc->skc_magic == SKC_MAGIC); ASSERT(spin_is_locked(&skc->skc_lock)); sko = spl_sko_from_obj(skc, obj); ASSERT(sko->sko_magic == SKO_MAGIC); sks = sko->sko_slab; ASSERT(sks->sks_magic == SKS_MAGIC); ASSERT(sks->sks_cache == skc); list_add(&sko->sko_list, &sks->sks_free_list); sks->sks_age = jiffies; sks->sks_ref--; skc->skc_obj_alloc--; /* Move slab to skc_partial_list when no longer full. Slabs * are added to the head to keep the partial list is quasi-full * sorted order. Fuller at the head, emptier at the tail. */ if (sks->sks_ref == (sks->sks_objs - 1)) { list_del(&sks->sks_list); list_add(&sks->sks_list, &skc->skc_partial_list); } /* Move empty slabs to the end of the partial list so * they can be easily found and freed during reclamation. */ if (sks->sks_ref == 0) { list_del(&sks->sks_list); list_add_tail(&sks->sks_list, &skc->skc_partial_list); skc->skc_slab_alloc--; } SEXIT; } /* * Release a batch of objects from a per-cpu magazine back to their * respective slabs. This occurs when we exceed the magazine size, * are under memory pressure, when the cache is idle, or during * cache cleanup. The flush argument contains the number of entries * to remove from the magazine. */ static int spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush) { int i, count = MIN(flush, skm->skm_avail); SENTRY; ASSERT(skc->skc_magic == SKC_MAGIC); ASSERT(skm->skm_magic == SKM_MAGIC); /* * XXX: Currently we simply return objects from the magazine to * the slabs in fifo order. The ideal thing to do from a memory * fragmentation standpoint is to cheaply determine the set of * objects in the magazine which will result in the largest * number of free slabs if released from the magazine. */ spin_lock(&skc->skc_lock); for (i = 0; i < count; i++) spl_cache_shrink(skc, skm->skm_objs[i]); skm->skm_avail -= count; memmove(skm->skm_objs, &(skm->skm_objs[count]), sizeof(void *) * skm->skm_avail); spin_unlock(&skc->skc_lock); SRETURN(count); } /* * Allocate an object from the per-cpu magazine, or if the magazine * is empty directly allocate from a slab and repopulate the magazine. */ void * spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags) { spl_kmem_magazine_t *skm; unsigned long irq_flags; void *obj = NULL; SENTRY; ASSERT(skc->skc_magic == SKC_MAGIC); ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); ASSERT(flags & KM_SLEEP); atomic_inc(&skc->skc_ref); local_irq_save(irq_flags); restart: /* Safe to update per-cpu structure without lock, but * in the restart case we must be careful to reacquire * the local magazine since this may have changed * when we need to grow the cache. */ skm = skc->skc_mag[smp_processor_id()]; ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n", skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm, skm->skm_size, skm->skm_refill, skm->skm_avail); if (likely(skm->skm_avail)) { /* Object available in CPU cache, use it */ obj = skm->skm_objs[--skm->skm_avail]; skm->skm_age = jiffies; } else { obj = spl_cache_refill(skc, skm, flags); if (obj == NULL) SGOTO(restart, obj = NULL); } local_irq_restore(irq_flags); ASSERT(obj); ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); /* Pre-emptively migrate object to CPU L1 cache */ prefetchw(obj); atomic_dec(&skc->skc_ref); SRETURN(obj); } EXPORT_SYMBOL(spl_kmem_cache_alloc); /* * Free an object back to the local per-cpu magazine, there is no * guarantee that this is the same magazine the object was originally * allocated from. We may need to flush entire from the magazine * back to the slabs to make space. */ void spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj) { spl_kmem_magazine_t *skm; unsigned long flags; SENTRY; ASSERT(skc->skc_magic == SKC_MAGIC); ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); atomic_inc(&skc->skc_ref); /* * Only virtual slabs may have emergency objects and these objects * are guaranteed to have physical addresses. They must be removed * from the tree of emergency objects and the freed. */ if ((skc->skc_flags & KMC_VMEM) && !kmem_virt(obj)) SGOTO(out, spl_emergency_free(skc, obj)); local_irq_save(flags); /* Safe to update per-cpu structure without lock, but * no remote memory allocation tracking is being performed * it is entirely possible to allocate an object from one * CPU cache and return it to another. */ skm = skc->skc_mag[smp_processor_id()]; ASSERT(skm->skm_magic == SKM_MAGIC); /* Per-CPU cache full, flush it to make space */ if (unlikely(skm->skm_avail >= skm->skm_size)) (void)spl_cache_flush(skc, skm, skm->skm_refill); /* Available space in cache, use it */ skm->skm_objs[skm->skm_avail++] = obj; local_irq_restore(flags); out: atomic_dec(&skc->skc_ref); SEXIT; } EXPORT_SYMBOL(spl_kmem_cache_free); /* * The generic shrinker function for all caches. Under Linux a shrinker * may not be tightly coupled with a slab cache. In fact Linux always * systematically tries calling all registered shrinker callbacks which * report that they contain unused objects. Because of this we only * register one shrinker function in the shim layer for all slab caches. * We always attempt to shrink all caches when this generic shrinker * is called. The shrinker should return the number of free objects * in the cache when called with nr_to_scan == 0 but not attempt to * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan * objects should be freed, which differs from Solaris semantics. * Solaris semantics are to free all available objects which may (and * probably will) be more objects than the requested nr_to_scan. */ static int __spl_kmem_cache_generic_shrinker(struct shrinker *shrink, struct shrink_control *sc) { spl_kmem_cache_t *skc; int unused = 0; down_read(&spl_kmem_cache_sem); list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) { if (sc->nr_to_scan) spl_kmem_cache_reap_now(skc, MAX(sc->nr_to_scan >> fls64(skc->skc_slab_objs), 1)); /* * Presume everything alloc'ed in reclaimable, this ensures * we are called again with nr_to_scan > 0 so can try and * reclaim. The exact number is not important either so * we forgo taking this already highly contented lock. */ unused += skc->skc_obj_alloc; } up_read(&spl_kmem_cache_sem); return (unused * sysctl_vfs_cache_pressure) / 100; } SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker); /* * Call the registered reclaim function for a cache. Depending on how * many and which objects are released it may simply repopulate the * local magazine which will then need to age-out. Objects which cannot * fit in the magazine we will be released back to their slabs which will * also need to age out before being release. This is all just best * effort and we do not want to thrash creating and destroying slabs. */ void spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count) { SENTRY; ASSERT(skc->skc_magic == SKC_MAGIC); ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); /* Prevent concurrent cache reaping when contended */ if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) { SEXIT; return; } atomic_inc(&skc->skc_ref); /* * When a reclaim function is available it may be invoked repeatedly * until at least a single slab can be freed. This ensures that we * do free memory back to the system. This helps minimize the chance * of an OOM event when the bulk of memory is used by the slab. * * When free slabs are already available the reclaim callback will be * skipped. Additionally, if no forward progress is detected despite * a reclaim function the cache will be skipped to avoid deadlock. * * Longer term this would be the correct place to add the code which * repacks the slabs in order minimize fragmentation. */ if (skc->skc_reclaim) { uint64_t objects = UINT64_MAX; int do_reclaim; do { spin_lock(&skc->skc_lock); do_reclaim = (skc->skc_slab_total > 0) && ((skc->skc_slab_total - skc->skc_slab_alloc) == 0) && (skc->skc_obj_alloc < objects); objects = skc->skc_obj_alloc; spin_unlock(&skc->skc_lock); if (do_reclaim) skc->skc_reclaim(skc->skc_private); } while (do_reclaim); } /* Reclaim from the cache, ignoring it's age and delay. */ spl_slab_reclaim(skc, count, 1); clear_bit(KMC_BIT_REAPING, &skc->skc_flags); smp_mb__after_clear_bit(); wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING); atomic_dec(&skc->skc_ref); SEXIT; } EXPORT_SYMBOL(spl_kmem_cache_reap_now); /* * Reap all free slabs from all registered caches. */ void spl_kmem_reap(void) { struct shrink_control sc; sc.nr_to_scan = KMC_REAP_CHUNK; sc.gfp_mask = GFP_KERNEL; __spl_kmem_cache_generic_shrinker(NULL, &sc); } EXPORT_SYMBOL(spl_kmem_reap); #if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING) static char * spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min) { int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size; int i, flag = 1; ASSERT(str != NULL && len >= 17); memset(str, 0, len); /* Check for a fully printable string, and while we are at * it place the printable characters in the passed buffer. */ for (i = 0; i < size; i++) { str[i] = ((char *)(kd->kd_addr))[i]; if (isprint(str[i])) { continue; } else { /* Minimum number of printable characters found * to make it worthwhile to print this as ascii. */ if (i > min) break; flag = 0; break; } } if (!flag) { sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x", *((uint8_t *)kd->kd_addr), *((uint8_t *)kd->kd_addr + 2), *((uint8_t *)kd->kd_addr + 4), *((uint8_t *)kd->kd_addr + 6), *((uint8_t *)kd->kd_addr + 8), *((uint8_t *)kd->kd_addr + 10), *((uint8_t *)kd->kd_addr + 12), *((uint8_t *)kd->kd_addr + 14)); } return str; } static int spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size) { int i; SENTRY; spin_lock_init(lock); INIT_LIST_HEAD(list); for (i = 0; i < size; i++) INIT_HLIST_HEAD(&kmem_table[i]); SRETURN(0); } static void spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock) { unsigned long flags; kmem_debug_t *kd; char str[17]; SENTRY; spin_lock_irqsave(lock, flags); if (!list_empty(list)) printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address", "size", "data", "func", "line"); list_for_each_entry(kd, list, kd_list) printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr, (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8), kd->kd_func, kd->kd_line); spin_unlock_irqrestore(lock, flags); SEXIT; } #else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */ #define spl_kmem_init_tracking(list, lock, size) #define spl_kmem_fini_tracking(list, lock) #endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */ static void spl_kmem_init_globals(void) { struct zone *zone; /* For now all zones are includes, it may be wise to restrict * this to normal and highmem zones if we see problems. */ for_each_zone(zone) { if (!populated_zone(zone)) continue; minfree += min_wmark_pages(zone); desfree += low_wmark_pages(zone); lotsfree += high_wmark_pages(zone); } /* Solaris default values */ swapfs_minfree = MAX(2*1024*1024 >> PAGE_SHIFT, physmem >> 3); swapfs_reserve = MIN(4*1024*1024 >> PAGE_SHIFT, physmem >> 4); } /* * Called at module init when it is safe to use spl_kallsyms_lookup_name() */ int spl_kmem_init_kallsyms_lookup(void) { #ifndef HAVE_GET_VMALLOC_INFO get_vmalloc_info_fn = (get_vmalloc_info_t) spl_kallsyms_lookup_name("get_vmalloc_info"); if (!get_vmalloc_info_fn) { printk(KERN_ERR "Error: Unknown symbol get_vmalloc_info\n"); return -EFAULT; } #endif /* HAVE_GET_VMALLOC_INFO */ #ifdef HAVE_PGDAT_HELPERS # ifndef HAVE_FIRST_ONLINE_PGDAT first_online_pgdat_fn = (first_online_pgdat_t) spl_kallsyms_lookup_name("first_online_pgdat"); if (!first_online_pgdat_fn) { printk(KERN_ERR "Error: Unknown symbol first_online_pgdat\n"); return -EFAULT; } # endif /* HAVE_FIRST_ONLINE_PGDAT */ # ifndef HAVE_NEXT_ONLINE_PGDAT next_online_pgdat_fn = (next_online_pgdat_t) spl_kallsyms_lookup_name("next_online_pgdat"); if (!next_online_pgdat_fn) { printk(KERN_ERR "Error: Unknown symbol next_online_pgdat\n"); return -EFAULT; } # endif /* HAVE_NEXT_ONLINE_PGDAT */ # ifndef HAVE_NEXT_ZONE next_zone_fn = (next_zone_t) spl_kallsyms_lookup_name("next_zone"); if (!next_zone_fn) { printk(KERN_ERR "Error: Unknown symbol next_zone\n"); return -EFAULT; } # endif /* HAVE_NEXT_ZONE */ #else /* HAVE_PGDAT_HELPERS */ # ifndef HAVE_PGDAT_LIST pgdat_list_addr = *(struct pglist_data **) spl_kallsyms_lookup_name("pgdat_list"); if (!pgdat_list_addr) { printk(KERN_ERR "Error: Unknown symbol pgdat_list\n"); return -EFAULT; } # endif /* HAVE_PGDAT_LIST */ #endif /* HAVE_PGDAT_HELPERS */ #if defined(NEED_GET_ZONE_COUNTS) && !defined(HAVE_GET_ZONE_COUNTS) get_zone_counts_fn = (get_zone_counts_t) spl_kallsyms_lookup_name("get_zone_counts"); if (!get_zone_counts_fn) { printk(KERN_ERR "Error: Unknown symbol get_zone_counts\n"); return -EFAULT; } #endif /* NEED_GET_ZONE_COUNTS && !HAVE_GET_ZONE_COUNTS */ /* * It is now safe to initialize the global tunings which rely on * the use of the for_each_zone() macro. This macro in turns * depends on the *_pgdat symbols which are now available. */ spl_kmem_init_globals(); #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK) invalidate_inodes_fn = (invalidate_inodes_t) spl_kallsyms_lookup_name("invalidate_inodes"); if (!invalidate_inodes_fn) { printk(KERN_ERR "Error: Unknown symbol invalidate_inodes\n"); return -EFAULT; } #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */ #ifndef HAVE_SHRINK_DCACHE_MEMORY /* When shrink_dcache_memory_fn == NULL support is disabled */ shrink_dcache_memory_fn = (shrink_dcache_memory_t) spl_kallsyms_lookup_name("shrink_dcache_memory"); #endif /* HAVE_SHRINK_DCACHE_MEMORY */ #ifndef HAVE_SHRINK_ICACHE_MEMORY /* When shrink_icache_memory_fn == NULL support is disabled */ shrink_icache_memory_fn = (shrink_icache_memory_t) spl_kallsyms_lookup_name("shrink_icache_memory"); #endif /* HAVE_SHRINK_ICACHE_MEMORY */ return 0; } int spl_kmem_init(void) { int rc = 0; SENTRY; init_rwsem(&spl_kmem_cache_sem); INIT_LIST_HEAD(&spl_kmem_cache_list); spl_register_shrinker(&spl_kmem_cache_shrinker); #ifdef DEBUG_KMEM kmem_alloc_used_set(0); vmem_alloc_used_set(0); spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE); spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE); #endif SRETURN(rc); } void spl_kmem_fini(void) { #ifdef DEBUG_KMEM /* Display all unreclaimed memory addresses, including the * allocation size and the first few bytes of what's located * at that address to aid in debugging. Performance is not * a serious concern here since it is module unload time. */ if (kmem_alloc_used_read() != 0) SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem leaked %ld/%ld bytes\n", kmem_alloc_used_read(), kmem_alloc_max); if (vmem_alloc_used_read() != 0) SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem leaked %ld/%ld bytes\n", vmem_alloc_used_read(), vmem_alloc_max); spl_kmem_fini_tracking(&kmem_list, &kmem_lock); spl_kmem_fini_tracking(&vmem_list, &vmem_lock); #endif /* DEBUG_KMEM */ SENTRY; spl_unregister_shrinker(&spl_kmem_cache_shrinker); SEXIT; }