/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2018, Joyent, Inc. * Copyright (c) 2011, 2019 by Delphix. All rights reserved. * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. * Copyright 2017 Nexenta Systems, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #endif #include #include #include #include #include #include #include int64_t last_free_memory; free_memory_reason_t last_free_reason; /* * Return a default max arc size based on the amount of physical memory. */ uint64_t arc_default_max(uint64_t min, uint64_t allmem) { /* Default to 1/2 of all memory. */ return (MAX(allmem / 2, min)); } #ifdef _KERNEL /* * Return maximum amount of memory that we could possibly use. Reduced * to half of all memory in user space which is primarily used for testing. */ uint64_t arc_all_memory(void) { #ifdef CONFIG_HIGHMEM return (ptob(zfs_totalram_pages - zfs_totalhigh_pages)); #else return (ptob(zfs_totalram_pages)); #endif /* CONFIG_HIGHMEM */ } /* * Return the amount of memory that is considered free. In user space * which is primarily used for testing we pretend that free memory ranges * from 0-20% of all memory. */ uint64_t arc_free_memory(void) { #ifdef CONFIG_HIGHMEM struct sysinfo si; si_meminfo(&si); return (ptob(si.freeram - si.freehigh)); #else return (ptob(nr_free_pages() + nr_inactive_file_pages() + nr_slab_reclaimable_pages())); #endif /* CONFIG_HIGHMEM */ } /* * Additional reserve of pages for pp_reserve. */ int64_t arc_pages_pp_reserve = 64; /* * Additional reserve of pages for swapfs. */ int64_t arc_swapfs_reserve = 64; /* * Return the amount of memory that can be consumed before reclaim will be * needed. Positive if there is sufficient free memory, negative indicates * the amount of memory that needs to be freed up. */ int64_t arc_available_memory(void) { int64_t lowest = INT64_MAX; free_memory_reason_t r = FMR_UNKNOWN; int64_t n; if (arc_need_free > 0) { lowest = -arc_need_free; r = FMR_NEEDFREE; } n = arc_free_memory() - arc_sys_free - arc_need_free; if (n < lowest) { lowest = n; r = FMR_LOTSFREE; } last_free_memory = lowest; last_free_reason = r; return (lowest); } static uint64_t arc_evictable_memory(void) { int64_t asize = aggsum_value(&arc_size); uint64_t arc_clean = zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) + zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) + zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) + zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); uint64_t arc_dirty = MAX((int64_t)asize - (int64_t)arc_clean, 0); /* * Scale reported evictable memory in proportion to page cache, cap * at specified min/max. */ uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent; min = MAX(arc_c_min, MIN(arc_c_max, min)); if (arc_dirty >= min) return (arc_clean); return (MAX((int64_t)asize - (int64_t)min, 0)); } /* * The _count() function returns the number of free-able objects. * The _scan() function returns the number of objects that were freed. */ static unsigned long arc_shrinker_count(struct shrinker *shrink, struct shrink_control *sc) { return (btop((int64_t)arc_evictable_memory())); } static unsigned long arc_shrinker_scan(struct shrinker *shrink, struct shrink_control *sc) { int64_t pages; /* The arc is considered warm once reclaim has occurred */ if (unlikely(arc_warm == B_FALSE)) arc_warm = B_TRUE; /* Return the potential number of reclaimable pages */ pages = btop((int64_t)arc_evictable_memory()); /* Not allowed to perform filesystem reclaim */ if (!(sc->gfp_mask & __GFP_FS)) return (SHRINK_STOP); /* Reclaim in progress */ if (mutex_tryenter(&arc_adjust_lock) == 0) { ARCSTAT_INCR(arcstat_need_free, ptob(sc->nr_to_scan)); return (0); } mutex_exit(&arc_adjust_lock); /* * Evict the requested number of pages by shrinking arc_c the * requested amount. */ if (pages > 0) { arc_reduce_target_size(ptob(sc->nr_to_scan)); /* * Repeated calls to the arc shrinker can reduce arc_c * drastically, potentially all the way to arc_c_min. While * arc_c is below arc_size, ZFS can't process read/write * requests, because arc_get_data_impl() will block. To * ensure that arc_c doesn't shrink faster than the adjust * thread can keep up, we wait for eviction here. */ mutex_enter(&arc_adjust_lock); if (arc_is_overflowing()) { arc_adjust_needed = B_TRUE; zthr_wakeup(arc_adjust_zthr); (void) cv_wait(&arc_adjust_waiters_cv, &arc_adjust_lock); } mutex_exit(&arc_adjust_lock); if (current_is_kswapd()) arc_kmem_reap_soon(); pages = MAX((int64_t)pages - (int64_t)btop(arc_evictable_memory()), 0); /* * We've shrunk what we can, wake up threads. */ cv_broadcast(&arc_adjust_waiters_cv); } else pages = SHRINK_STOP; /* * When direct reclaim is observed it usually indicates a rapid * increase in memory pressure. This occurs because the kswapd * threads were unable to asynchronously keep enough free memory * available. In this case set arc_no_grow to briefly pause arc * growth to avoid compounding the memory pressure. */ if (current_is_kswapd()) { ARCSTAT_BUMP(arcstat_memory_indirect_count); } else { arc_no_grow = B_TRUE; arc_kmem_reap_soon(); ARCSTAT_BUMP(arcstat_memory_direct_count); } return (pages); } SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_count, arc_shrinker_scan, DEFAULT_SEEKS); int arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg) { uint64_t free_memory = arc_free_memory(); if (free_memory > arc_all_memory() * arc_lotsfree_percent / 100) return (0); if (txg > spa->spa_lowmem_last_txg) { spa->spa_lowmem_last_txg = txg; spa->spa_lowmem_page_load = 0; } /* * If we are in pageout, we know that memory is already tight, * the arc is already going to be evicting, so we just want to * continue to let page writes occur as quickly as possible. */ if (current_is_kswapd()) { if (spa->spa_lowmem_page_load > MAX(arc_sys_free / 4, free_memory) / 4) { DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim); return (SET_ERROR(ERESTART)); } /* Note: reserve is inflated, so we deflate */ atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8); return (0); } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) { /* memory is low, delay before restarting */ ARCSTAT_INCR(arcstat_memory_throttle_count, 1); DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim); return (SET_ERROR(EAGAIN)); } spa->spa_lowmem_page_load = 0; return (0); } void arc_lowmem_init(void) { uint64_t allmem = arc_all_memory(); /* * Register a shrinker to support synchronous (direct) memory * reclaim from the arc. This is done to prevent kswapd from * swapping out pages when it is preferable to shrink the arc. */ spl_register_shrinker(&arc_shrinker); /* Set to 1/64 of all memory or a minimum of 512K */ arc_sys_free = MAX(allmem / 64, (512 * 1024)); arc_need_free = 0; } void arc_lowmem_fini(void) { spl_unregister_shrinker(&arc_shrinker); } int param_set_arc_long(const char *buf, zfs_kernel_param_t *kp) { int error; error = param_set_long(buf, kp); if (error < 0) return (SET_ERROR(error)); arc_tuning_update(B_TRUE); return (0); } int param_set_arc_int(const char *buf, zfs_kernel_param_t *kp) { int error; error = param_set_int(buf, kp); if (error < 0) return (SET_ERROR(error)); arc_tuning_update(B_TRUE); return (0); } #else /* _KERNEL */ int64_t arc_available_memory(void) { int64_t lowest = INT64_MAX; free_memory_reason_t r = FMR_UNKNOWN; /* Every 100 calls, free a small amount */ if (spa_get_random(100) == 0) lowest = -1024; last_free_memory = lowest; last_free_reason = r; return (lowest); } int arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg) { return (0); } uint64_t arc_all_memory(void) { return (ptob(physmem) / 2); } uint64_t arc_free_memory(void) { return (spa_get_random(arc_all_memory() * 20 / 100)); } #endif /* _KERNEL */ /* * Helper function for arc_prune_async() it is responsible for safely * handling the execution of a registered arc_prune_func_t. */ static void arc_prune_task(void *ptr) { arc_prune_t *ap = (arc_prune_t *)ptr; arc_prune_func_t *func = ap->p_pfunc; if (func != NULL) func(ap->p_adjust, ap->p_private); zfs_refcount_remove(&ap->p_refcnt, func); } /* * Notify registered consumers they must drop holds on a portion of the ARC * buffered they reference. This provides a mechanism to ensure the ARC can * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This * is analogous to dnlc_reduce_cache() but more generic. * * This operation is performed asynchronously so it may be safely called * in the context of the arc_reclaim_thread(). A reference is taken here * for each registered arc_prune_t and the arc_prune_task() is responsible * for releasing it once the registered arc_prune_func_t has completed. */ void arc_prune_async(int64_t adjust) { arc_prune_t *ap; mutex_enter(&arc_prune_mtx); for (ap = list_head(&arc_prune_list); ap != NULL; ap = list_next(&arc_prune_list, ap)) { if (zfs_refcount_count(&ap->p_refcnt) >= 2) continue; zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc); ap->p_adjust = adjust; if (taskq_dispatch(arc_prune_taskq, arc_prune_task, ap, TQ_SLEEP) == TASKQID_INVALID) { zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc); continue; } ARCSTAT_BUMP(arcstat_prune); } mutex_exit(&arc_prune_mtx); }