/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2011, Lawrence Livermore National Security, LLC. */ #include #include #include #include #include static struct inode * zpl_inode_alloc(struct super_block *sb) { struct inode *ip; VERIFY3S(zfs_inode_alloc(sb, &ip), ==, 0); ip->i_version = 1; return (ip); } static void zpl_inode_destroy(struct inode *ip) { ASSERT(atomic_read(&ip->i_count) == 0); zfs_inode_destroy(ip); } /* * Called from __mark_inode_dirty() to reflect that something in the * inode has changed. We use it to ensure the znode system attributes * are always strictly update to date with respect to the inode. */ #ifdef HAVE_DIRTY_INODE_WITH_FLAGS static void zpl_dirty_inode(struct inode *ip, int flags) { fstrans_cookie_t cookie; cookie = spl_fstrans_mark(); zfs_dirty_inode(ip, flags); spl_fstrans_unmark(cookie); } #else static void zpl_dirty_inode(struct inode *ip) { fstrans_cookie_t cookie; cookie = spl_fstrans_mark(); zfs_dirty_inode(ip, 0); spl_fstrans_unmark(cookie); } #endif /* HAVE_DIRTY_INODE_WITH_FLAGS */ /* * When ->drop_inode() is called its return value indicates if the * inode should be evicted from the inode cache. If the inode is * unhashed and has no links the default policy is to evict it * immediately. * * Prior to 2.6.36 this eviction was accomplished by the vfs calling * ->delete_inode(). It was ->delete_inode()'s responsibility to * truncate the inode pages and call clear_inode(). The call to * clear_inode() synchronously invalidates all the buffers and * calls ->clear_inode(). It was ->clear_inode()'s responsibility * to cleanup and filesystem specific data before freeing the inode. * * This elaborate mechanism was replaced by ->evict_inode() which * does the job of both ->delete_inode() and ->clear_inode(). It * will be called exactly once, and when it returns the inode must * be in a state where it can simply be freed.i * * The ->evict_inode() callback must minimally truncate the inode pages, * and call clear_inode(). For 2.6.35 and later kernels this will * simply update the inode state, with the sync occurring before the * truncate in evict(). For earlier kernels clear_inode() maps to * end_writeback() which is responsible for completing all outstanding * write back. In either case, once this is done it is safe to cleanup * any remaining inode specific data via zfs_inactive(). * remaining filesystem specific data. */ #ifdef HAVE_EVICT_INODE static void zpl_evict_inode(struct inode *ip) { fstrans_cookie_t cookie; cookie = spl_fstrans_mark(); truncate_setsize(ip, 0); clear_inode(ip); zfs_inactive(ip); spl_fstrans_unmark(cookie); } #else static void zpl_drop_inode(struct inode *ip) { generic_delete_inode(ip); } static void zpl_clear_inode(struct inode *ip) { fstrans_cookie_t cookie; cookie = spl_fstrans_mark(); zfs_inactive(ip); spl_fstrans_unmark(cookie); } static void zpl_inode_delete(struct inode *ip) { truncate_setsize(ip, 0); clear_inode(ip); } #endif /* HAVE_EVICT_INODE */ static void zpl_put_super(struct super_block *sb) { fstrans_cookie_t cookie; int error; cookie = spl_fstrans_mark(); error = -zfs_umount(sb); spl_fstrans_unmark(cookie); ASSERT3S(error, <=, 0); } static int zpl_sync_fs(struct super_block *sb, int wait) { fstrans_cookie_t cookie; cred_t *cr = CRED(); int error; crhold(cr); cookie = spl_fstrans_mark(); error = -zfs_sync(sb, wait, cr); spl_fstrans_unmark(cookie); crfree(cr); ASSERT3S(error, <=, 0); return (error); } static int zpl_statfs(struct dentry *dentry, struct kstatfs *statp) { fstrans_cookie_t cookie; int error; cookie = spl_fstrans_mark(); error = -zfs_statvfs(dentry, statp); spl_fstrans_unmark(cookie); ASSERT3S(error, <=, 0); return (error); } enum { TOKEN_RO, TOKEN_RW, TOKEN_SETUID, TOKEN_NOSETUID, TOKEN_EXEC, TOKEN_NOEXEC, TOKEN_DEVICES, TOKEN_NODEVICES, TOKEN_DIRXATTR, TOKEN_SAXATTR, TOKEN_XATTR, TOKEN_NOXATTR, TOKEN_ATIME, TOKEN_NOATIME, TOKEN_RELATIME, TOKEN_NORELATIME, TOKEN_NBMAND, TOKEN_NONBMAND, TOKEN_MNTPOINT, TOKEN_LAST, }; static const match_table_t zpl_tokens = { { TOKEN_RO, MNTOPT_RO }, { TOKEN_RW, MNTOPT_RW }, { TOKEN_SETUID, MNTOPT_SETUID }, { TOKEN_NOSETUID, MNTOPT_NOSETUID }, { TOKEN_EXEC, MNTOPT_EXEC }, { TOKEN_NOEXEC, MNTOPT_NOEXEC }, { TOKEN_DEVICES, MNTOPT_DEVICES }, { TOKEN_NODEVICES, MNTOPT_NODEVICES }, { TOKEN_DIRXATTR, MNTOPT_DIRXATTR }, { TOKEN_SAXATTR, MNTOPT_SAXATTR }, { TOKEN_XATTR, MNTOPT_XATTR }, { TOKEN_NOXATTR, MNTOPT_NOXATTR }, { TOKEN_ATIME, MNTOPT_ATIME }, { TOKEN_NOATIME, MNTOPT_NOATIME }, { TOKEN_RELATIME, MNTOPT_RELATIME }, { TOKEN_NORELATIME, MNTOPT_NORELATIME }, { TOKEN_NBMAND, MNTOPT_NBMAND }, { TOKEN_NONBMAND, MNTOPT_NONBMAND }, { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" }, { TOKEN_LAST, NULL }, }; static int zpl_parse_option(char *option, int token, substring_t *args, zfs_mntopts_t *zmo) { switch (token) { case TOKEN_RO: zmo->z_readonly = B_TRUE; zmo->z_do_readonly = B_TRUE; break; case TOKEN_RW: zmo->z_readonly = B_FALSE; zmo->z_do_readonly = B_TRUE; break; case TOKEN_SETUID: zmo->z_setuid = B_TRUE; zmo->z_do_setuid = B_TRUE; break; case TOKEN_NOSETUID: zmo->z_setuid = B_FALSE; zmo->z_do_setuid = B_TRUE; break; case TOKEN_EXEC: zmo->z_exec = B_TRUE; zmo->z_do_exec = B_TRUE; break; case TOKEN_NOEXEC: zmo->z_exec = B_FALSE; zmo->z_do_exec = B_TRUE; break; case TOKEN_DEVICES: zmo->z_devices = B_TRUE; zmo->z_do_devices = B_TRUE; break; case TOKEN_NODEVICES: zmo->z_devices = B_FALSE; zmo->z_do_devices = B_TRUE; break; case TOKEN_DIRXATTR: zmo->z_xattr = ZFS_XATTR_DIR; zmo->z_do_xattr = B_TRUE; break; case TOKEN_SAXATTR: zmo->z_xattr = ZFS_XATTR_SA; zmo->z_do_xattr = B_TRUE; break; case TOKEN_XATTR: zmo->z_xattr = ZFS_XATTR_DIR; zmo->z_do_xattr = B_TRUE; break; case TOKEN_NOXATTR: zmo->z_xattr = ZFS_XATTR_OFF; zmo->z_do_xattr = B_TRUE; break; case TOKEN_ATIME: zmo->z_atime = B_TRUE; zmo->z_do_atime = B_TRUE; break; case TOKEN_NOATIME: zmo->z_atime = B_FALSE; zmo->z_do_atime = B_TRUE; break; case TOKEN_RELATIME: zmo->z_relatime = B_TRUE; zmo->z_do_relatime = B_TRUE; break; case TOKEN_NORELATIME: zmo->z_relatime = B_FALSE; zmo->z_do_relatime = B_TRUE; break; case TOKEN_NBMAND: zmo->z_nbmand = B_TRUE; zmo->z_do_nbmand = B_TRUE; break; case TOKEN_NONBMAND: zmo->z_nbmand = B_FALSE; zmo->z_do_nbmand = B_TRUE; break; case TOKEN_MNTPOINT: zmo->z_mntpoint = match_strdup(&args[0]); if (zmo->z_mntpoint == NULL) return (-ENOMEM); break; default: break; } return (0); } /* * Parse the mntopts string storing the results in provided zmo argument. * If an error occurs the zmo argument will not be modified. The caller * needs to set isremount when recycling an existing zfs_mntopts_t. */ static int zpl_parse_options(char *osname, char *mntopts, zfs_mntopts_t *zmo, boolean_t isremount) { zfs_mntopts_t *tmp_zmo; int error; tmp_zmo = zfs_mntopts_alloc(); tmp_zmo->z_osname = strdup(osname); if (mntopts) { substring_t args[MAX_OPT_ARGS]; char *tmp_mntopts, *p, *t; int token; t = tmp_mntopts = strdup(mntopts); while ((p = strsep(&t, ",")) != NULL) { if (!*p) continue; args[0].to = args[0].from = NULL; token = match_token(p, zpl_tokens, args); error = zpl_parse_option(p, token, args, tmp_zmo); if (error) { zfs_mntopts_free(tmp_zmo); strfree(tmp_mntopts); return (error); } } strfree(tmp_mntopts); } if (isremount == B_TRUE) { if (zmo->z_osname) strfree(zmo->z_osname); if (zmo->z_mntpoint) strfree(zmo->z_mntpoint); } else { ASSERT3P(zmo->z_osname, ==, NULL); ASSERT3P(zmo->z_mntpoint, ==, NULL); } memcpy(zmo, tmp_zmo, sizeof (zfs_mntopts_t)); kmem_free(tmp_zmo, sizeof (zfs_mntopts_t)); return (0); } static int zpl_remount_fs(struct super_block *sb, int *flags, char *data) { zfsvfs_t *zfsvfs = sb->s_fs_info; fstrans_cookie_t cookie; int error; error = zpl_parse_options(zfsvfs->z_mntopts->z_osname, data, zfsvfs->z_mntopts, B_TRUE); if (error) return (error); cookie = spl_fstrans_mark(); error = -zfs_remount(sb, flags, zfsvfs->z_mntopts); spl_fstrans_unmark(cookie); ASSERT3S(error, <=, 0); return (error); } static int __zpl_show_options(struct seq_file *seq, zfsvfs_t *zfsvfs) { seq_printf(seq, ",%s", zfsvfs->z_flags & ZSB_XATTR ? "xattr" : "noxattr"); #ifdef CONFIG_FS_POSIX_ACL switch (zfsvfs->z_acl_type) { case ZFS_ACLTYPE_POSIXACL: seq_puts(seq, ",posixacl"); break; default: seq_puts(seq, ",noacl"); break; } #endif /* CONFIG_FS_POSIX_ACL */ return (0); } #ifdef HAVE_SHOW_OPTIONS_WITH_DENTRY static int zpl_show_options(struct seq_file *seq, struct dentry *root) { return (__zpl_show_options(seq, root->d_sb->s_fs_info)); } #else static int zpl_show_options(struct seq_file *seq, struct vfsmount *vfsp) { return (__zpl_show_options(seq, vfsp->mnt_sb->s_fs_info)); } #endif /* HAVE_SHOW_OPTIONS_WITH_DENTRY */ static int zpl_fill_super(struct super_block *sb, void *data, int silent) { zfs_mntopts_t *zmo = (zfs_mntopts_t *)data; fstrans_cookie_t cookie; int error; cookie = spl_fstrans_mark(); error = -zfs_domount(sb, zmo, silent); spl_fstrans_unmark(cookie); ASSERT3S(error, <=, 0); return (error); } #ifdef HAVE_MOUNT_NODEV static struct dentry * zpl_mount(struct file_system_type *fs_type, int flags, const char *osname, void *data) { zfs_mntopts_t *zmo = zfs_mntopts_alloc(); int error; error = zpl_parse_options((char *)osname, (char *)data, zmo, B_FALSE); if (error) { zfs_mntopts_free(zmo); return (ERR_PTR(error)); } return (mount_nodev(fs_type, flags, zmo, zpl_fill_super)); } #else static int zpl_get_sb(struct file_system_type *fs_type, int flags, const char *osname, void *data, struct vfsmount *mnt) { zfs_mntopts_t *zmo = zfs_mntopts_alloc(); int error; error = zpl_parse_options((char *)osname, (char *)data, zmo, B_FALSE); if (error) { zfs_mntopts_free(zmo); return (error); } return (get_sb_nodev(fs_type, flags, zmo, zpl_fill_super, mnt)); } #endif /* HAVE_MOUNT_NODEV */ static void zpl_kill_sb(struct super_block *sb) { zfs_preumount(sb); kill_anon_super(sb); #ifdef HAVE_S_INSTANCES_LIST_HEAD sb->s_instances.next = &(zpl_fs_type.fs_supers); #endif /* HAVE_S_INSTANCES_LIST_HEAD */ } void zpl_prune_sb(int64_t nr_to_scan, void *arg) { struct super_block *sb = (struct super_block *)arg; int objects = 0; (void) -zfs_sb_prune(sb, nr_to_scan, &objects); } #ifdef HAVE_NR_CACHED_OBJECTS static int zpl_nr_cached_objects(struct super_block *sb) { return (0); } #endif /* HAVE_NR_CACHED_OBJECTS */ #ifdef HAVE_FREE_CACHED_OBJECTS static void zpl_free_cached_objects(struct super_block *sb, int nr_to_scan) { /* noop */ } #endif /* HAVE_FREE_CACHED_OBJECTS */ const struct super_operations zpl_super_operations = { .alloc_inode = zpl_inode_alloc, .destroy_inode = zpl_inode_destroy, .dirty_inode = zpl_dirty_inode, .write_inode = NULL, #ifdef HAVE_EVICT_INODE .evict_inode = zpl_evict_inode, #else .drop_inode = zpl_drop_inode, .clear_inode = zpl_clear_inode, .delete_inode = zpl_inode_delete, #endif /* HAVE_EVICT_INODE */ .put_super = zpl_put_super, .sync_fs = zpl_sync_fs, .statfs = zpl_statfs, .remount_fs = zpl_remount_fs, .show_options = zpl_show_options, .show_stats = NULL, #ifdef HAVE_NR_CACHED_OBJECTS .nr_cached_objects = zpl_nr_cached_objects, #endif /* HAVE_NR_CACHED_OBJECTS */ #ifdef HAVE_FREE_CACHED_OBJECTS .free_cached_objects = zpl_free_cached_objects, #endif /* HAVE_FREE_CACHED_OBJECTS */ }; struct file_system_type zpl_fs_type = { .owner = THIS_MODULE, .name = ZFS_DRIVER, #ifdef HAVE_MOUNT_NODEV .mount = zpl_mount, #else .get_sb = zpl_get_sb, #endif /* HAVE_MOUNT_NODEV */ .kill_sb = zpl_kill_sb, };