- Add two new module parameters to icp (icp_aes_impl, icp_gcm_impl)
that control the crypto implementation. At the moment there is a
choice between generic and aesni (on platforms that support it).
- This enables support for AES-NI and PCLMULQDQ-NI on AMD Family
15h (bulldozer) and newer CPUs (zen).
- Modify aes_key_t to track what implementation it was generated
with as key schedules generated with various implementations
are not necessarily interchangable.
Reviewed by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Nathaniel R. Lewis <linux.robotdude@gmail.com>
Closes#7102Closes#7103
This patch adds compiler and runtime tests (user and kernel) for following
instruction sets: avx512f, avx512cd, avx512er, avx512pf, avx512bw, avx512dq,
avx512vl, avx512ifma, avx512vbmi.
note: Linux support for AVX-512F (Foundation) instruction set started with
linux v3.15
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4952
This is initial support for x86 vectorized implementations of ZFS parity
and checksum algorithms.
For the compilation phase, configure step checks if toolchain supports relevant
instruction sets. Each implementation must ensure that the code is not passed
to compiler if relevant instruction set is not supported. For this purpose,
following new defines are provided if instruction set is supported:
- HAVE_SSE,
- HAVE_SSE2,
- HAVE_SSE3,
- HAVE_SSSE3,
- HAVE_SSE4_1,
- HAVE_SSE4_2,
- HAVE_AVX,
- HAVE_AVX2.
For detecting if an instruction set can be used in runtime, following functions
are provided in (include/linux/simd_x86.h):
- zfs_sse_available()
- zfs_sse2_available()
- zfs_sse3_available()
- zfs_ssse3_available()
- zfs_sse4_1_available()
- zfs_sse4_2_available()
- zfs_avx_available()
- zfs_avx2_available()
- zfs_bmi1_available()
- zfs_bmi2_available()
These function should be called once, on module load, or initialization.
They are safe to use from user and kernel space.
If an implementation is using more than single instruction set, both compiler
and runtime support for all relevant instruction sets should be checked.
Kernel fpu methods:
- kfpu_begin()
- kfpu_end()
Use __get_cpuid_max and __cpuid_count from <cpuid.h>
Both gcc and clang have support for these. They also handle ebx register
in case it is used for PIC code.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Closes#4381