Commit Graph

9 Commits

Author SHA1 Message Date
наб
df7b54f1d9 module: icp: rip out insane crypto_req_handle_t mechanism, inline KM_SLEEP
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12901
2022-02-15 16:25:37 -08:00
Attila Fülöp
e8beeaa111
ICP: gcm: Allocate hash subkey table separately
While evaluating other assembler implementations it turns out that
the precomputed hash subkey tables vary in size, from 8*16 bytes
(avx2/avx512) up to 48*16 bytes (avx512-vaes), depending on the
implementation.

To be able to handle the size differences later, allocate
`gcm_Htable` dynamically rather then having a fixed size array, and
adapt consumers.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes #11102
2020-10-30 15:24:21 -07:00
Attila Fülöp
5b3b79559c
ICP: gcm-avx: Support architectures lacking the MOVBE instruction
There are a couple of x86_64 architectures which support all needed
features to make the accelerated GCM implementation work but the
MOVBE instruction. Those are mainly Intel Sandy- and Ivy-Bridge
and AMD Bulldozer, Piledriver, and Steamroller.

By using MOVBE only if available and replacing it with a MOV
followed by a BSWAP if not, those architectures now benefit from
the new GCM routines and performance is considerably better
compared to the original implementation.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam D. Moss <c@yotes.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Followup #9749 
Closes #10029
2020-03-17 10:24:38 -07:00
Attila Fülöp
31b160f0a6
ICP: Improve AES-GCM performance
Currently SIMD accelerated AES-GCM performance is limited by two
factors:

a. The need to disable preemption and interrupts and save the FPU
state before using it and to do the reverse when done. Due to the
way the code is organized (see (b) below) we have to pay this price
twice for each 16 byte GCM block processed.

b. Most processing is done in C, operating on single GCM blocks.
The use of SIMD instructions is limited to the AES encryption of the
counter block (AES-NI) and the Galois multiplication (PCLMULQDQ).
This leads to the FPU not being fully utilized for crypto
operations.

To solve (a) we do crypto processing in larger chunks while owning
the FPU. An `icp_gcm_avx_chunk_size` module parameter was introduced
to make this chunk size tweakable. It defaults to 32 KiB. This step
alone roughly doubles performance. (b) is tackled by porting and
using the highly optimized openssl AES-GCM assembler routines, which
do all the processing (CTR, AES, GMULT) in a single routine. Both
steps together result in up to 32x reduction of the time spend in
the en/decryption routines, leading up to approximately 12x
throughput increase for large (128 KiB) blocks.

Lastly, this commit changes the default encryption algorithm from
AES-CCM to AES-GCM when setting the `encryption=on` property.

Reviewed-By: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-By: Jason King <jason.king@joyent.com>
Reviewed-By: Tom Caputi <tcaputi@datto.com>
Reviewed-By: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes #9749
2020-02-10 12:59:50 -08:00
Brian Behlendorf
10fa254539
Linux 4.14, 4.19, 5.0+ compat: SIMD save/restore
Contrary to initial testing we cannot rely on these kernels to
invalidate the per-cpu FPU state and restore the FPU registers.
Nor can we guarantee that the kernel won't modify the FPU state
which we saved in the task struck.

Therefore, the kfpu_begin() and kfpu_end() functions have been
updated to save and restore the FPU state using our own dedicated
per-cpu FPU state variables.

This has the additional advantage of allowing us to use the FPU
again in user threads.  So we remove the code which was added to
use task queues to ensure some functions ran in kernel threads.

Reviewed-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #9346
Closes #9403
2019-10-24 10:17:33 -07:00
Brian Behlendorf
8062b7686a
Minor style cleanup
Resolve an assortment of style inconsistencies including
use of white space, typos, capitalization, and line wrapping.
There is no functional change.

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #9030
2019-07-16 17:22:31 -07:00
Brian Behlendorf
e5db313494
Linux 5.0 compat: SIMD compatibility
Restore the SIMD optimization for 4.19.38 LTS, 4.14.120 LTS,
and 5.0 and newer kernels.  This is accomplished by leveraging
the fact that by definition dedicated kernel threads never need
to concern themselves with saving and restoring the user FPU state.
Therefore, they may use the FPU as long as we can guarantee user
tasks always restore their FPU state before context switching back
to user space.

For the 5.0 and 5.1 kernels disabling preemption and local
interrupts is sufficient to allow the FPU to be used.  All non-kernel
threads will restore the preserved user FPU state.

For 5.2 and latter kernels the user FPU state restoration will be
skipped if the kernel determines the registers have not changed.
Therefore, for these kernels we need to perform the additional
step of saving and restoring the FPU registers.  Invalidating the
per-cpu global tracking the FPU state would force a restore but
that functionality is private to the core x86 FPU implementation
and unavailable.

In practice, restricting SIMD to kernel threads is not a major
restriction for ZFS.  The vast majority of SIMD operations are
already performed by the IO pipeline.  The remaining cases are
relatively infrequent and can be handled by the generic code
without significant impact.  The two most noteworthy cases are:

  1) Decrypting the wrapping key for an encrypted dataset,
     i.e. `zfs load-key`.  All other encryption and decryption
     operations will use the SIMD optimized implementations.

  2) Generating the payload checksums for a `zfs send` stream.

In order to avoid making any changes to the higher layers of ZFS
all of the `*_get_ops()` functions were updated to take in to
consideration the calling context.  This allows for the fastest
implementation to be used as appropriate (see kfpu_allowed()).

The only other notable instance of SIMD operations being used
outside a kernel thread was at module load time.  This code
was moved in to a taskq in order to accommodate the new kernel
thread restriction.

Finally, a few other modifications were made in order to further
harden this code and facilitate testing.  They include updating
each implementations operations structure to be declared as a
constant.  And allowing "cycle" to be set when selecting the
preferred ops in the kernel as well as user space.

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8754 
Closes #8793 
Closes #8965
2019-07-12 09:31:20 -07:00
Nathan Lewis
010d12474c Add support for selecting encryption backend
- Add two new module parameters to icp (icp_aes_impl, icp_gcm_impl)
  that control the crypto implementation.  At the moment there is a
  choice between generic and aesni (on platforms that support it).
- This enables support for AES-NI and PCLMULQDQ-NI on AMD Family
  15h (bulldozer) and newer CPUs (zen).
- Modify aes_key_t to track what implementation it was generated
  with as key schedules generated with various implementations
  are not necessarily interchangable.

Reviewed by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Nathaniel R. Lewis <linux.robotdude@gmail.com>
Closes #7102 
Closes #7103
2018-08-02 11:59:24 -07:00
Tom Caputi
0b04990a5d Illumos Crypto Port module added to enable native encryption in zfs
A port of the Illumos Crypto Framework to a Linux kernel module (found
in module/icp). This is needed to do the actual encryption work. We cannot
use the Linux kernel's built in crypto api because it is only exported to
GPL-licensed modules. Having the ICP also means the crypto code can run on
any of the other kernels under OpenZFS. I ended up porting over most of the
internals of the framework, which means that porting over other API calls (if
we need them) should be fairly easy. Specifically, I have ported over the API
functions related to encryption, digests, macs, and crypto templates. The ICP
is able to use assembly-accelerated encryption on amd64 machines and AES-NI
instructions on Intel chips that support it. There are place-holder
directories for similar assembly optimizations for other architectures
(although they have not been written).

Signed-off-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4329
2016-07-20 10:43:30 -07:00