Commit Graph

15 Commits

Author SHA1 Message Date
наб
10b575d04c lib/: set O_CLOEXEC on all fds
As found by
  git grep -E '(open|setmntent|pipe2?)\(' |
    grep -vE '((zfs|zpool)_|fd|dl|lzc_re|pidfile_|g_)open\('

FreeBSD's pidfile_open() says nothing about the flags of the files it
opens, but we can't do anything about it anyway; the implementation does
open all files with O_CLOEXEC

Consider this output with zpool.d/media appended with
"pid=$$; (ls -l /proc/$pid/fd > /dev/tty)":
  $ /sbin/zpool iostat -vc media
  lrwx------ 0 -> /dev/pts/0
  l-wx------ 1 -> 'pipe:[3278500]'
  l-wx------ 2 -> /dev/null
  lrwx------ 3 -> /dev/zfs
  lr-x------ 4 -> /proc/31895/mounts
  lrwx------ 5 -> /dev/zfs
  lr-x------ 10 -> /usr/lib/zfs-linux/zpool.d/media
vs
  $ ./zpool iostat -vc vendor,upath,iostat,media
  lrwx------ 0 -> /dev/pts/0
  l-wx------ 1 -> 'pipe:[3279887]'
  l-wx------ 2 -> /dev/null
  lr-x------ 10 -> /usr/lib/zfs-linux/zpool.d/media

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #11866
2021-04-11 15:45:59 -07:00
наб
0fc401a7ef libzfs: zfs_crypto_create() requires a new key by definition: set newkey
This changes the password prompt for new encryption roots from
  Enter passphrase:
  Re-enter passphrase:
to
  Enter new passphrase:
  Re-enter new passphrase:
which makes more sense and is more consistent with "new passphrase"
now always meaning "come up with something" and plain "passphrase"
"remember that thing"

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #11866
2021-04-11 15:44:54 -07:00
наб
e568853f96 libzfs_crypto.c: remove unused key_locator enum
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #11866
2021-04-11 15:43:15 -07:00
James Wah
92fb29b9f9
Don't bomb out when using keylocation=file://
Avoid following the error path when the operation in fact succeeded.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: James Wah <james@laird-wah.net>
Closes #11651
2021-03-03 08:28:49 -08:00
Andrea Gelmini
dd4bc569b9
Fix typos
Correct various typos in the comments and tests.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes #10423
2020-06-09 21:24:09 -07:00
Adam D. Moss
d7d4678fe6
Fix regression caused by c14ca14
The 'zfs load-key' command was broken for 'keyformat=passphrase'.
Use the correct output vars when stdin is an interactive terminal.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: adam moss <c@yotes.com>
Closes #10264 
Closes #10265
2020-04-29 17:33:33 -07:00
Jason King
c14ca1456e
Support custom URI schemes for the keylocation property
Every platform has their own preferred methods for implementing URI 
schemes beyond the currently supported file scheme (e.g. 'https' on 
FreeBSD would likely use libfetch, while Linux distros and illumos
would probably use libcurl, etc). It would be helpful if libzfs can 
be extended to support additional schemes in a simple manner.

A table of (scheme, handler_function) pairs is added to libzfs_crypto.c, 
and the existing functions in libzfs_crypto.c so that when the key 
format is ZFS_KEYFORMAT_URI, the scheme from the URI string is 
extracted, and a matching handler it located in the aforementioned 
table (returning an error if no matching handler is found). The handler 
function is then invoked to retrieve the key material (in the format 
specified by the keyformat property) and the key is loaded or the 
handler can return an error to abort the key loading process.

Reviewed by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jason King <jason.king@joyent.com>
Closes #10218
2020-04-28 10:55:18 -07:00
Andrea Gelmini
7859537768 Fix typos in lib/
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes #9237
2019-09-02 17:53:27 -07:00
Tom Caputi
da68988708 Allow unencrypted children of encrypted datasets
When encryption was first added to ZFS, we made a decision to
prevent users from creating unencrypted children of encrypted
datasets. The idea was to prevent users from inadvertently
leaving some of their data unencrypted. However, since the
release of 0.8.0, some legitimate reasons have been brought up
for this behavior to be allowed. This patch simply removes this
limitation from all code paths that had checks for it and updates
the tests accordingly.

Reviewed-by: Jason King <jason.king@joyent.com>
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #8737 
Closes #8870
2019-06-20 12:29:51 -07:00
Tom Caputi
d9c460a0b6 Added encryption support for zfs recv -o / -x
One small integration that was absent from b52563 was
support for zfs recv -o / -x with regards to encryption
parameters. The main use cases of this are as follows:

* Receiving an unencrypted stream as encrypted without
  needing to create a "dummy" encrypted parent so that
  encryption can be inheritted.

* Allowing users to change their keylocation on receive,
  so long as the receiving dataset is an encryption root.

* Allowing users to explicitly exclude or override the
  encryption property from an unencrypted properties stream,
  allowing it to be received as encrypted.

* Receiving a recursive heirarchy of unencrypted datasets,
  encrypting the top-level one and forcing all children to
  inherit the encryption.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #7650
2018-08-15 09:48:49 -07:00
loli10K
85ce3f4fd1 Adopt pyzfs from ClusterHQ
This commit introduces several changes:

 * Update LICENSE and project information

 * Give a good PEP8 talk to existing Python source code

 * Add RPM/DEB packaging for pyzfs

 * Fix some outstanding issues with the existing pyzfs code caused by
   changes in the ABI since the last time the code was updated

 * Integrate pyzfs Python unittest with the ZFS Test Suite

 * Add missing libzfs_core functions: lzc_change_key,
   lzc_channel_program, lzc_channel_program_nosync, lzc_load_key,
   lzc_receive_one, lzc_receive_resumable, lzc_receive_with_cmdprops,
   lzc_receive_with_header, lzc_reopen, lzc_send_resume, lzc_sync,
   lzc_unload_key, lzc_remap

Note: this commit slightly changes zfs_ioc_unload_key() ABI. This allow
to differentiate the case where we tried to unload a key on a
non-existing dataset (ENOENT) from the situation where a dataset has
no key loaded: this is consistent with the "change" case where trying
to zfs_ioc_change_key() from a dataset with no key results in EACCES.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes #7230
2018-05-01 10:33:35 -07:00
Tomohiro Kusumi
6b8655ad3f Change functions which return literals to return const char*
get_format_prompt_string() and zpool_state_to_name() return
a string literal which is read-only, thus they should return
`const char*`.

zpool_get_prop_string() returns a non-const string after
successful nv-lookup, and returns a string literal otherwise.
Since this function is designed to be used for read-only purpose,
the return type should also be `const char*`.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@osnexus.com>
Closes #7285
2018-03-09 13:47:32 -08:00
Tom Caputi
ae76f45cda Encryption Stability and On-Disk Format Fixes
The on-disk format for encrypted datasets protects not only
the encrypted and authenticated blocks themselves, but also
the order and interpretation of these blocks. In order to
make this work while maintaining the ability to do raw
sends, the indirect bps maintain a secure checksum of all
the MACs in the block below it along with a few other
fields that determine how the data is interpreted.

Unfortunately, the current on-disk format erroneously
includes some fields which are not portable and thus cannot
support raw sends. It is not possible to easily work around
this issue due to a separate and much smaller bug which
causes indirect blocks for encrypted dnodes to not be
compressed, which conflicts with the previous bug. In
addition, the current code generates incompatible on-disk
formats on big endian and little endian systems due to an
issue with how block pointers are authenticated. Finally,
raw send streams do not currently include dn_maxblkid when
sending both the metadnode and normal dnodes which are
needed in order to ensure that we are correctly maintaining
the portable objset MAC.

This patch zero's out the offending fields when computing
the bp MAC and ensures that these MACs are always
calculated in little endian order (regardless of the host
system's byte order). This patch also registers an errata
for the old on-disk format, which we detect by adding a
"version" field to newly created DSL Crypto Keys. We allow
datasets without a version (version 0) to only be mounted
for read so that they can easily be migrated. We also now
include dn_maxblkid in raw send streams to ensure the MAC
can be maintained correctly.

This patch also contains minor bug fixes and cleanups.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #6845
Closes #6864
Closes #7052
2018-02-02 11:37:16 -08:00
Tom Caputi
4807c0badb Encryption patch follow-up
* PBKDF2 implementation changed to OpenSSL implementation.

* HKDF implementation moved to its own file and tests
  added to ensure correctness.

* Removed libzfs's now unnecessary dependency on libzpool
  and libicp.

* Ztest can now create and test encrypted datasets. This is
  currently disabled until issue #6526 is resolved, but
  otherwise functions as advertised.

* Several small bug fixes discovered after enabling ztest
  to run on encrypted datasets.

* Fixed coverity defects added by the encryption patch.

* Updated man pages for encrypted send / receive behavior.

* Fixed a bug where encrypted datasets could receive
  DRR_WRITE_EMBEDDED records.

* Minor code cleanups / consolidation.

Signed-off-by: Tom Caputi <tcaputi@datto.com>
2017-10-11 16:54:48 -04:00
Tom Caputi
b525630342 Native Encryption for ZFS on Linux
This change incorporates three major pieces:

The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.

The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.

The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.

Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494 
Closes #5769
2017-08-14 10:36:48 -07:00