mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-23 16:36:35 +03:00
e1b0704568
18 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Matthew Ahrens
|
fc23d59fa0 |
Remove duplicate macro in dsl_dir.h
The DD_FIELD_LAST_REMAP_TXG macro was added twice (with the same value). This change removes one of them. Reviewed-by: Giuseppe Di Natale <guss80@gmail.com> Reviewed-by: George Melikov <mail@gmelikov.ru> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #7968 |
||
Serapheim Dimitropoulos
|
d2734cce68 |
OpenZFS 9166 - zfs storage pool checkpoint
Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570 |
||
Brian Behlendorf
|
6413c95fbd
|
Linux 4.18 compat: inode timespec -> timespec64
Commit torvalds/linux@95582b0 changes the inode i_atime, i_mtime, and i_ctime members form timespec's to timespec64's to make them 2038 safe. As part of this change the current_time() function was also updated to return the timespec64 type. Resolve this issue by introducing a new inode_timespec_t type which is defined to match the timespec type used by the inode. It should be used when working with inode timestamps to ensure matching types. The timestruc_t type under Illumos was used in a similar fashion but was specified to always be a timespec_t. Rather than incorrectly define this type all timespec_t types have been replaced by the new inode_timespec_t type. Finally, the kernel and user space 'sys/time.h' headers were aligned with each other. They define as appropriate for the context several constants as macros and include static inline implementation of gethrestime(), gethrestime_sec(), and gethrtime(). Reviewed-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #7643 |
||
Matthew Ahrens
|
a1d477c24c |
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900 |
||
Chris Williamson
|
d99a015343 |
OpenZFS 7431 - ZFS Channel Programs
Authored by: Chris Williamson <chris.williamson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Don Brady <don.brady@delphix.com> Ported-by: John Kennedy <john.kennedy@delphix.com> OpenZFS-issue: https://www.illumos.org/issues/7431 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/dfc11533 Porting Notes: * The CLI long option arguments for '-t' and '-m' don't parse on linux * Switched from kmem_alloc to vmem_alloc in zcp_lua_alloc * Lua implementation is built as its own module (zlua.ko) * Lua headers consumed directly by zfs code moved to 'include/sys/lua/' * There is no native setjmp/longjump available in stock Linux kernel. Brought over implementations from illumos and FreeBSD * The get_temporary_prop() was adapted due to VFS platform differences * Use of inline functions in lua parser to reduce stack usage per C call * Skip some ZFS Test Suite ZCP tests on sparc64 to avoid stack overflow |
||
Tom Caputi
|
b525630342 |
Native Encryption for ZFS on Linux
This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769 |
||
Brian Behlendorf
|
3ec3bc2167 |
OpenZFS 7793 - ztest fails assertion in dmu_tx_willuse_space
Reviewed by: Steve Gonczi <steve.gonczi@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Background information: This assertion about tx_space_* verifies that we are not dirtying more stuff than we thought we would. We “need” to know how much we will dirty so that we can check if we should fail this transaction with ENOSPC/EDQUOT, in dmu_tx_assign(). While the transaction is open (i.e. between dmu_tx_assign() and dmu_tx_commit() — typically less than a millisecond), we call dbuf_dirty() on the exact blocks that will be modified. Once this happens, the temporary accounting in tx_space_* is unnecessary, because we know exactly what blocks are newly dirtied; we call dnode_willuse_space() to track this more exact accounting. The fundamental problem causing this bug is that dmu_tx_hold_*() relies on the current state in the DMU (e.g. dn_nlevels) to predict how much will be dirtied by this transaction, but this state can change before we actually perform the transaction (i.e. call dbuf_dirty()). This bug will be fixed by removing the assertion that the tx_space_* accounting is perfectly accurate (i.e. we never dirty more than was predicted by dmu_tx_hold_*()). By removing the requirement that this accounting be perfectly accurate, we can also vastly simplify it, e.g. removing most of the logic in dmu_tx_count_*(). The new tx space accounting will be very approximate, and may be more or less than what is actually dirtied. It will still be used to determine if this transaction will put us over quota. Transactions that are marked by dmu_tx_mark_netfree() will be excepted from this check. We won’t make an attempt to determine how much space will be freed by the transaction — this was rarely accurate enough to determine if a transaction should be permitted when we are over quota, which is why dmu_tx_mark_netfree() was introduced in 2014. We also won’t attempt to give “credit” when overwriting existing blocks, if those blocks may be freed. This allows us to remove the do_free_accounting logic in dbuf_dirty(), and associated routines. This logic attempted to predict what will be on disk when this txg syncs, to know if the overwritten block will be freed (i.e. exists, and has no snapshots). OpenZFS-issue: https://www.illumos.org/issues/7793 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3704e0a Upstream bugs: DLPX-32883a Closes #5804 Porting notes: - DNODE_SIZE replaced with DNODE_MIN_SIZE in dmu_tx_count_dnode(), Using the default dnode size would be slightly better. - DEBUG_DMU_TX wrappers and configure option removed. - Resolved _by_dnode() conflicts these changes have not yet been applied to OpenZFS. |
||
Igor Kozhukhov
|
eca7b76001 |
OpenZFS 6314 - buffer overflow in dsl_dataset_name
Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Igor Kozhukhov <ikozhukhov@gmail.com> Approved by: Dan McDonald <danmcd@omniti.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6314 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/d6160ee |
||
Justin T. Gibbs
|
0eb21616fa |
Illumos 6171 - dsl_prop_unregister() slows down dataset eviction.
6171 dsl_prop_unregister() slows down dataset eviction. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/6171 https://github.com/illumos/illumos-gate/commit/03bad06 Porting notes: - Conflicts - |
||
Justin T. Gibbs
|
0c66c32d1d |
Illumos 5056 - ZFS deadlock on db_mtx and dn_holds
5056 ZFS deadlock on db_mtx and dn_holds Author: Justin Gibbs <justing@spectralogic.com> Reviewed by: Will Andrews <willa@spectralogic.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5056 https://github.com/illumos/illumos-gate/commit/bc9014e Porting Notes: sa_handle_get_from_db(): - the original patch includes an otherwise unmentioned fix for a possible usage of an uninitialised variable dmu_objset_open_impl(): - Under Illumos list_link_init() is the same as filling a list_node_t with NULLs, so they don't notice if they miss doing list_link_init() on a zero'd containing structure (e.g. allocated with kmem_zalloc as here). Under Linux, not so much: an uninitialised list_node_t goes "Boom!" some time later when it's used or destroyed. dmu_objset_evict_dbufs(): - reduce stack usage using kmem_alloc() Ported-by: Chris Dunlop <chris@onthe.net.au> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> |
||
Justin T. Gibbs
|
d683ddbb72 |
Illumos 5314 - Remove "dbuf phys" db->db_data pointer aliases in ZFS
5314 Remove "dbuf phys" db->db_data pointer aliases in ZFS Author: Justin T. Gibbs <justing@spectralogic.com> Reviewed by: Andriy Gapon <avg@freebsd.org> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Will Andrews <willa@spectralogic.com> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5314 https://github.com/illumos/illumos-gate/commit/c137962 Ported-by: Chris Dunlop <chris@onthe.net.au> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> |
||
Jerry Jelinek
|
788eb90c4c |
Illumos 3897 - zfs filesystem and snapshot limits
3897 zfs filesystem and snapshot limits Author: Jerry Jelinek <jerry.jelinek@joyent.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Approved by: Christopher Siden <christopher.siden@delphix.com> References: https://www.illumos.org/issues/3897 https://github.com/illumos/illumos-gate/commit/a2afb61 Porting Notes: dsl_dataset_snapshot_check(): reduce stack usage using kmem_alloc(). Ported-by: Chris Dunlop <chris@onthe.net.au> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> |
||
Brian Behlendorf
|
79c76d5b65 |
Change KM_PUSHPAGE -> KM_SLEEP
By marking DMU transaction processing contexts with PF_FSTRANS we can revert the KM_PUSHPAGE -> KM_SLEEP changes. This brings us back in line with upstream. In some cases this means simply swapping the flags back. For others fnvlist_alloc() was replaced by nvlist_alloc(..., KM_PUSHPAGE) and must be reverted back to fnvlist_alloc() which assumes KM_SLEEP. The one place KM_PUSHPAGE is kept is when allocating ARC buffers which allows us to dip in to reserved memory. This is again the same as upstream. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> |
||
Matthew Ahrens
|
fbeddd60b7 |
Illumos 4390 - I/O errors can corrupt space map when deleting fs/vol
4390 i/o errors when deleting filesystem/zvol can lead to space map corruption Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Dan McDonald <danmcd@omniti.com> Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/4390 https://github.com/illumos/illumos-gate/commit/7fd05ac Porting notes: Previous stack-reduction efforts in traverse_visitb() caused a fair number of un-mergable pieces of code. This patch should reduce its stack footprint a bit more. The new local bptree_entry_phys_t in bptree_add() is dynamically-allocated using kmem_zalloc() for the purpose of stack reduction. The new global zfs_free_leak_on_eio has been defined as an integer rather than a boolean_t as was the case with the related zfs_recover global. Also, zfs_free_leak_on_eio's definition has been inserted into zfs_debug.c for consistency with the existing definition of zfs_recover. Illumos placed it in spa_misc.c. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2545 |
||
Matthew Ahrens
|
e8b96c6007 |
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647 Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913 |
||
Matthew Ahrens
|
13fe019870 |
Illumos #3464
3464 zfs synctask code needs restructuring Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Approved by: Garrett D'Amore <garrett@damore.org> References: https://www.illumos.org/issues/3464 illumos/illumos-gate@3b2aab1880 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1495 |
||
Richard Yao
|
b8d06fca08 |
Switch KM_SLEEP to KM_PUSHPAGE
Differences between how paging is done on Solaris and Linux can cause deadlocks if KM_SLEEP is used in any the following contexts. * The txg_sync thread * The zvol write/discard threads * The zpl_putpage() VFS callback This is because KM_SLEEP will allow for direct reclaim which may result in the VM calling back in to the filesystem or block layer to write out pages. If a lock is held over this operation the potential exists to deadlock the system. To ensure forward progress all memory allocations in these contexts must us KM_PUSHPAGE which disables performing any I/O to accomplish the memory allocation. Previously, this behavior was acheived by setting PF_MEMALLOC on the thread. However, that resulted in unexpected side effects such as the exhaustion of pages in ZONE_DMA. This approach touchs more of the zfs code, but it is more consistent with the right way to handle these cases under Linux. This is patch lays the ground work for being able to safely revert the following commits which used PF_MEMALLOC: |
||
Brian Behlendorf
|
6283f55ea1 |
Support custom build directories and move includes
One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense. |