Commit Graph

13 Commits

Author SHA1 Message Date
oromenahar
c7b6119268
Allow block cloning across encrypted datasets
When two datasets share the same master encryption key, it is safe
to clone encrypted blocks. Currently only snapshots and clones
of a dataset share with it the same encryption key.

Added a test for:
- Clone from encrypted sibling to encrypted sibling with
  non encrypted parent
- Clone from encrypted parent to inherited encrypted child
- Clone from child to sibling with encrypted parent
- Clone from snapshot to the original datasets
- Clone from foreign snapshot to a foreign dataset
- Cloning from non-encrypted to encrypted datasets
- Cloning from encrypted to non-encrypted datasets

Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Original-patch-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Signed-off-by: Kay Pedersen <mail@mkwg.de>
Closes #15544
2023-12-05 11:03:48 -08:00
George Amanakis
0c4064d9a0
Fix zpool status in case of unloaded keys
When scrubbing an encrypted filesystem with unloaded key still report an
error in zpool status.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alek Pinchuk <apinchuk@axcient.com>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes #13675
Closes #13717
2022-08-22 17:42:01 -07:00
наб
dd66857d92 Remaining {=> const} char|void *tag
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #13348
2022-06-29 14:08:59 -07:00
Matthew Ahrens
0fdd6106bb
dmu_objset_from_ds must be called with dp_config_rwlock held
The normal lock order is that the dp_config_rwlock must be held before
the ds_opening_lock.  For example, dmu_objset_hold() does this.
However, dmu_objset_open_impl() is called with the ds_opening_lock held,
and if the dp_config_rwlock is not already held, it will attempt to
acquire it.  This may lead to deadlock, since the lock order is
reversed.

Looking at all the callers of dmu_objset_open_impl() (which is
principally the callers of dmu_objset_from_ds()), almost all callers
already have the dp_config_rwlock.  However, there are a few places in
the send and receive code paths that do not.  For example:
dsl_crypto_populate_key_nvlist, send_cb, dmu_recv_stream,
receive_write_byref, redact_traverse_thread.

This commit resolves the problem by requiring all callers ot
dmu_objset_from_ds() to hold the dp_config_rwlock.  In most cases, the
code has been restructured such that we call dmu_objset_from_ds()
earlier on in the send and receive processes, when we already have the
dp_config_rwlock, and save the objset_t until we need it in the middle
of the send or receive (similar to what we already do with the
dsl_dataset_t).  Thus we do not need to acquire the dp_config_rwlock in
many new places.

I also cleaned up code in dmu_redact_snap() and send_traverse_thread().

Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Zuchowski <pzuchowski@datto.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #9662
Closes #10115
2020-03-12 10:55:02 -07:00
Tom Caputi
da68988708 Allow unencrypted children of encrypted datasets
When encryption was first added to ZFS, we made a decision to
prevent users from creating unencrypted children of encrypted
datasets. The idea was to prevent users from inadvertently
leaving some of their data unencrypted. However, since the
release of 0.8.0, some legitimate reasons have been brought up
for this behavior to be allowed. This patch simply removes this
limitation from all code paths that had checks for it and updates
the tests accordingly.

Reviewed-by: Jason King <jason.king@joyent.com>
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #8737 
Closes #8870
2019-06-20 12:29:51 -07:00
Tom Caputi
f00ab3f22c Detect and prevent mixed raw and non-raw sends
Currently, there is an issue in the raw receive code where
raw receives are allowed to happen on top of previously
non-raw received datasets. This is a problem because the
source-side dataset doesn't know about how the blocks on
the destination were encrypted. As a result, any MAC in
the objset's checksum-of-MACs tree that is a parent of both
blocks encrypted on the source and blocks encrypted by the
destination will be incorrect. This will result in
authentication errors when we decrypt the dataset.

This patch fixes this issue by adding a new check to the
raw receive code. The code now maintains an "IVset guid",
which acts as an identifier for the set of IVs used to
encrypt a given snapshot. When a snapshot is raw received,
the destination snapshot will take this value from the
DRR_BEGIN payload. Non-raw receives and normal "zfs snap"
operations will cause ZFS to generate a new IVset guid.
When a raw incremental stream is received, ZFS will check
that the "from" IVset guid in the stream matches that of
the "from" destination snapshot. If they do not match, the
code will error out the receive, preventing the problem.

This patch requires an on-disk format change to add the
IVset guids to snapshots and bookmarks. As a result, this
patch has errata handling and a tunable to help affected
users resolve the issue with as little interruption as
possible.

Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #8308
2019-03-13 11:00:43 -07:00
Tom Caputi
52ce99dd61 Refcounted DSL Crypto Key Mappings
Since native ZFS encryption was merged, we have been fighting
against a series of bugs that come down to the same problem: Key
mappings (which must be present during all I/O operations) are
created and destroyed based on dataset ownership, but I/Os can
have traditionally been allowed to "leak" into the next txg after
the dataset is disowned.

In the past we have attempted to solve this problem by trying to
ensure that datasets are disowned ater all I/O is finished by
calling txg_wait_synced(), but we have repeatedly found edge cases
that need to be squashed and code paths that might incur a high
number of txg syncs. This patch attempts to resolve this issue
differently, by adding a reference to the key mapping for each txg
it is dirtied in. By doing so, we can remove many of the
unnecessary calls to txg_wait_synced() we have added in the past
and ensure we don't need to deal with this problem in the future.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #7949
2018-10-03 09:47:11 -07:00
Tim Schumacher
c13060e478 Linux 4.19-rc3+ compat: Remove refcount_t compat
torvalds/linux@59b57717f ("blkcg: delay blkg destruction until
after writeback has finished") added a refcount_t to the blkcg
structure. Due to the refcount_t compatibility code, zfs_refcount_t
was used by mistake.

Resolve this by removing the compatibility code and replacing the
occurrences of refcount_t with zfs_refcount_t.

Reviewed-by: Franz Pletz <fpletz@fnordicwalking.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Schumacher <timschumi@gmx.de>
Closes #7885 
Closes #7932
2018-09-26 10:29:26 -07:00
Tom Caputi
1fff937a4c Check encrypted dataset + embedded recv earlier
This patch fixes a bug where attempting to receive a send stream
with embedded data into an encrypted dataset would not cleanup
that dataset when the error was reached. The check was moved into
dmu_recv_begin_check(), preventing this issue.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #7650
2018-08-15 09:49:19 -07:00
Tom Caputi
be9a5c355c Add support for decryption faults in zinject
This patch adds the ability for zinject to trigger decryption
and authentication faults in the ZIO and ARC layers. This
functionality is exposed via the new "decrypt" error type, which
may be provided for "data" object types.

This patch also refactors some of the core encryption / decryption
functions so that they have consistent prototypes, handle errors
consistently, and do not have unused arguments.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #7474
2018-05-02 15:36:20 -07:00
Tom Caputi
b0918402dc Raw receive should change key atomically
Currently, raw zfs sends transfer the encrypted master keys and
objset_phys_t encryption parameters in the DRR_BEGIN payload of
each send file. Both of these are processed as soon as they are
read in dmu_recv_stream(), meaning that the new keys are set
before the new snapshot is received. In addition to the fact that
this changes the user's keys for the dataset earlier than they
might expect, the keys were never reset to what they originally
were in the event that the receive failed. This patch splits the
processing into objset handling and key handling, the later of
which is moved to dmu_recv_end() so that they key change can be
done atomically.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #7200
2018-02-21 12:31:03 -08:00
Tom Caputi
ae76f45cda Encryption Stability and On-Disk Format Fixes
The on-disk format for encrypted datasets protects not only
the encrypted and authenticated blocks themselves, but also
the order and interpretation of these blocks. In order to
make this work while maintaining the ability to do raw
sends, the indirect bps maintain a secure checksum of all
the MACs in the block below it along with a few other
fields that determine how the data is interpreted.

Unfortunately, the current on-disk format erroneously
includes some fields which are not portable and thus cannot
support raw sends. It is not possible to easily work around
this issue due to a separate and much smaller bug which
causes indirect blocks for encrypted dnodes to not be
compressed, which conflicts with the previous bug. In
addition, the current code generates incompatible on-disk
formats on big endian and little endian systems due to an
issue with how block pointers are authenticated. Finally,
raw send streams do not currently include dn_maxblkid when
sending both the metadnode and normal dnodes which are
needed in order to ensure that we are correctly maintaining
the portable objset MAC.

This patch zero's out the offending fields when computing
the bp MAC and ensures that these MACs are always
calculated in little endian order (regardless of the host
system's byte order). This patch also registers an errata
for the old on-disk format, which we detect by adding a
"version" field to newly created DSL Crypto Keys. We allow
datasets without a version (version 0) to only be mounted
for read so that they can easily be migrated. We also now
include dn_maxblkid in raw send streams to ensure the MAC
can be maintained correctly.

This patch also contains minor bug fixes and cleanups.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #6845
Closes #6864
Closes #7052
2018-02-02 11:37:16 -08:00
Tom Caputi
b525630342 Native Encryption for ZFS on Linux
This change incorporates three major pieces:

The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.

The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.

The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.

Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494 
Closes #5769
2017-08-14 10:36:48 -07:00