For the moment we do not use dmu_write_pages() to write pages
directly in to a dmu object. It may be required at some point
in the future, but for now is simplest and cleanest to drop it.
It can be easily readded if/when needed.
This code is used for snapshot and heavily leverages Solaris
functionality we do not want to reimplement. These files have
been removed, including references to them, and will be replaced
by a zfs_snap.c/zpl_snap.c implementation which handles snapshots.
For the moment we have left ZFS unchanged and it updates many values
as part of the znode. However, some of these values should be set
in the inode. For the moment this is handled by adding a function
called zfs_inode_update() which updates the inode based on the znode.
This is considered a workaround until we can systematically go
through the ZFS code and have it directly update the inode. At
which point zfs_update_inode() can be dropped entirely. Keeping
two copies of the same data isn't only inefficient it's a breeding
ground for bugs.
Under Linux the convention for filesystem specific data structure is
to embed it along with the generic vfs data structure. This differs
significantly from Solaris.
Since we want to integrates as cleanly with the Linux VFS as possible.
This changes modifies zfs_znode_alloc() to allocate a znode with an
embedded inode for use with the generic VFS. This is done by calling
iget_locked() which will allocate a new inode if needed by calling
sb->alloc_inode(). This function allocates enough memory for a
znode_t by returns a pointer to the inode structure for Linux's VFS.
This function is also responsible for setting the callback
znode->z_set_ops_inodes() which is used to register the correct
handlers for the inode.
Lay the initial ground work for a include/linux/ compatibility
directory. This was less critical in the past because the bulk
of the ZFS code consumes the Solaris API via the SPL. This API
was stable and the bulk Linux API differences were handled in
the SPL.
However, with the addition of a full Posix layer written directly
against the Linux APIs we are going to need more compatibility
code. It makes sense that all this code should be cleanly located
in one place. Subsequent patches should move the existing zvol
and vdev_disk compatibility code in to this directory.
This code originates in OpenSolaris and was modified by KQ Infotech
to be compatible with Linux. While supporting uios in the short
term is useful to get something working this is not an abstraction
we want to keep. This code is expected to be short lived and
removed as soon as all the remaining uio based APIs and updated.
These functions were dropped originally because I felt they would
need to be rewritten anyway to avoid using uios. However, this
patch readds then with they dea they can just be reworked and
the uio bits dropped.
ZFS even under Solaris does not strictly require libshare to be
available. The current implementation attempts to dlopen() the
library to access the needed symbols. If this fails libshare
support is simply disabled.
This means that on Linux we only need the most minimal libshare
implementation. In fact just enough to prevent the build from
failing. Longer term we can decide if we want to implement a
libshare library like Solaris. At best this would be an abstraction
layer between ZFS and NFS/SMB. Alternately, we can drop libshare
entirely and directly integrate ZFS with Linux's NFS/SMB.
Finally the bare bones user-libshare.m4 test was dropped. If we
do decide to implement libshare at some point it will surely be
as part of this package so the check is not needed.
Recently helper functions were added to libzfs_util to load a kernel
module or execute a process. Initially this functionality was limited
to libzfs but it has become clear there will be other consumers. This
change opens up the interface so it may be used where appropriate.
If libselinux is detected on your system at configure time link
against it. This allows us to use a library call to detect if
selinux is enabled and if it is to pass the mount option:
"context=\"system_u:object_r:file_t:s0"
For now this is required because none of the existing selinux
policies are aware of the zfs filesystem type. Because of this
they do not properly enable xattr based labeling even though
zfs supports all of the required hooks.
Until distro's add zfs as a known xattr friendly fs type we
must use mntpoint labeling. Alternately, end users could modify
their existing selinux policy with a little guidance.
The issue is that cv_timedwait() sleeps uninterruptibly to block signals
and avoid waking up early. Under Linux this counts against the load
average keeping it artificially high. This change allows the arc to
sleep interruptibly which mean it may be woken up early due to a signal.
Normally this means some extra care must be taken to handle a potential
signal. But for the arcs usage of cv_timedwait() there is no harm in
waking up before the timeout expires so no extra handling is required.
Most of the blk_* macros were removed in 2.6.36. Ostensibly this was
done to improve readability and allow easier grepping. However, from
a portability stand point the macros are helpful. Therefore the needed
macros are redefined here if they are missing from the kernel.
The name of the flag used to mark a bio as synchronous has changed
again in the 2.6.36 kernel due to the unification of the BIO_RW_*
and REQ_* flags. The new flag is called REQ_SYNC. To simplify
checking this flag I have introduced the vdev_disk_dio_is_sync()
helper function. Based on the results of several new autoconf
tests it uses the correct mask to check for a synchronous bio.
Preferred interface for flagging a synchronous bio:
2.6.12-2.6.29: BIO_RW_SYNC
2.6.30-2.6.35: BIO_RW_SYNCIO
2.6.36-2.6.xx: REQ_SYNC
As of linux-2.6.36 the BIO_RW_FAILFAST and REQ_FAILFAST flags
have been unified under the REQ_* names. These flags always had
to be kept in-sync so this is a nice step forward, unfortunately
it means we need to be careful to only use the new unified flags
when the BIO_RW_* flags are not defined. Additional autoconf
checks were added for this and if it is ever unclear which method
to use no flags are set. This is safe but may result in longer
delays before a disk is failed.
Perferred interface for setting FAILFAST on a bio:
2.6.12-2.6.27: BIO_RW_FAILFAST
2.6.28-2.6.35: BIO_RW_FAILFAST_{DEV|TRANSPORT|DRIVER}
2.6.36-2.6.xx: REQ_FAILFAST_{DEV|TRANSPORT|DRIVER}
This change adds two helper functions for working with vdev names and paths.
zfs_resolve_shortname() resolves a shorthand vdev name to an absolute path
of a file in /dev, /dev/disk/by-id, /dev/disk/by-label, /dev/disk/by-path,
/dev/disk/by-uuid, /dev/disk/zpool. This was previously done only in the
function is_shorthand_path(), but we need a general helper function to
implement shorthand names for additional zpool subcommands like remove.
is_shorthand_path() is accordingly updated to call the helper function.
There is a minor change in the way zfs_resolve_shortname() tests if a file
exists. is_shorthand_path() effectively used open() and stat64() to test for
file existence, since its scope includes testing if a device is a whole disk
and collecting file status information. zfs_resolve_shortname(), on the other
hand, only uses access() to test for existence and leaves it to the caller to
perform any additional file operations. This seemed like the most general and
lightweight approach, and still preserves the semantics of is_shorthand_path().
zfs_append_partition() appends a partition suffix to a device path. This
should be used to generate the name of a whole disk as it is stored in the vdev
label. The user-visible names of whole disks do not contain the partition
information, while the name in the vdev label does. The code was lifted from
the function make_disks(), which now just calls the helper function. Again,
having a helper function to do this supports general handling of shorthand
names in the user interface.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
It turns out that 'zpool events' over 1024 bytes in size where being
silently dropped. This was discovered while writing the zfault.sh
tests to validate common failure modes.
This could occur because the zfs interface for passing an arbitrary
size nvlist_t over an ioctl() is to provide a buffer for the packed
nvlist which is usually big enough. In this case 1024 byte is the
default. If the kernel determines the buffer is to small it returns
ENOMEM and the minimum required size of the nvlist_t. This was
working properly but in the case of 'zpool events' the event stream
was advanced dispite the error. Thus the retry with the bigger
buffer would succeed but it would skip over the previous event.
The fix is to pass this size to zfs_zevent_next() and determine
before removing the event from the list if it will fit. This was
preferable to checking after the event was returned because this
avoids the need to rewind the stream.
While there is no right maximum timeout for a disk IO we can start
laying the ground work to measure how long they do take in practice.
This change simply measures the IO time and if it exceeds 30s an
event is posted for 'zpool events'.
This value was carefully selected because for sd devices it implies
that at least one timeout (SD_TIMEOUT) has occured. Unfortunately,
even with FAILFAST set we may retry and request and not get an
error. This behavior is strongly dependant on the device driver
and how it is hooked in to the scsi error handling stack. However
by setting the limit at 30s we can log the event even if no error
was returned.
Slightly longer term we can start recording these delays perhaps
as a simple power-of-two histrogram. This histogram can then be
reported as part of the 'zpool status' command when given an command
line option.
None of this code changes the internal behavior of ZFS. Currently
it is simply for reporting excessively long delays.
ZFS works best when it is notified as soon as possible when a device
failure occurs. This allows it to immediately start any recovery
actions which may be needed. In theory Linux supports a flag which
can be set on bio's called FAILFAST which provides this quick
notification by disabling the retry logic in the lower scsi layers.
That's the theory at least. In practice is turns out that while the
flag exists you oddly have to set it with the BIO_RW_AHEAD flag.
And even when it's set it you may get retries in the low level
drivers decides that's the right behavior, or if you don't get the
right error codes reported to the scsi midlayer.
Unfortunately, without additional kernels patchs there's not much
which can be done to improve this. Basically, this just means that
it may take 2-3 minutes before a ZFS is notified properly that a
device has failed. This can be improved and I suspect I'll be
submitting patches upstream to handle this.
By default the Solaris code does not log speculative or soft io errors
in either 'zpool status' or post an event. Under Linux we don't want
to change the expected behavior of 'zpool status' so these io errors
are still suppressed there.
However, since we do need to know about these events for Linux FMA and
the 'zpool events' interface is new we do post the events. With the
addition of the zio_flags field the posted events now contain enough
information that a user space consumer can identify and discard these
events if it sees fit.
Previously the project contained who zfs_context.h files,
one for user space builds and one for kernel space builds.
It was the responsibility of the source including the file
to ensure the right one was included based on the order of
the include paths.
This was the way it was done in OpenSolaris but for our
purposes I felt it was overly obscure. The user and kernel
zfs_context.h files have been combined in to a single file
and a #define determines if you get the user or kernel
context.
The issue here was that I used the _KERNEL macro which is
defined as part of the spl which will only be defined for
most builds after you include the right zfs_context. It is
safer to use the __KERNEL__ macro which is automatically
defined as part of the kernel build process and passed as
a command line compiler option. It will always be defined
if your building in the kernel and never for user space.
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory. The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.
For example, this project is designed to work on various different
Linux distributions each of which work slightly differently. This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.
Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution. When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.
wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz
tar -xzf zfs-x.y.z.tar.gz
cd zfs-x-y-z
------------------------- run concurrently ----------------------
<ubuntu system> <fedora system> <debian system> <rhel6 system>
mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6
cd ubuntu cd fedora cd debian cd rhel6
../configure ../configure ../configure ../configure
make make make make
make check make check make check make check
This change also moves many of the include headers from individual
incude/sys directories under the modules directory in to a single
top level include directory. This has the advantage of making
the build rules cleaner and logically it makes a bit more sense.