Commit Graph

24 Commits

Author SHA1 Message Date
Don Brady
5caeef02fa
RAID-Z expansion feature
This feature allows disks to be added one at a time to a RAID-Z group,
expanding its capacity incrementally.  This feature is especially useful
for small pools (typically with only one RAID-Z group), where there
isn't sufficient hardware to add capacity by adding a whole new RAID-Z
group (typically doubling the number of disks).

== Initiating expansion ==

A new device (disk) can be attached to an existing RAIDZ vdev, by
running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank
raidz2-0 sda`.  The new device will become part of the RAIDZ group.  A
"raidz expansion" will be initiated, and the new device will contribute
additional space to the RAIDZ group once the expansion completes.

The `feature@raidz_expansion` on-disk feature flag must be `enabled` to
initiate an expansion, and it remains `active` for the life of the pool.
In other words, pools with expanded RAIDZ vdevs can not be imported by
older releases of the ZFS software.

== During expansion ==

The expansion entails reading all allocated space from existing disks in
the RAIDZ group, and rewriting it to the new disks in the RAIDZ group
(including the newly added device).

The expansion progress can be monitored with `zpool status`.

Data redundancy is maintained during (and after) the expansion.  If a
disk fails while the expansion is in progress, the expansion pauses
until the health of the RAIDZ vdev is restored (e.g. by replacing the
failed disk and waiting for reconstruction to complete).

The pool remains accessible during expansion.  Following a reboot or
export/import, the expansion resumes where it left off.

== After expansion ==

When the expansion completes, the additional space is available for use,
and is reflected in the `available` zfs property (as seen in `zfs list`,
`df`, etc).

Expansion does not change the number of failures that can be tolerated
without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after
expansion).

A RAIDZ vdev can be expanded multiple times.

After the expansion completes, old blocks remain with their old
data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but
distributed among the larger set of disks.  New blocks will be written
with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been
expanded once to 6-wide, has 4 data to 2 parity).  However, the RAIDZ
vdev's "assumed parity ratio" does not change, so slightly less space
than is expected may be reported for newly-written blocks, according to
`zfs list`, `df`, `ls -s`, and similar tools.

Sponsored-by: The FreeBSD Foundation
Sponsored-by: iXsystems, Inc.
Sponsored-by: vStack
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Authored-by: Matthew Ahrens <mahrens@delphix.com>
Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com>
Contributions-by: Stuart Maybee <stuart.maybee@comcast.net>
Contributions-by: Thorsten Behrens <tbehrens@outlook.com>
Contributions-by: Fmstrat <nospam@nowsci.com>
Contributions-by: Don Brady <dev.fs.zfs@gmail.com>
Signed-off-by: Don Brady <dev.fs.zfs@gmail.com>
Closes #15022
2023-11-08 10:19:41 -08:00
Andrew Innes
e09fdda977
Fix multiplication converted to larger type
This fixes the instances of the "Multiplication result converted to 
larger type" alert that codeQL scanning found.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Signed-off-by: Andrew Innes <andrew.c12@gmail.com>
Closes #14094
2022-10-28 09:30:37 -07:00
Richard Yao
6a42939fcd
Cleanup: Address Clang's static analyzer's unused code complaints
These were categorized as the following:

 * Dead assignment		23
 * Dead increment		4
 * Dead initialization		6
 * Dead nested assignment	18

Most of these are harmless, but since actual issues can hide among them,
we correct them.

That said, there were a few return values that were being ignored that
appeared to merit some correction:

 * `destroy_callback()` in `cmd/zfs/zfs_main.c` ignored the error from
   `destroy_batched()`. We handle it by returning -1 if there is an
   error.

 * `zfs_do_upgrade()` in `cmd/zfs/zfs_main.c` ignored the error from
   `zfs_for_each()`. We handle it by doing a binary OR of the error
   value from the subsequent `zfs_for_each()` call to the existing
   value. This is how errors are mostly handled inside `zfs_for_each()`.
   The error value here is passed to exit from the zfs command, so doing
   a binary or on it is better than what we did previously.

 * `get_zap_prop()` in `module/zfs/zcp_get.c` ignored the error from
   `dsl_prop_get_ds()` when the property is not of type string. We
   return an error when it does. There is a small concern that the
   `zfs_get_temporary_prop()` call would handle things, but in the case
   that it does not, we would be pushing an uninitialized numval onto
   the lua stack. It is expected that `dsl_prop_get_ds()` will succeed
   anytime that `zfs_get_temporary_prop()` does, so that not giving it a
   chance to fix things is not a problem.

 * `draid_merge_impl()` in `tests/zfs-tests/cmd/draid.c` used
   `nvlist_add_nvlist()` twice in ways in which errors are expected to
   be impossible, so we switch to `fnvlist_add_nvlist()`.

A few notable ones did not merit use of the return value, so we
suppressed it with `(void)`:

 * `write_free_diffs()` in `lib/libzfs/libzfs_diff.c` ignored the error
   value from `describe_free()`. A look through the commit history
   revealed that this was intentional.

 * `arc_evict_hdr()` in `module/zfs/arc.c` did not need to use the
   returned handle from `arc_hdr_realloc()` because it is already
   referenced in lists.

 * `spa_vdev_detach()` in `module/zfs/spa.c` has a comment explicitly
   saying not to use the error from `vdev_label_init()` because whatever
   causes the error could be the reason why a detach is being done.

Unfortunately, I am not presently able to analyze the kernel modules
with Clang's static analyzer, so I could have missed some cases of this.
In cases where reports were present in code that is duplicated between
Linux and FreeBSD, I made a conscious effort to fix the FreeBSD version
too.

After this commit is merged, regressions like dee8934 should become
extremely obvious with Clang's static analyzer since a regression would
appear in the results as the only instance of unused code. That assumes
that Coverity does not catch the issue first.

My local branch with fixes from all of my outstanding non-draft pull
requests shows 118 reports from Clang's static anlayzer after this
patch. That is down by 51 from 169.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Cedric Berger <cedric@precidata.com>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #13986
2022-10-14 13:37:54 -07:00
Tino Reichardt
1d3ba0bf01
Replace dead opensolaris.org license link
The commit replaces all findings of the link:
http://www.opensolaris.org/os/licensing with this one:
https://opensource.org/licenses/CDDL-1.0

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Closes #13619
2022-07-11 14:16:13 -07:00
наб
a926aab902 Enable -Wwrite-strings
Also, fix leak from ztest_global_vars_to_zdb_args()

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #13348
2022-06-29 14:08:54 -07:00
Brian Behlendorf
460748d4ae
Switch from _Noreturn to __attribute__((noreturn))
Parts of the Linux kernel build system struggle with _Noreturn.  This
results in the following warnings when building on RHEL 8.5, and likely
other environments.  Switch to using the __attribute__((noreturn)).

  warning: objtool: dbuf_free_range()+0x2b8:
    return with modified stack frame
  warning: objtool: dbuf_free_range()+0x0:
    stack state mismatch: cfa1=7+40 cfa2=7+8
  ...
  WARNING: EXPORT symbol "arc_buf_size" [zfs.ko] version generation
    failed, symbol will not be versioned.
  WARNING: EXPORT symbol "spa_open" [zfs.ko] version generation
    failed, symbol will not be versioned.
  ...

Additionally, __thread_exit() has been renamed spl_thread_exit() and
made a static inline function.  This was needed because the kernel
will generate a warning for symbols which are __attribute__((noreturn))
and then exported with EXPORT_SYMBOL.

While we could continue to use _Noreturn in user space I've also
switched it to __attribute__((noreturn)) purely for consistency
throughout the code base.

Reviewed-by: Ryan Moeller <freqlabs@FreeBSD.org>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #13238
2022-03-23 08:51:00 -07:00
наб
861166b027 Remove bcopy(), bzero(), bcmp()
bcopy() has a confusing argument order and is actually a move, not a
copy; they're all deprecated since POSIX.1-2001 and removed in -2008,
and we shim them out to mem*() on Linux anyway

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12996
2022-03-15 15:13:42 -07:00
Alejandro Colomar
db7f1a91de
Use _Noreturn (C11; GNU89) properly
A function that returns with no value is a different thing from a
function that doesn't return at all.  Those are two orthogonal
concepts, commonly confused.

pthread_create(3) expects a pointer to a start routine that has a
very precise prototype:

    void *(*start_routine)(void *);

However, other thread functions, such as kernel ones, expect:

    void (*start_routine)(void *);

Providing a different one is incorrect, and has only been working
because the ABIs happen to produce a compatible function.

We should use '_Noreturn void', since it's the natural type, and
then provide a '_Noreturn void *' wrapper for pthread functions.

For consistency, replace most cases of __NORETURN or
__attribute__((noreturn)) by _Noreturn.  _Noreturn is understood
by -std=gnu89, so it should be safe to use everywhere.

Ref: https://github.com/openzfs/zfs/pull/13110#discussion_r808450136
Ref: https://software.codidact.com/posts/285972
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Signed-off-by: Alejandro Colomar <alx.manpages@gmail.com>
Closes #13120
2022-03-04 16:25:22 -08:00
наб
b7c42ce5b2 raidz_test: silence unsigned >=0 warnings
Reviewed-by: Alejandro Colomar <alx.manpages@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #13110
2022-02-18 09:34:52 -08:00
наб
876b60dcfb raidz_test: init_rand: fix unused, remove argsused
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12835
2021-12-21 12:05:11 -08:00
наб
e72383825b
raidz_test: use only async-signal-safe functions in signal handler
execl*() before glibc 2.24 could allocate, but only if called with at
least 1024 arguments, which five isn't

errno modification is also fine, so long as we restore it at the end

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12086
2021-05-20 16:37:38 -07:00
Matthew Ahrens
330c6c0523
Clean up RAIDZ/DRAID ereport code
The RAIDZ and DRAID code is responsible for reporting checksum errors on
their child vdevs.  Checksum errors represent events where a disk
returned data or parity that should have been correct, but was not.  In
other words, these are instances of silent data corruption.  The
checksum errors show up in the vdev stats (and thus `zpool status`'s
CKSUM column), and in the event log (`zpool events`).

Note, this is in contrast with the more common "noisy" errors where a
disk goes offline, in which case ZFS knows that the disk is bad and
doesn't try to read it, or the device returns an error on the requested
read or write operation.

RAIDZ/DRAID generate checksum errors via three code paths:

1. When RAIDZ/DRAID reconstructs a damaged block, checksum errors are
reported on any children whose data was not used during the
reconstruction.  This is handled in `raidz_reconstruct()`.  This is the
most common type of RAIDZ/DRAID checksum error.

2. When RAIDZ/DRAID is not able to reconstruct a damaged block, that
means that the data has been lost.  The zio fails and an error is
returned to the consumer (e.g. the read(2) system call).  This would
happen if, for example, three different disks in a RAIDZ2 group are
silently damaged.  Since the damage is silent, it isn't possible to know
which three disks are damaged, so a checksum error is reported against
every child that returned data or parity for this read.  (For DRAID,
typically only one "group" of children is involved in each io.)  This
case is handled in `vdev_raidz_cksum_finish()`. This is the next most
common type of RAIDZ/DRAID checksum error.

3. If RAIDZ/DRAID is not able to reconstruct a damaged block (like in
case 2), but there happens to be additional copies of this block due to
"ditto blocks" (i.e. multiple DVA's in this blkptr_t), and one of those
copies is good, then RAIDZ/DRAID compares each sector of the data or
parity that it retrieved with the good data from the other DVA, and if
they differ then it reports a checksum error on this child.  This
differs from case 2 in that the checksum error is reported on only the
subset of children that actually have bad data or parity.  This case
happens very rarely, since normally only metadata has ditto blocks.  If
the silent damage is extensive, there will be many instances of case 2,
and the pool will likely be unrecoverable.

The code for handling case 3 is considerably more complicated than the
other cases, for two reasons:

1. It needs to run after the main raidz read logic has completed.  The
data RAIDZ read needs to be preserved until after the alternate DVA has
been read, which necessitates refcounts and callbacks managed by the
non-raidz-specific zio layer.

2. It's nontrivial to map the sections of data read by RAIDZ to the
correct data.  For example, the correct data does not include the parity
information, so the parity must be recalculated based on the correct
data, and then compared to the parity that was read from the RAIDZ
children.

Due to the complexity of case 3, the rareness of hitting it, and the
minimal benefit it provides above case 2, this commit removes the code
for case 3.  These types of errors will now be handled the same as case
2, i.e. the checksum error will be reported against all children that
returned data or parity.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11735
2021-03-19 16:22:10 -07:00
Matthew Ahrens
e2af2acce3
allow callers to allocate and provide the abd_t struct
The `abd_get_offset_*()` routines create an abd_t that references
another abd_t, and doesn't allocate any pages/buffers of its own.  In
some workloads, these routines may be called frequently, to create many
abd_t's representing small pieces of a single large abd_t.  In
particular, the upcoming RAIDZ Expansion project makes heavy use of
these routines.

This commit adds the ability for the caller to allocate and provide the
abd_t struct to a variant of `abd_get_offset_*()`.  This eliminates the
cost of allocating the abd_t and performing the accounting associated
with it (`abdstat_struct_size`).  The RAIDZ/DRAID code uses this for
the `rc_abd`, which references the zio's abd.  The upcoming RAIDZ
Expansion project will leverage this infrastructure to increase
performance of reads post-expansion by around 50%.

Additionally, some of the interfaces around creating and destroying
abd_t's are cleaned up.  Most significantly, the distinction between
`abd_put()` and `abd_free()` is eliminated; all types of abd_t's are
now disposed of with `abd_free()`.

Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Issue #8853 
Closes #11439
2021-01-20 11:24:37 -08:00
Brian Behlendorf
b2255edcc0
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID.  This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.

A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`.  No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.

    zpool create <pool> draid[1,2,3] <vdevs...>

Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons.  The supported options include:

    zpool create <pool> \
        draid[<parity>][:<data>d][:<children>c][:<spares>s] \
        <vdevs...>

    - draid[parity]       - Parity level (default 1)
    - draid[:<data>d]     - Data devices per group (default 8)
    - draid[:<children>c] - Expected number of child vdevs
    - draid[:<spares>s]   - Distributed hot spares (default 0)

Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.

```
  pool: tank
 state: ONLINE
config:

    NAME                  STATE     READ WRITE CKSUM
    slag7                 ONLINE       0     0     0
      draid2:8d:68c:2s-0  ONLINE       0     0     0
        L0                ONLINE       0     0     0
        L1                ONLINE       0     0     0
        ...
        U25               ONLINE       0     0     0
        U26               ONLINE       0     0     0
        spare-53          ONLINE       0     0     0
          U27             ONLINE       0     0     0
          draid2-0-0      ONLINE       0     0     0
        U28               ONLINE       0     0     0
        U29               ONLINE       0     0     0
        ...
        U42               ONLINE       0     0     0
        U43               ONLINE       0     0     0
    special
      mirror-1            ONLINE       0     0     0
        L5                ONLINE       0     0     0
        U5                ONLINE       0     0     0
      mirror-2            ONLINE       0     0     0
        L6                ONLINE       0     0     0
        U6                ONLINE       0     0     0
    spares
      draid2-0-0          INUSE     currently in use
      draid2-0-1          AVAIL
```

When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command.  These options are leverages
by zloop.sh to test a wide range of dRAID configurations.

    -K draid|raidz|random - kind of RAID to test
    -D <value>            - dRAID data drives per group
    -S <value>            - dRAID distributed hot spares
    -R <value>            - RAID parity (raidz or dRAID)

The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.

Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 13:51:51 -08:00
Matthew Macy
da92d5cbb3 Add zfs_file_* interface, remove vnodes
Provide a common zfs_file_* interface which can be implemented on all 
platforms to perform normal file access from either the kernel module
or the libzpool library.

This allows all non-portable vnode_t usage in the common code to be 
replaced by the new portable zfs_file_t.  The associated vnode and
kobj compatibility functions, types, and macros have been removed
from the SPL.  Moving forward, vnodes should only be used in platform
specific code when provided by the native operating system.

Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9556
2019-11-21 09:32:57 -08:00
Brian Behlendorf
c25b8f99f8 Simplify threads, mutexs, cvs and rwlocks
* Simplify threads, mutexs, cvs and rwlocks

* Update the zk_thread_create() function to use the same trick
  as Illumos.  Specifically, cast the new pthread_t to a void
  pointer and return that as the kthread_t *.  This avoids the
  issues associated with managing a wrapper structure and is
  safe as long as the callers never attempt to dereference it.

* Update all function prototypes passed to pthread_create() to
  match the expected prototype.  We were getting away this with
  before since the function were explicitly cast.

* Replaced direct zk_thread_create() calls with thread_create()
  for code consistency.  All consumers of libzpool now use the
  proper wrappers.

* The mutex_held() calls were converted to MUTEX_HELD().

* Removed all mutex_owner() calls and retired the interface.
  Instead use MUTEX_HELD() which provides the same information
  and allows the implementation details to be hidden.  In this
  case the use of the pthread_equals() function.

* The kthread_t, kmutex_t, krwlock_t, and krwlock_t types had
  any non essential fields removed.  In the case of kthread_t
  and kcondvar_t they could be directly typedef'd to pthread_t
  and pthread_cond_t respectively.

* Removed all extra ASSERTS from the thread, mutex, rwlock, and
  cv wrapper functions.  In practice, pthreads already provides
  the vast majority of checks as long as we check the return
  code.  Removing this code from our wrappers help readability.

* Added TS_JOINABLE state flag to pass to request a joinable rather
  than detached thread.  This isn't a standard thread_create() state
  but it's the least invasive way to pass this information and is
  only used by ztest.

TEST_ZTEST_TIMEOUT=3600

Chunwei Chen <tuxoko@gmail.com>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4547 
Closes #5503 
Closes #5523 
Closes #6377 
Closes #6495
2017-08-11 08:51:44 -07:00
Gvozden Neskovic
c17486b217 Add missing *_destroy/*_fini calls
The proposed debugging enhancements in zfsonlinux/spl#587
identified the following missing *_destroy/*_fini calls.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Closes #5428
2017-05-04 19:26:28 -04:00
George Melikov
e2a65adbb8 OpenZFS 6871 - libzpool implementation of thread_create should enforce length is 0
Porting notes:
- Several direct callers of zk_thread_create() are passing TS_RUN for the
length.  The `len` and `state` were inverted,this commit fixes them.

Authored by: Eli Rosenthal <eli.rosenthal@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: George Melikov mail@gmelikov.ru

OpenZFS-issue: https://www.illumos.org/issues/6871
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/8fc9228
Closes #5621
2017-01-24 09:13:49 -08:00
Brian Behlendorf
02730c333c Use cstyle -cpP in make cstyle check
Enable picky cstyle checks and resolve the new warnings.  The vast
majority of the changes needed were to handle minor issues with
whitespace formatting.  This patch contains no functional changes.

Non-whitespace changes are as follows:

* 8 times ; to { } in for/while loop
* fix missing ; in cmd/zed/agents/zfs_diagnosis.c
* comment (confim -> confirm)
* change endline , to ; in cmd/zpool/zpool_main.c
* a number of /* BEGIN CSTYLED */ /* END CSTYLED */ blocks
* /* CSTYLED */ markers
* change == 0 to !
* ulong to unsigned long in module/zfs/dsl_scan.c
* rearrangement of module_param lines in module/zfs/metaslab.c
* add { } block around statement after for_each_online_node

Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #5465
2016-12-12 10:46:26 -08:00
Gvozden Neskovic
65d71d4212 ABD raidz avx512f support
Implement shift based multiplication for 512f. Higher IPC over lookup based
methods yields up to 40% better performance on the current hardware.

Results on Xeon Phi(TM) CPU 7210:
implementation   gen_p           gen_pq          gen_pqr         rec_p           rec_q           rec_r           rec_pq          rec_pr          rec_qr          rec_pqr
original         142232671       24411492        12948205        283053705       22348167        4215911         9171609         2265548         2378370         1648495
scalar           295711162       49851491        33253815        293198109       88179448        61866752        27941684        25764416        17384442        12138153
sse2             410055998       199642658       117973654       406240463       152688682       121092250       84968180        79291076        47473657        20779719
ssse3            411641595       199669571       117937647       406211024       137638508       117050346       81263322        76120405        46281559        32696722
avx2             616485806       311515332       188595628       605455115       260602390       230554476       148198817       138800254       92273356        62937819
avx512f          832191523       408509425       253599522       810094481       404325734       317590971       218235687       197204920       133101937       94001219
fastest          avx512f         avx512f         avx512f         avx512f         avx512f         avx512f         avx512f         avx512f         avx512f         avx512f

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
2016-11-29 14:34:33 -08:00
Gvozden Neskovic
cbf484f8ad ABD Vectorized raidz
Enable vectorized raidz code on ABD buffers.  The avx512f,
avx512bw, neon and aarch64_neonx2 are disabled in this commit.
With the exception of avx512bw these implementations are
updated for ABD in the subsequent commits.

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
2016-11-29 14:34:33 -08:00
David Quigley
a6255b7fce DLPX-44812 integrate EP-220 large memory scalability 2016-11-29 14:34:27 -08:00
Gvozden Neskovic
292d573e70 raidz_test: respect wall time
When timeout is specified (-t), stop worker threads in the middle of work units.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Issue #5180 
Closes #5190
2016-09-30 15:19:51 -07:00
Gvozden Neskovic
ab9f4b0b82 SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.

Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite

New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
  module load, the parameter will only accept first 3 options, and
  the other implementations can be set once module is finished
  loading. Possible values for this option are:
    "fastest" - use the fastest math available
    "original" - use the original raidz code
    "scalar" - new scalar impl
    "sse" - new SSE impl if available
    "avx2" - new AVX2 impl if available

See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-06-21 09:27:26 -07:00