Commit Graph

8 Commits

Author SHA1 Message Date
Gvozden Neskovic
cbf484f8ad ABD Vectorized raidz
Enable vectorized raidz code on ABD buffers.  The avx512f,
avx512bw, neon and aarch64_neonx2 are disabled in this commit.
With the exception of avx512bw these implementations are
updated for ABD in the subsequent commits.

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
2016-11-29 14:34:33 -08:00
David Quigley
a6255b7fce DLPX-44812 integrate EP-220 large memory scalability 2016-11-29 14:34:27 -08:00
Romain Dolbeau
7f547f85fe Add parity generation/rebuild using AVX-512 for x86-64
avx512f should work on all AVX512 hardware, since it only uses
Foundation instructions.

avx512bw should be faster on hardware supporting the AVW512BW
extension. We can use full-width pshufb (instead of relying on the 256
bits AVX2 pshufb). As a side-effect, the code is also unrolled more.

Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Jinshan Xiong <jinshan.xiong@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.github@dolbeau.name>
Closes #5219
2016-11-02 12:40:23 -07:00
Romain Dolbeau
62a65a654e Add parity generation/rebuild using 128-bits NEON for Aarch64
This re-use the framework established for SSE2, SSSE3 and
AVX2. However, GCC is using FP registers on Aarch64, so
unlike SSE/AVX2 we can't rely on the registers being left alone
between ASM statements. So instead, the NEON code uses
C variables and GCC extended ASM syntax. Note that since
the kernel explicitly disable vector registers, they
have to be locally re-enabled explicitly.

As we use the variable's number to define the symbolic
name, and GCC won't allow duplicate symbolic names,
numbers have to be unique. Even when the code is not
going to be used (e.g. the case for 4 registers when
using the macro with only 2). Only the actually used
variables should be declared, otherwise the build
will fails in debug mode.

This requires the replacement of the XOR(X,X) syntax
by a new ZERO(X) macro, which does the same thing but
without repeating the argument. And perhaps someday
there will be a machine where there is a more efficient
way to zero a register than XOR with itself. This affects
scalar, SSE2, SSSE3 and AVX2 as they need the new macro.

It's possible to write faster implementations (different
scheduling, different unrolling, interleaving NEON and
scalar, ...) for various cores, but this one has the
advantage of fitting in the current state of the code,
and thus is likely easier to review/check/merge.

The only difference between aarch64-neon and aarch64-neonx2
is that aarch64-neonx2 unroll some functions some more.

Reviewed-by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.dolbeau@atos.net>
Closes #4801
2016-10-03 09:44:00 -07:00
Gvozden Neskovic
292d573e70 raidz_test: respect wall time
When timeout is specified (-t), stop worker threads in the middle of work units.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Issue #5180 
Closes #5190
2016-09-30 15:19:51 -07:00
Gvozden Neskovic
c9187d867f Fixes and enhancements of SIMD raidz parity
- Implementation lock replaced with atomic variable

- Trailing whitespace is removed from user specified parameter, to enhance
experience when using commands that add newline, e.g. `echo`

- raidz_test: remove dependency on `getrusage()` and RUSAGE_THREAD, Issue #4813

- silence `cppcheck` in vdev_raidz, partial solution of Issue #1392

- Minor fixes and cleanups

- Enable use of original parity methods in [fastest] configuration.
New opaque original ops structure, representing native methods, is added
to supported raidz methods. Original parity methods are executed if selected
implementation has NULL fn pointer.

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4813
Issue #1392
2016-07-19 16:43:07 -07:00
Gvozden Neskovic
ae25d22235 Add RAID-Z routines for SSE2 instruction set, in x86_64 mode.
The patch covers low-end and older x86 CPUs.  Parity generation is
equivalent to SSSE3 implementation, but reconstruction is somewhat
slower.  Previous 'sse' implementation is renamed to 'ssse3' to
indicate highest instruction set used.

Benchmark results:
scalar_rec_p                    4    720476442
scalar_rec_q                    4    187462804
scalar_rec_r                    4    138996096
scalar_rec_pq                   4    140834951
scalar_rec_pr                   4    129332035
scalar_rec_qr                   4    81619194
scalar_rec_pqr                  4    53376668

sse2_rec_p                      4    2427757064
sse2_rec_q                      4    747120861
sse2_rec_r                      4    499871637
sse2_rec_pq                     4    522403710
sse2_rec_pr                     4    464632780
sse2_rec_qr                     4    319124434
sse2_rec_pqr                    4    205794190

ssse3_rec_p                     4    2519939444
ssse3_rec_q                     4    1003019289
ssse3_rec_r                     4    616428767
ssse3_rec_pq                    4    706326396
ssse3_rec_pr                    4    570493618
ssse3_rec_qr                    4    400185250
ssse3_rec_pqr                   4    377541245

original_rec_p                  4    691658568
original_rec_q                  4    195510948
original_rec_r                  4    26075538
original_rec_pq                 4    103087368
original_rec_pr                 4    15767058
original_rec_qr                 4    15513175
original_rec_pqr                4    10746357

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4783
2016-07-13 10:24:55 -07:00
Gvozden Neskovic
ab9f4b0b82 SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.

Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite

New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
  module load, the parameter will only accept first 3 options, and
  the other implementations can be set once module is finished
  loading. Possible values for this option are:
    "fastest" - use the fastest math available
    "original" - use the original raidz code
    "scalar" - new scalar impl
    "sse" - new SSE impl if available
    "avx2" - new AVX2 impl if available

See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-06-21 09:27:26 -07:00