1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-19 14:36:35 +03:00
Commit Graph

24 Commits

Author SHA1 Message Date
Matthew Ahrens
aa755b3549
Set aside a metaslab for ZIL blocks
Mixing ZIL and normal allocations has several problems:

1. The ZIL allocations are allocated, written to disk, and then a few
seconds later freed.  This leaves behind holes (free segments) where the
ZIL blocks used to be, which increases fragmentation, which negatively
impacts performance.

2. When under moderate load, ZIL allocations are of 128KB.  If the pool
is fairly fragmented, there may not be many free chunks of that size.
This causes ZFS to load more metaslabs to locate free segments of 128KB
or more.  The loading happens synchronously (from zil_commit()), and can
take around a second even if the metaslab's spacemap is cached in the
ARC.  All concurrent synchronous operations on this filesystem must wait
while the metaslab is loading.  This can cause a significant performance
impact.

3. If the pool is very fragmented, there may be zero free chunks of
128KB or more.  In this case, the ZIL falls back to txg_wait_synced(),
which has an enormous performance impact.

These problems can be eliminated by using a dedicated log device
("slog"), even one with the same performance characteristics as the
normal devices.

This change sets aside one metaslab from each top-level vdev that is
preferentially used for ZIL allocations (vdev_log_mg,
spa_embedded_log_class).  From an allocation perspective, this is
similar to having a dedicated log device, and it eliminates the
above-mentioned performance problems.

Log (ZIL) blocks can be allocated from the following locations.  Each
one is tried in order until the allocation succeeds:
1. dedicated log vdevs, aka "slog" (spa_log_class)
2. embedded slog metaslabs (spa_embedded_log_class)
3. other metaslabs in normal vdevs (spa_normal_class)

The space required for the embedded slog metaslabs is usually between
0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop"
space that is not available for user data.

On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity,
and recordsize=8k, testing shows a ~50% performance increase on random
8k sync writes.  On even more fragmented systems (which hit problem 
above and call txg_wait_synced()), the performance improvement can be
arbitrarily large (>100x).

Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes 
2021-01-21 15:12:54 -08:00
Matthew Macy
68a1b1589a Remove sdt.h
It's mostly a noop on ZoL and it conflicts with platforms that 
support dtrace.  Remove this header to resolve the conflict.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes 
2019-10-25 13:38:37 -07:00
Serapheim Dimitropoulos
93e28d661e Log Spacemap Project
= Motivation

At Delphix we've seen a lot of customer systems where fragmentation
is over 75% and random writes take a performance hit because a lot
of time is spend on I/Os that update on-disk space accounting metadata.
Specifically, we seen cases where 20% to 40% of sync time is spend
after sync pass 1 and ~30% of the I/Os on the system is spent updating
spacemaps.

The problem is that these pools have existed long enough that we've
touched almost every metaslab at least once, and random writes
scatter frees across all metaslabs every TXG, thus appending to
their spacemaps and resulting in many I/Os. To give an example,
assuming that every VDEV has 200 metaslabs and our writes fit within
a single spacemap block (generally 4K) we have 200 I/Os. Then if we
assume 2 levels of indirection, we need 400 additional I/Os and
since we are talking about metadata for which we keep 2 extra copies
for redundancy we need to triple that number, leading to a total of
1800 I/Os per VDEV every TXG.

We could try and decrease the number of metaslabs so we have less
I/Os per TXG but then each metaslab would cover a wider range on
disk and thus would take more time to be loaded in memory from disk.
In addition, after it's loaded, it's range tree would consume more
memory.

Another idea would be to just increase the spacemap block size
which would allow us to fit more entries within an I/O block
resulting in fewer I/Os per metaslab and a speedup in loading time.
The problem is still that we don't deal with the number of I/Os
going up as the number of metaslabs is increasing and the fact
is that we generally write a lot to a few metaslabs and a little
to the rest of them. Thus, just increasing the block size would
actually waste bandwidth because we won't be utilizing our bigger
block size.

= About this patch

This patch introduces the Log Spacemap project which provides the
solution to the above problem while taking into account all the
aforementioned tradeoffs. The details on how it achieves that can
be found in the references sections below and in the code (see
Big Theory Statement in spa_log_spacemap.c).

Even though the change is fairly constraint within the metaslab
and lower-level SPA codepaths, there is a side-change that is
user-facing. The change is that VDEV IDs from VDEV holes will no
longer be reused. To give some background and reasoning for this,
when a log device is removed and its VDEV structure was replaced
with a hole (or was compacted; if at the end of the vdev array),
its vdev_id could be reused by devices added after that. Now
with the pool-wide space maps recording the vdev ID, this behavior
can cause problems (e.g. is this entry referring to a segment in
the new vdev or the removed log?). Thus, to simplify things the
ID reuse behavior is gone and now vdev IDs for top-level vdevs
are truly unique within a pool.

= Testing

The illumos implementation of this feature has been used internally
for a year and has been in production for ~6 months. For this patch
specifically there don't seem to be any regressions introduced to
ZTS and I have been running zloop for a week without any related
problems.

= Performance Analysis (Linux Specific)

All performance results and analysis for illumos can be found in
the links of the references. Redoing the same experiments in Linux
gave similar results. Below are the specifics of the Linux run.

After the pool reached stable state the percentage of the time
spent in pass 1 per TXG was 64% on average for the stock bits
while the log spacemap bits stayed at 95% during the experiment
(graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png).

Sync times per TXG were 37.6 seconds on average for the stock
bits and 22.7 seconds for the log spacemap bits (related graph:
sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result
the log spacemap bits were able to push more TXGs, which is also
the reason why all graphs quantified per TXG have more entries for
the log spacemap bits.

Another interesting aspect in terms of txg syncs is that the stock
bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8,
and 20% reach 9. The log space map bits reached sync pass 4 in 79%
of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This
emphasizes the fact that not only we spend less time on metadata
but we also iterate less times to convergence in spa_sync() dirtying
objects.
[related graphs:
stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png
lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png]

Finally, the improvement in IOPs that the userland gains from the
change is approximately 40%. There is a consistent win in IOPS as
you can see from the graphs below but the absolute amount of
improvement that the log spacemap gives varies within each minute
interval.
sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png
sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png

= Porting to Other Platforms

For people that want to port this commit to other platforms below
is a list of ZoL commits that this patch depends on:

Make zdb results for checkpoint tests consistent
db587941c5

Update vdev_is_spacemap_addressable() for new spacemap encoding
419ba59145

Simplify spa_sync by breaking it up to smaller functions
8dc2197b7b

Factor metaslab_load_wait() in metaslab_load()
b194fab0fb

Rename range_tree_verify to range_tree_verify_not_present
df72b8bebe

Change target size of metaslabs from 256GB to 16GB
c853f382db

zdb -L should skip leak detection altogether
21e7cf5da8

vs_alloc can underflow in L2ARC vdevs
7558997d2f

Simplify log vdev removal code
6c926f426a

Get rid of space_map_update() for ms_synced_length
425d3237ee

Introduce auxiliary metaslab histograms
928e8ad47d

Error path in metaslab_load_impl() forgets to drop ms_sync_lock
8eef997679

= References

Background, Motivation, and Internals of the Feature
- OpenZFS 2017 Presentation:
youtu.be/jj2IxRkl5bQ
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project

Flushing Algorithm Internals & Performance Results
(Illumos Specific)
- Blogpost:
sdimitro.github.io/post/zfs-lsm-flushing/
- OpenZFS 2018 Presentation:
youtu.be/x6D2dHRjkxw
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm

Upstream Delphix Issues:
DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320
DLPX-63385

Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes 
2019-07-16 10:11:49 -07:00
Brian Behlendorf
1b939560be
Add TRIM support
UNMAP/TRIM support is a frequently-requested feature to help
prevent performance from degrading on SSDs and on various other
SAN-like storage back-ends.  By issuing UNMAP/TRIM commands for
sectors which are no longer allocated the underlying device can
often more efficiently manage itself.

This TRIM implementation is modeled on the `zpool initialize`
feature which writes a pattern to all unallocated space in the
pool.  The new `zpool trim` command uses the same vdev_xlate()
code to calculate what sectors are unallocated, the same per-
vdev TRIM thread model and locking, and the same basic CLI for
a consistent user experience.  The core difference is that
instead of writing a pattern it will issue UNMAP/TRIM commands
for those extents.

The zio pipeline was updated to accommodate this by adding a new
ZIO_TYPE_TRIM type and associated spa taskq.  This new type makes
is straight forward to add the platform specific TRIM/UNMAP calls
to vdev_disk.c and vdev_file.c.  These new ZIO_TYPE_TRIM zios are
handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs.
This makes it possible to largely avoid changing the pipieline,
one exception is that TRIM zio's may exceed the 16M block size
limit since they contain no data.

In addition to the manual `zpool trim` command, a background
automatic TRIM was added and is controlled by the 'autotrim'
property.  It relies on the exact same infrastructure as the
manual TRIM.  However, instead of relying on the extents in a
metaslab's ms_allocatable range tree, a ms_trim tree is kept
per metaslab.  When 'autotrim=on', ranges added back to the
ms_allocatable tree are also added to the ms_free tree.  The
ms_free tree is then periodically consumed by an autotrim
thread which systematically walks a top level vdev's metaslabs.

Since the automatic TRIM will skip ranges it considers too small
there is value in occasionally running a full `zpool trim`.  This
may occur when the freed blocks are small and not enough time
was allowed to aggregate them.  An automatic TRIM and a manual
`zpool trim` may be run concurrently, in which case the automatic
TRIM will yield to the manual TRIM.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Contributions-by: Tim Chase <tim@chase2k.com>
Contributions-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes  
Closes 
2019-03-29 09:13:20 -07:00
Serapheim Dimitropoulos
1a759200e5 Document guidelines for usage of zfs_dbgmsg
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes 
2019-01-18 10:16:56 -08:00
Tom Caputi
ab4c009e3d Fix dbgmsg printing in ztest and zdb
This patch resolves a problem where the -G option in both zdb and
ztest would cause the code to call __dprintf() to print zfs_dbgmsg
output. This function was not properly wired to add messages to the
dbgmsg log as it is in userspace and so the messages were simply
dropped. This patch also tries to add some degree of distinction to
dprintf() (which now prints directly to stdout) and zfs_dbgmsg()
(which adds messages to an internal list that can be dumped with
zfs_dbgmsg_print()).

In addition, this patch corrects an issue where ztest used a global
variable to decide whether to dump the dbgmsg buffer on a crash.
This did not work because ztest spins up more instances of itself
using execv(), which did not copy the global variable to the new
process. The option has been moved to the ztest_shared_opts_t
which already exists for interprocess communication.

This patch also changes zfs_dbgmsg_print() to use write() calls
instead of printf() so that it will not fail when used in a signal
handler.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes 
2018-10-24 14:36:50 -07:00
John Gallagher
d12614521a Fixes for procfs files backed by linked lists
There are some issues with the way the seq_file interface is implemented
for kstats backed by linked lists (zfs_dbgmsgs and certain per-pool
debugging info):

* We don't account for the fact that seq_file sometimes visits a node
  multiple times, which results in missing messages when read through
  procfs.
* We don't keep separate state for each reader of a file, so concurrent
  readers will receive incorrect results.
* We don't account for the fact that entries may have been removed from
  the list between read syscalls, so reading from these files in procfs
  can cause the system to crash.

This change fixes these issues and adds procfs_list, a wrapper around a
linked list which abstracts away the details of implementing the
seq_file interface for a list and exposing the contents of the list
through procfs.

Reviewed by: Don Brady <don.brady@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
External-issue: LX-1211
Closes 
2018-09-26 11:08:12 -07:00
Matthew Ahrens
964c2d69a9 OpenZFS 9236 - nuke spa_dbgmsg
We should use zfs_dbgmsg instead of spa_dbgmsg. Or at least,
metaslab_condense() should call zfs_dbgmsg because it's important and
rare enough to always log. It's possible that the message in
zio_dva_allocate() would be too high-frequency for zfs_dbgmsg.

Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>

Patch Notes:
* Removed ZFS_DEBUG_SPA from zfs-module-parameters.5

OpenZFS-issue: https://www.illumos.org/issues/9236
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/cfaba7f668
Closes 
2018-04-30 10:19:48 -07:00
Matthew Ahrens
a1d477c24c OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete

This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk.  The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.

The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool.  An entry becomes obsolete when all the blocks that use
it are freed.  An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones).  Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible.  This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.

Note that when a device is removed, we do not verify the checksum of
the data that is copied.  This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.

At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.

Porting Notes:

* Avoid zero-sized kmem_alloc() in vdev_compact_children().

    The device evacuation code adds a dependency that
    vdev_compact_children() be able to properly empty the vdev_child
    array by setting it to NULL and zeroing vdev_children.  Under Linux,
    kmem_alloc() and related functions return a sentinel pointer rather
    than NULL for zero-sized allocations.

* Remove comment regarding "mpt" driver where zfs_remove_max_segment
  is initialized to SPA_MAXBLOCKSIZE.

  Change zfs_condense_indirect_commit_entry_delay_ticks to
  zfs_condense_indirect_commit_entry_delay_ms for consistency with
  most other tunables in which delays are specified in ms.

* ZTS changes:

    Use set_tunable rather than mdb
    Use zpool sync as appropriate
    Use sync_pool instead of sync
    Kill jobs during test_removal_with_operation to allow unmount/export
    Don't add non-disk names such as "mirror" or "raidz" to $DISKS
    Use $TEST_BASE_DIR instead of /tmp
    Increase HZ from 100 to 1000 which is more common on Linux

    removal_multiple_indirection.ksh
        Reduce iterations in order to not time out on the code
        coverage builders.

    removal_resume_export:
        Functionally, the test case is correct but there exists a race
        where the kernel thread hasn't been fully started yet and is
        not visible.  Wait for up to 1 second for the removal thread
        to be started before giving up on it.  Also, increase the
        amount of data copied in order that the removal not finish
        before the export has a chance to fail.

* MMP compatibility, the concept of concrete versus non-concrete devices
  has slightly changed the semantics of vdev_writeable().  Update
  mmp_random_leaf_impl() accordingly.

* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
  feature which is not supported by OpenZFS.

* Added support for new vdev removal tracepoints.

* Test cases removal_with_zdb and removal_condense_export have been
  intentionally disabled.  When run manually they pass as intended,
  but when running in the automated test environment they produce
  unreliable results on the latest Fedora release.

  They may work better once the upstream pool import refectoring is
  merged into ZoL at which point they will be re-enabled.

Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>

OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes 
2018-04-14 12:16:17 -07:00
Matthew Ahrens
2fd92c3d6c enable zfs_dbgmsg() by default, without dprintf()
zfs_dbgmsg() should record a message by default.  As a general
principal, these messages shouldn't be too verbose.  Furthermore, the
amount of memory used is limited to 4MB (by default).

dprintf() should only record a message if this is a debug build, and
ZFS_DEBUG_DPRINTF is set in zfs_flags.  This flag is not set by default
(even on debug builds).  These messages are extremely verbose, and
sometimes nontrivial to compute.

SET_ERROR() should only record a message if ZFS_DEBUG_SET_ERROR is set
in zfs_flags.  This flag is not set by default (even on debug builds).

This brings our behavior in line with illumos.  Note that the message
format is unchanged (including file, line, and function, even though
these are not recorded on illumos).

Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes 
2018-03-21 15:37:32 -07:00
Ned Bass
8740cf4a2f Add line info and SET_ERROR() to ZFS debug log
Redefine the SET_ERROR macro in terms of __dprintf() so the error
return codes get logged as both tracepoint events (if tracepoints are
enabled) and as ZFS debug log entries.  This also allows us to use
the same definition of SET_ERROR() in kernel and user space.

Define a new debug flag ZFS_DEBUG_SET_ERROR=512 that may be bitwise
or'd into zfs_flags. Setting this flag enables both dprintf() and
SET_ERROR() messages in the debug log. That is, setting
ZFS_DEBUG_SET_ERROR and ZFS_DEBUG_DPRINTF|ZFS_DEBUG_SET_ERROR are
equivalent (this was done for sake of simplicity). Leaving
ZFS_DEBUG_SET_ERROR unset suppresses the SET_ERROR() messages which
helps avoid cluttering up the logs.

To enable SET_ERROR() logging, run:

  echo 1 >   /sys/module/zfs/parameters/zfs_dbgmsg_enable
  echo 512 > /sys/module/zfs/parameters/zfs_flags

Remove the zfs_set_error_class tracepoints event class since
SET_ERROR() now uses __dprintf(). This sacrifices a bit of
granularity when selecting individual tracepoint events to enable but
it makes the code simpler.

Include file, function, and line number information in debug log
entries.  The information is now added to the message buffer in
__dprintf() and as a result the zfs_dprintf_class tracepoints event
class was changed from a 4 parameter interface to a single parameter.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes 
2017-07-25 23:09:48 -07:00
George Melikov
fa603f8233 OpenZFS 7277 - zdb should be able to print zfs_dbgmsg's
Porting notes:
- 'zfs_dbgmsg_print()' reintroduced to userspace.

Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Igor Kozhukhov <ikozhukhov@gmail.com>
Approved by: Dan McDonald <danmcd@omniti.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Ported-by: George Melikov <mail@gmelikov.ru>

OpenZFS-issue: https://www.illumos.org/issues/7277
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/29bdd2f
Closes 
2017-01-28 12:16:43 -08:00
Don Brady
4e21fd060a OpenZFS 7303 - dynamic metaslab selection
This change introduces a new weighting algorithm to improve
metaslab selection. The new weighting algorithm relies on the
SPACEMAP_HISTOGRAM feature. As a result, the metaslab weight
now encodes the type of weighting algorithm used (size-based
vs segment-based).

Porting Notes: The metaslab allocation tracing code is conditionally
removed on linux (dependent on mdb debugger).

Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Alex Reece <alex@delphix.com>
Reviewed by: Chris Siden <christopher.siden@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com>
Reviewed by: Pavel Zakharov pavel.zakharov@delphix.com
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Don Brady <don.brady@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Don Brady <don.brady@intel.com>

OpenZFS-issue: https://www.illumos.org/issues/7303
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/d5190931bd
Closes 
2017-01-12 11:52:56 -08:00
Brian Behlendorf
3b36f8319d Add dbgmsg kstat
Internally ZFS keeps a small log to facilitate debugging.  By default
the log is disabled, to enable it set zfs_dbgmsg_enable=1.  The contents
of the log can be accessed by reading the /proc/spl/kstat/zfs/dbgmsg file.
Writing 0 to this proc file clears the log.

$ echo 1 >/sys/module/zfs/parameters/zfs_dbgmsg_enable
$ echo 0 >/proc/spl/kstat/zfs/dbgmsg
$ zpool import tank
$ cat /proc/spl/kstat/zfs/dbgmsg
1 0 0x01 -1 0 2492357525542 2525836565501
timestamp    message
1441141408   spa=tank async request task=1
1441141408   txg 70 open pool version 5000; software version 5000/5; ...
1441141409   spa=tank async request task=32
1441141409   txg 72 import pool version 5000; software version 5000/5; ...
1441141414   command: lt-zpool import tank

Note the zfs_dbgmsg() and dprintf() functions are both now mapped to
the same log.  As mentioned above the kernel debug log can be accessed
though the /proc/spl/kstat/zfs/dbgmsg kstat.  For user space consumers
log messages are immediately written to stdout after applying the
ZFS_DEBUG environment variable.

$ ZFS_DEBUG=on ./cmd/ztest/ztest -V

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes 
2015-09-04 16:08:14 -07:00
Prakash Surya
0b39b9f96f Swap DTRACE_PROBE* with Linux tracepoints
This patch leverages Linux tracepoints from within the ZFS on Linux
code base. It also refactors the debug code to bring it back in sync
with Illumos.

The information exported via tracepoints can be used for a variety of
reasons (e.g. debugging, tuning, general exploration/understanding,
etc). It is advantageous to use Linux tracepoints as the mechanism to
export this kind of information (as opposed to something else) for a
number of reasons:

    * A number of external tools can make use of our tracepoints
      "automatically" (e.g. perf, systemtap)
    * Tracepoints are designed to be extremely cheap when disabled
    * It's one of the "accepted" ways to export this kind of
      information; many other kernel subsystems use tracepoints too.

Unfortunately, though, there are a few caveats as well:

    * Linux tracepoints appear to only be available to GPL licensed
      modules due to the way certain kernel functions are exported.
      Thus, to actually make use of the tracepoints introduced by this
      patch, one might have to patch and re-compile the kernel;
      exporting the necessary functions to non-GPL modules.

    * Prior to upstream kernel version v3.14-rc6-30-g66cc69e, Linux
      tracepoints are not available for unsigned kernel modules
      (tracepoints will get disabled due to the module's 'F' taint).
      Thus, one either has to sign the zfs kernel module prior to
      loading it, or use a kernel versioned v3.14-rc6-30-g66cc69e or
      newer.

Assuming the above two requirements are satisfied, lets look at an
example of how this patch can be used and what information it exposes
(all commands run as 'root'):

    # list all zfs tracepoints available

    $ ls /sys/kernel/debug/tracing/events/zfs
    enable              filter              zfs_arc__delete
    zfs_arc__evict      zfs_arc__hit        zfs_arc__miss
    zfs_l2arc__evict    zfs_l2arc__hit      zfs_l2arc__iodone
    zfs_l2arc__miss     zfs_l2arc__read     zfs_l2arc__write
    zfs_new_state__mfu  zfs_new_state__mru

    # enable all zfs tracepoints, clear the tracepoint ring buffer

    $ echo 1 > /sys/kernel/debug/tracing/events/zfs/enable
    $ echo 0 > /sys/kernel/debug/tracing/trace

    # import zpool called 'tank', inspect tracepoint data (each line was
    # truncated, they're too long for a commit message otherwise)

    $ zpool import tank
    $ cat /sys/kernel/debug/tracing/trace | head -n35
    # tracer: nop
    #
    # entries-in-buffer/entries-written: 1219/1219   #P:8
    #
    #                              _-----=> irqs-off
    #                             / _----=> need-resched
    #                            | / _---=> hardirq/softirq
    #                            || / _--=> preempt-depth
    #                            ||| /     delay
    #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
    #              | |       |   ||||       |         |
            lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss: hdr...
          z_rd_int/0-30156 [003] .... 91344.200611: zfs_new_state__mru...
            lt-zpool-30132 [003] .... 91344.201173: zfs_arc__miss: hdr...
          z_rd_int/1-30157 [003] .... 91344.201756: zfs_new_state__mru...
            lt-zpool-30132 [003] .... 91344.201795: zfs_arc__miss: hdr...
          z_rd_int/2-30158 [003] .... 91344.202099: zfs_new_state__mru...
            lt-zpool-30132 [003] .... 91344.202126: zfs_arc__hit: hdr ...
            lt-zpool-30132 [003] .... 91344.202130: zfs_arc__hit: hdr ...
            lt-zpool-30132 [003] .... 91344.202134: zfs_arc__hit: hdr ...
            lt-zpool-30132 [003] .... 91344.202146: zfs_arc__miss: hdr...
          z_rd_int/3-30159 [003] .... 91344.202457: zfs_new_state__mru...
            lt-zpool-30132 [003] .... 91344.202484: zfs_arc__miss: hdr...
          z_rd_int/4-30160 [003] .... 91344.202866: zfs_new_state__mru...
            lt-zpool-30132 [003] .... 91344.202891: zfs_arc__hit: hdr ...
            lt-zpool-30132 [001] .... 91344.203034: zfs_arc__miss: hdr...
          z_rd_iss/1-30149 [001] .... 91344.203749: zfs_new_state__mru...
            lt-zpool-30132 [001] .... 91344.203789: zfs_arc__hit: hdr ...
            lt-zpool-30132 [001] .... 91344.203878: zfs_arc__miss: hdr...
          z_rd_iss/3-30151 [001] .... 91344.204315: zfs_new_state__mru...
            lt-zpool-30132 [001] .... 91344.204332: zfs_arc__hit: hdr ...
            lt-zpool-30132 [001] .... 91344.204337: zfs_arc__hit: hdr ...
            lt-zpool-30132 [001] .... 91344.204352: zfs_arc__hit: hdr ...
            lt-zpool-30132 [001] .... 91344.204356: zfs_arc__hit: hdr ...
            lt-zpool-30132 [001] .... 91344.204360: zfs_arc__hit: hdr ...

To highlight the kind of detailed information that is being exported
using this infrastructure, I've taken the first tracepoint line from the
output above and reformatted it such that it fits in 80 columns:

    lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss:
        hdr {
            dva 0x1:0x40082
            birth 15491
            cksum0 0x163edbff3a
            flags 0x640
            datacnt 1
            type 1
            size 2048
            spa 3133524293419867460
            state_type 0
            access 0
            mru_hits 0
            mru_ghost_hits 0
            mfu_hits 0
            mfu_ghost_hits 0
            l2_hits 0
            refcount 1
        } bp {
            dva0 0x1:0x40082
            dva1 0x1:0x3000e5
            dva2 0x1:0x5a006e
            cksum 0x163edbff3a:0x75af30b3dd6:0x1499263ff5f2b:0x288bd118815e00
            lsize 2048
        } zb {
            objset 0
            object 0
            level -1
            blkid 0
        }

For the specific tracepoint shown here, 'zfs_arc__miss', data is
exported detailing the arc_buf_hdr_t (hdr), blkptr_t (bp), and
zbookmark_t (zb) that caused the ARC miss (down to the exact DVA!).
This kind of precise and detailed information can be extremely valuable
when trying to answer certain kinds of questions.

For anybody unfamiliar but looking to build on this, I found the XFS
source code along with the following three web links to be extremely
helpful:

    * http://lwn.net/Articles/379903/
    * http://lwn.net/Articles/381064/
    * http://lwn.net/Articles/383362/

I should also node the more "boring" aspects of this patch:

    * The ZFS_LINUX_COMPILE_IFELSE autoconf macro was modified to
       support a sixth paramter. This parameter is used to populate the
       contents of the new conftest.h file. If no sixth parameter is
       provided, conftest.h will be empty.

    * The ZFS_LINUX_TRY_COMPILE_HEADER autoconf macro was introduced.
      This macro is nearly identical to the ZFS_LINUX_TRY_COMPILE macro,
      except it has support for a fifth option that is then passed as
      the sixth parameter to ZFS_LINUX_COMPILE_IFELSE.

These autoconf changes were needed to test the availability of the Linux
tracepoint macros. Due to the odd nature of the Linux tracepoint macro
API, a separate ".h" must be created (the path and filename is used
internally by the kernel's define_trace.h file).

    * The HAVE_DECLARE_EVENT_CLASS autoconf macro was introduced. This
      is to determine if we can safely enable the Linux tracepoint
      functionality. We need to selectively disable the tracepoint code
      due to the kernel exporting certain functions as GPL only. Without
      this check, the build process will fail at link time.

In addition, the SET_ERROR macro was modified into a tracepoint as well.
To do this, the 'sdt.h' file was moved into the 'include/sys' directory
and now contains a userspace portion and a kernel space portion. The
dprintf and zfs_dbgmsg* interfaces are now implemented as tracepoint as
well.

Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2014-11-17 11:13:55 -08:00
George Wilson
f3a7f6610f Illumos 4976-4984 - metaslab improvements
4976 zfs should only avoid writing to a failing non-redundant top-level vdev
4978 ztest fails in get_metaslab_refcount()
4979 extend free space histogram to device and pool
4980 metaslabs should have a fragmentation metric
4981 remove fragmented ops vector from block allocator
4982 space_map object should proactively upgrade when feature is enabled
4983 need to collect metaslab information via mdb
4984 device selection should use fragmentation metric
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <adam.leventhal@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>

References:
  https://www.illumos.org/issues/4976
  https://www.illumos.org/issues/4978
  https://www.illumos.org/issues/4979
  https://www.illumos.org/issues/4980
  https://www.illumos.org/issues/4981
  https://www.illumos.org/issues/4982
  https://www.illumos.org/issues/4983
  https://www.illumos.org/issues/4984
  https://github.com/illumos/illumos-gate/commit/2e4c998

Notes:
    The "zdb -M" option has been re-tasked to display the new metaslab
    fragmentation metric and the new "zdb -I" option is used to control
    the maximum number of in-flight I/Os.

    The new fragmentation metric is derived from the space map histogram
    which has been rolled up to the vdev and pool level and is presented
    to the user via "zpool list".

    Add a number of module parameters related to the new metaslab weighting
    logic.

Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2014-08-18 08:40:49 -07:00
Matthew Ahrens
fbeddd60b7 Illumos 4390 - I/O errors can corrupt space map when deleting fs/vol
4390 i/o errors when deleting filesystem/zvol can lead to space map corruption
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Approved by: Dan McDonald <danmcd@omniti.com>

References:
  https://www.illumos.org/issues/4390
  https://github.com/illumos/illumos-gate/commit/7fd05ac

Porting notes:

Previous stack-reduction efforts in traverse_visitb() caused a fair
number of un-mergable pieces of code.  This patch should reduce its
stack footprint a bit more.

The new local bptree_entry_phys_t in bptree_add() is dynamically-allocated
using kmem_zalloc() for the purpose of stack reduction.

The new global zfs_free_leak_on_eio has been defined as an integer
rather than a boolean_t as was the case with the related zfs_recover
global.  Also, zfs_free_leak_on_eio's definition has been inserted into
zfs_debug.c for consistency with the existing definition of zfs_recover.
Illumos placed it in spa_misc.c.

Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2014-08-04 11:50:52 -07:00
Michael Kjorling
d1d7e2689d cstyle: Resolve C style issues
The vast majority of these changes are in Linux specific code.
They are the result of not having an automated style checker to
validate the code when it was originally written.  Others were
caused when the common code was slightly adjusted for Linux.

This patch contains no functional changes.  It only refreshes
the code to conform to style guide.

Everyone submitting patches for inclusion upstream should now
run 'make checkstyle' and resolve any warning prior to opening
a pull request.  The automated builders have been updated to
fail a build if when 'make checkstyle' detects an issue.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2013-12-18 16:46:35 -08:00
George Wilson
5d1f7fb647 Illumos , , , , , ,
3956 ::vdev -r should work with pipelines
3957 ztest should update the cachefile before killing itself
3958 multiple scans can lead to partial resilvering
3959 ddt entries are not always resilvered
3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth
3961 freed gang blocks are not resilvered and can cause pool to suspend
3962 ztest should print out zfs debug buffer before exiting
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Approved by: Richard Lowe <richlowe@richlowe.net>

References:
  https://www.illumos.org/issues/3956
  https://www.illumos.org/issues/3957
  https://www.illumos.org/issues/3958
  https://www.illumos.org/issues/3959
  https://www.illumos.org/issues/3960
  https://www.illumos.org/issues/3961
  https://www.illumos.org/issues/3962
  illumos/illumos-gate@b4952e17e8

Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>

Porting notes:

1. zfs_dbgmsg_print() is only used in userland. Since we do not have
   mdb on Linux, it does not make sense to make it available in the
   kernel. This means that a build failure will occur if any future
   kernel patch depends on it. However, that is unlikely given that
   this functionality was added to support zdb.

2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels.
   This preserves the existing behavior of minimal noise when running
   with -V, and -VV.

3. In vdev_config_generate() the call to nvlist_alloc() was not
   changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in
   the txg_sync context.
2013-11-05 12:23:05 -08:00
Richard Yao
495b25a91a Add missing code to zfs_debug.{c,h}
This is required to make Illumos 3962 merge.

Signed-off-by: Richard Yao <ryao@gentoo.org>
2013-10-29 15:06:18 -07:00
Matthew Ahrens
13fe019870 Illumos
3464 zfs synctask code needs restructuring
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>

References:
  https://www.illumos.org/issues/3464
  illumos/illumos-gate@3b2aab1880

Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2013-09-04 16:01:24 -07:00
Brian Behlendorf
4b787d75c8 Cleanly support debug packages
Allow a source rpm to be rebuilt with debugging enabled.  This
avoids the need to have to manually modify the spec file.  By
default debugging is still largely disabled.  To enable specific
debugging features use the following options with rpmbuild.

  '--with debug'               - Enables ASSERTs

  # For example:
  $ rpmbuild --rebuild --with debug zfs-modules-0.6.0-rc6.src.rpm

Additionally, ZFS_CONFIG has been added to zfs_config.h for
packages which build against these headers.  This is critical
to ensure both zfs and the dependant package are using the same
prototype and structure definitions.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-02-27 14:08:17 -08:00
Brian Behlendorf
d7e398ce1a Cleanup ZFS debug infrastructure
Historically the internal zfs debug infrastructure has been
scattered throughout the code.  Since we expect to start making
more use of this code this patch performs some cleanup.

* Consolidate the zfs debug infrastructure in the zfs_debug.[ch]
  files.  This includes moving the zfs_flags and zfs_recover
  variables, plus moving the zfs_panic_recover() function.

* Remove the existing unused functionality in zfs_debug.c and
  replace it with code which correctly utilized the spl logging
  infrastructure.

* Remove the __dprintf() function from zfs_ioctl.c.  This is
  dead code, the dprintf() functionality in the kernel relies
  on the spl log support.

* Remove dprintf() from hdr_recl().  This wasn't particularly
  useful and was missing the required format specifier anyway.

* Subsequent patches should unify the dprintf() and zfs_dbgmsg()
  functions.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-02-02 11:24:30 -08:00
Brian Behlendorf
6283f55ea1 Support custom build directories and move includes
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory.  The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.

For example, this project is designed to work on various different
Linux distributions each of which work slightly differently.  This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.

Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution.  When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.

wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz
tar -xzf zfs-x.y.z.tar.gz
cd zfs-x-y-z

------------------------- run concurrently ----------------------
<ubuntu system>  <fedora system>  <debian system>  <rhel6 system>
mkdir ubuntu     mkdir fedora     mkdir debian     mkdir rhel6
cd ubuntu        cd fedora        cd debian        cd rhel6
../configure     ../configure     ../configure     ../configure
make             make             make             make
make check       make check       make check       make check

This change also moves many of the include headers from individual
incude/sys directories under the modules directory in to a single
top level include directory.  This has the advantage of making
the build rules cleaner and logically it makes a bit more sense.
2010-09-08 12:38:56 -07:00