The l2arc_evict() function is responsible for evicting buffers which
reference the next bytes of the L2ARC device to be overwritten. Teach
this function to additionally TRIM that vdev space before it is
overwritten if the device has been filled with data. This is done by
vdev_trim_simple() which trims by issuing a new type of TRIM,
TRIM_TYPE_SIMPLE.
We also implement a "Trim Ahead" feature. It is a zfs module parameter,
expressed in % of the current write size. This trims ahead of the
current write size. A minimum of 64MB will be trimmed. The default is 0
which disables TRIM on L2ARC as it can put significant stress to
underlying storage devices. To enable TRIM on L2ARC we set
l2arc_trim_ahead > 0.
We also implement TRIM of the whole cache device upon addition to a
pool, pool creation or when the header of the device is invalid upon
importing a pool or onlining a cache device. This is dependent on
l2arc_trim_ahead > 0. TRIM of the whole device is done with
TRIM_TYPE_MANUAL so that its status can be monitored by zpool status -t.
We save the TRIM state for the whole device and the time of completion
on-disk in the header, and restore these upon L2ARC rebuild so that
zpool status -t can correctly report them. Whole device TRIM is done
asynchronously so that the user can export of the pool or remove the
cache device while it is trimming (ie if it is too slow).
We do not TRIM the whole device if persistent L2ARC has been disabled by
l2arc_rebuild_enabled = 0 because we may not want to lose all cached
buffers (eg we may want to import the pool with
l2arc_rebuild_enabled = 0 only once because of memory pressure). If
persistent L2ARC has been disabled by setting the module parameter
l2arc_rebuild_blocks_min_l2size to a value greater than the size of the
cache device then the whole device is trimmed upon creation or import of
a pool if l2arc_trim_ahead > 0.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam D. Moss <c@yotes.com>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#9713Closes#9789Closes#10224
This commit makes the L2ARC persistent across reboots. We implement
a light-weight persistent L2ARC metadata structure that allows L2ARC
contents to be recovered after a reboot. This significantly eases the
impact a reboot has on read performance on systems with large caches.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Saso Kiselkov <skiselkov@gmail.com>
Co-authored-by: Jorgen Lundman <lundman@lundman.net>
Co-authored-by: George Amanakis <gamanakis@gmail.com>
Ported-by: Yuxuan Shui <yshuiv7@gmail.com>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#925Closes#1823Closes#2672Closes#3744Closes#9582
Linux changed the default max ARC size to 1/2 of physical memory to
deal with shortcomings of the Linux SLUB allocator. Other platforms
do not require the same logic.
Implement an arc_default_max() function to determine a default max ARC
size in platform code.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10155
For each WRITE record in the stream, `zfs receive` creates a DMU
transaction (`dmu_tx_create()`) and writes this block's data into the
object. If per-block overheads (as opposed to per-byte overheads)
dominate performance (as is often the case with small recordsize), the
per-dmu-transaction overheads can be significant. For example, in some
workloads the `receieve_writer` thread is 100% on CPU, and more than
half of its CPU time is in these per-tx routines (e.g.
dmu_tx_hold_write, dmu_tx_assign, dmu_tx_commit).
To improve performance of `zfs receive`, this commit batches WRITE
records which are to nearby offsets of the same object, and uses one DMU
transaction to write them all. By default the batch size is 1MB, which
for recordsize=8K reduces the number of DMU transactions by 128x for
full send streams (incrementals will depend on how "clumpy" the changed
blocks are).
This commit improves the performance of `dd if=stream | zfs recv`
from 78,800 blocks/sec to 98,100 blocks/sec (25% improvement).
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10099
Moving forward, we wish to use org.openzfs (no dash) rather than
org.open-zfs or org.zfsonlinux for feature GUIDs and property names.
The existing feature GUIDs cannot be changed.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#10003
The module parameter zfs_async_block_max_blocks limits the number of
blocks that can be freed by the background freeing of filesystems and
snapshots (from "zfs destroy"), in one TXG. This is useful when freeing
dedup blocks, becuase each zio_free() of a dedup block can require an
i/o to read the relevant part of the dedup table (DDT), and will also
dirty that block.
zfs_async_block_max_blocks is set to 100,000 by default. For the more
typical case where dedup is not used, this can have a negative
performance impact on the rate of background freeing (from "zfs
destroy"). For example, with recordsize=8k, and TXG's syncing once
every 5 seconds, we can free only 160MB of data per second, which may be
much less than the rate we can write data.
This change increases zfs_async_block_max_blocks to be unlimited by
default. To address the dedup freeing issue, a new tunable is
introduced, zfs_max_async_dedup_frees, which limits the number of
zio_free()'s of dedup blocks done by background destroys, per txg. The
default is 100,000 free's (same as the old zfs_async_block_max_blocks
default).
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10000
Implements the RAID-Z function using AltiVec SIMD.
This is basically the NEON code translated to AltiVec.
Note that the 'fletcher' algorithm requires 64-bits
operations, and the initial implementations of AltiVec
(PPC74xx a.k.a. G4, PPC970 a.k.a. G5) only has up to
32-bits operations, so no 'fletcher'.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.dolbeau@european-processor-initiative.eu>
Closes#9539
I ran a report against the output of `modinfo zfs.ko`. This commit adds
everything missing and corrects a few renamed module parameters.
Specifically:
* zfs_checksums_per second renamed in ad796b8a3
* vdev_ms_count_limit renamed in c853f382d
Also fixes some variable type inconsistencies (unsigned int => uint)
Reviewed-by: George Amanakis <gamanakis@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: DHE <git@dehacked.net>
Closes#9809
FreeBSD uses its own crypto framework in-kernel which, at this time,
has no EDONR implementation.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Allan Jude <allanjude@freebsd.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes#9664
As described in commit f81d5ef6 the zfs_vdev_elevator module
option is being removed. Users who require this functionality
should update their systems to set the disk scheduler using a
udev rule.
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #8664Closes#9417Closes#9609
It is much faster than AVX512F when byteswapping on Skylake-SP
and newer, as we can do the byteswap in a single vshufb instead
of many instructions.
Reviewed by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Chunwei Chen <tuxoko@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.dolbeau@atos.net>
Closes#9517
Originally the zfs_vdev_elevator module option was added as a
convenience so the requested elevator would be automatically set
on the underlying block devices. At the time this was simple
because the kernel provided an API function which did exactly this.
This API was then removed in the Linux 4.12 kernel which prompted
us to add compatibly code to set the elevator via a usermodehelper.
While well intentioned this introduced a bug which could cause a
system hang, that issue was subsequently fixed by commit 2a0d4188.
In order to avoid future bugs in this area, and to simplify the code,
this functionality is being deprecated. A console warning has been
added to notify any existing consumers and the documentation updated
accordingly. This option will remain for the lifetime of the 0.8.x
series for compatibility but if planned to be phased out of master.
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #8664Closes#9317
Currently the best way to wait for the completion of a long-running
operation in a pool, like a scrub or device removal, is to poll 'zpool
status' and parse its output, which is neither efficient nor convenient.
This change adds a 'wait' subcommand to the zpool command. When invoked,
'zpool wait' will block until a specified type of background activity
completes. Currently, this subcommand can wait for any of the following:
- Scrubs or resilvers to complete
- Devices to initialized
- Devices to be replaced
- Devices to be removed
- Checkpoints to be discarded
- Background freeing to complete
For example, a scrub that is in progress could be waited for by running
zpool wait -t scrub <pool>
This also adds a -w flag to the attach, checkpoint, initialize, replace,
remove, and scrub subcommands. When used, this flag makes the operations
kicked off by these subcommands synchronous instead of asynchronous.
This functionality is implemented using a new ioctl. The type of
activity to wait for is provided as input to the ioctl, and the ioctl
blocks until all activity of that type has completed. An ioctl was used
over other methods of kernel-userspace communiction primarily for the
sake of portability.
Porting Notes:
This is ported from Delphix OS change DLPX-44432. The following changes
were made while porting:
- Added ZoL-style ioctl input declaration.
- Reorganized error handling in zpool_initialize in libzfs to integrate
better with changes made for TRIM support.
- Fixed check for whether a checkpoint discard is in progress.
Previously it also waited if the pool had a checkpoint, instead of
just if a checkpoint was being discarded.
- Exposed zfs_initialize_chunk_size as a ZoL-style tunable.
- Updated more existing tests to make use of new 'zpool wait'
functionality, tests that don't exist in Delphix OS.
- Used existing ZoL tunable zfs_scan_suspend_progress, together with
zinject, in place of a new tunable zfs_scan_max_blks_per_txg.
- Added support for a non-integral interval argument to zpool wait.
Future work:
ZoL has support for trimming devices, which Delphix OS does not. In the
future, 'zpool wait' could be extended to add the ability to wait for
trim operations to complete.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
Closes#9162
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes#9233
With the other metaslab changes loaded onto a system, we can
significantly reduce the memory usage of each loaded metaslab and
unload them on demand if there is memory pressure. However, none
of those changes actually result in us keeping more metaslabs loaded.
If we don't keep more metaslabs loaded, we will still have to wait
for demand-loading to finish when no loaded metaslab can satisfy our
allocation, which can cause ZIL performance issues. In addition,
performance is traditionally measured by IOs per unit time, while
unloading is currently done on a txg-count basis. Txgs can take a
widely varying range of times, from tenths of a second to several
seconds. This can result in confusing, hard to predict behavior.
This change simply adds a time-based component to metaslab unloading.
A metaslab will remain loaded for one minute and 8 txgs (by default)
after it was last used, unless it is evicted due to memory pressure.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
External-issue: DLPX-65016
External-issue: DLPX-65047
Closes#9197
On systems with large amounts of storage and high fragmentation, a huge
amount of space can be used by storing metaslab range trees. Since
metaslabs are only unloaded during a txg sync, and only if they have
been inactive for 8 txgs, it is possible to get into a state where all
of the system's memory is consumed by range trees and metaslabs, and
txgs cannot sync. While ZFS knows how to evict ARC data when needed,
it has no such mechanism for range tree data. This can result in boot
hangs for some system configurations.
First, we add the ability to unload metaslabs outside of syncing
context. Second, we store a multilist of all loaded metaslabs, sorted
by their selection txg, so we can quickly identify the oldest
metaslabs. We use a multilist to reduce lock contention during heavy
write workloads. Finally, we add logic that will unload a metaslab
when we're loading a new metaslab, if we're using more than a certain
fraction of the available memory on range trees.
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#9128
When a pool is imported it will scan the pool to verify the integrity
of the data and metadata. The amount it scans will depend on the
import flags provided. On systems with small amounts of memory or
when importing a pool from the crash kernel, it's possible for
spa_load_verify to issue too many I/Os that it consumes all the memory
of the system resulting in an OOM message or a hang.
To prevent this, we limit the amount of memory that the initial pool
scan can consume. This change will, by default, use 1/16th of the ARC
for scan I/Os to prevent running the system out of memory during import.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: George Wilson george.wilson@delphix.com
External-issue: DLPX-65237
External-issue: DLPX-65238
Closes#9146
When we unload metaslabs today in ZFS, the cached max_size value is
discarded. We instead use the histogram to determine whether or not we
think we can satisfy an allocation from the metaslab. This can result in
situations where, if we're doing I/Os of a size not aligned to a
histogram bucket, a metaslab is loaded even though it cannot satisfy the
allocation we think it can. For example, a metaslab with 16 entries in
the 16k-32k bucket may have entirely 16kB entries. If we try to allocate
a 24kB buffer, we will load that metaslab because we think it should be
able to handle the allocation. Doing so is expensive in CPU time, disk
reads, and average IO latency. This is exacerbated if the write being
attempted is a sync write.
This change makes ZFS cache the max_size after the metaslab is
unloaded. If we ever get a free (or a coalesced group of frees) larger
than the max_size, we will update it. Otherwise, we leave it as is. When
attempting to allocate, we use the max_size as a lower bound, and
respect it unless we are in try_hard. However, we do age the max_size
out at some point, since we expect the actual max_size to increase as we
do more frees. A more sophisticated algorithm here might be helpful, but
this works reasonably well.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#9055
Update zpool-features.5 manpage to describe the log_spacemap feature.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#9096
Deleting a clone requires finding blocks are clone-only, not shared
with the snapshot. This was done by traversing the entire block tree
which results in a large performance penalty for sparsely
written clones.
This is new method keeps track of clone blocks when they are
modified in a "Livelist" so that, when it’s time to delete,
the clone-specific blocks are already at hand.
We see performance improvements because now deletion work is
proportional to the number of clone-modified blocks, not the size
of the original dataset.
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Sara Hartse <sara.hartse@delphix.com>
Closes#8416
= Motivation
At Delphix we've seen a lot of customer systems where fragmentation
is over 75% and random writes take a performance hit because a lot
of time is spend on I/Os that update on-disk space accounting metadata.
Specifically, we seen cases where 20% to 40% of sync time is spend
after sync pass 1 and ~30% of the I/Os on the system is spent updating
spacemaps.
The problem is that these pools have existed long enough that we've
touched almost every metaslab at least once, and random writes
scatter frees across all metaslabs every TXG, thus appending to
their spacemaps and resulting in many I/Os. To give an example,
assuming that every VDEV has 200 metaslabs and our writes fit within
a single spacemap block (generally 4K) we have 200 I/Os. Then if we
assume 2 levels of indirection, we need 400 additional I/Os and
since we are talking about metadata for which we keep 2 extra copies
for redundancy we need to triple that number, leading to a total of
1800 I/Os per VDEV every TXG.
We could try and decrease the number of metaslabs so we have less
I/Os per TXG but then each metaslab would cover a wider range on
disk and thus would take more time to be loaded in memory from disk.
In addition, after it's loaded, it's range tree would consume more
memory.
Another idea would be to just increase the spacemap block size
which would allow us to fit more entries within an I/O block
resulting in fewer I/Os per metaslab and a speedup in loading time.
The problem is still that we don't deal with the number of I/Os
going up as the number of metaslabs is increasing and the fact
is that we generally write a lot to a few metaslabs and a little
to the rest of them. Thus, just increasing the block size would
actually waste bandwidth because we won't be utilizing our bigger
block size.
= About this patch
This patch introduces the Log Spacemap project which provides the
solution to the above problem while taking into account all the
aforementioned tradeoffs. The details on how it achieves that can
be found in the references sections below and in the code (see
Big Theory Statement in spa_log_spacemap.c).
Even though the change is fairly constraint within the metaslab
and lower-level SPA codepaths, there is a side-change that is
user-facing. The change is that VDEV IDs from VDEV holes will no
longer be reused. To give some background and reasoning for this,
when a log device is removed and its VDEV structure was replaced
with a hole (or was compacted; if at the end of the vdev array),
its vdev_id could be reused by devices added after that. Now
with the pool-wide space maps recording the vdev ID, this behavior
can cause problems (e.g. is this entry referring to a segment in
the new vdev or the removed log?). Thus, to simplify things the
ID reuse behavior is gone and now vdev IDs for top-level vdevs
are truly unique within a pool.
= Testing
The illumos implementation of this feature has been used internally
for a year and has been in production for ~6 months. For this patch
specifically there don't seem to be any regressions introduced to
ZTS and I have been running zloop for a week without any related
problems.
= Performance Analysis (Linux Specific)
All performance results and analysis for illumos can be found in
the links of the references. Redoing the same experiments in Linux
gave similar results. Below are the specifics of the Linux run.
After the pool reached stable state the percentage of the time
spent in pass 1 per TXG was 64% on average for the stock bits
while the log spacemap bits stayed at 95% during the experiment
(graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png).
Sync times per TXG were 37.6 seconds on average for the stock
bits and 22.7 seconds for the log spacemap bits (related graph:
sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result
the log spacemap bits were able to push more TXGs, which is also
the reason why all graphs quantified per TXG have more entries for
the log spacemap bits.
Another interesting aspect in terms of txg syncs is that the stock
bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8,
and 20% reach 9. The log space map bits reached sync pass 4 in 79%
of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This
emphasizes the fact that not only we spend less time on metadata
but we also iterate less times to convergence in spa_sync() dirtying
objects.
[related graphs:
stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png
lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png]
Finally, the improvement in IOPs that the userland gains from the
change is approximately 40%. There is a consistent win in IOPS as
you can see from the graphs below but the absolute amount of
improvement that the log spacemap gives varies within each minute
interval.
sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png
sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png
= Porting to Other Platforms
For people that want to port this commit to other platforms below
is a list of ZoL commits that this patch depends on:
Make zdb results for checkpoint tests consistent
db587941c5
Update vdev_is_spacemap_addressable() for new spacemap encoding
419ba59145
Simplify spa_sync by breaking it up to smaller functions
8dc2197b7b
Factor metaslab_load_wait() in metaslab_load()
b194fab0fb
Rename range_tree_verify to range_tree_verify_not_present
df72b8bebe
Change target size of metaslabs from 256GB to 16GB
c853f382db
zdb -L should skip leak detection altogether
21e7cf5da8
vs_alloc can underflow in L2ARC vdevs
7558997d2f
Simplify log vdev removal code
6c926f426a
Get rid of space_map_update() for ms_synced_length
425d3237ee
Introduce auxiliary metaslab histograms
928e8ad47d
Error path in metaslab_load_impl() forgets to drop ms_sync_lock
8eef997679
= References
Background, Motivation, and Internals of the Feature
- OpenZFS 2017 Presentation:
youtu.be/jj2IxRkl5bQ
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project
Flushing Algorithm Internals & Performance Results
(Illumos Specific)
- Blogpost:
sdimitro.github.io/post/zfs-lsm-flushing/
- OpenZFS 2018 Presentation:
youtu.be/x6D2dHRjkxw
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm
Upstream Delphix Issues:
DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320
DLPX-63385
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8442
The full property name includes "delphix", not "delphxi".
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#8985
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#7958
If the zfs_remove_max_segment tunable is changed to be not a multiple of
the sector size, then the device removal code will malfunction and try
to create mappings that are smaller than one sector, leading to a panic.
On debug bits this assertion will fail in spa_vdev_copy_segment():
ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
On nondebug, the system panics with a stack like:
metaslab_free_concrete()
metaslab_free_impl()
metaslab_free_impl_cb()
vdev_indirect_remap()
free_from_removing_vdev()
metaslab_free_impl()
metaslab_free_dva()
metaslab_free()
Fortunately, the default for zfs_remove_max_segment is 1MB, so this
can't occur by default. We hit it during this test because
removal_remap.ksh changes zfs_remove_max_segment to 1KB. When testing on
4KB-sector disks, we hit the bug.
This change makes the zfs_remove_max_segment tunable more robust,
automatically rounding it up to a multiple of the sector size. We also
turn some key assertions into VERIFY's so that similar bugs would be
caught before they are encoded on disk (and thus avoid a
panic-reboot-loop).
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-61342
Closes#8893
Starting in sync pass 5 (zfs_sync_pass_dont_compress), we disable
compression (including of metadata). Ostensibly this helps the sync
passes to converge (i.e. for a sync pass to not need to allocate
anything because it is 100% overwrites).
However, in practice it increases the average number of sync passes,
because when we turn compression off, a lot of block's size will change
and thus we have to re-allocate (not overwrite) them. It also increases
the number of 128KB allocations (e.g. for indirect blocks and spacemaps)
because these will not be compressed. The 128K allocations are
especially detrimental to performance on highly fragmented systems,
which may have very few free segments of this size, and may need to load
new metaslabs to satisfy 128K allocations.
We should increase zfs_sync_pass_dont_compress. In practice on a highly
fragmented system we see a few 5-pass txg's, a tiny number of 6-pass
txg's, and no txg's with more than 6 passes.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-63431
Closes#8892
On fragmented pools with high-performance storage, the looping in
metaslab_block_picker() can become the performance-limiting bottleneck.
When looking for a larger block (e.g. a 128K block for the ZIL), we may
search through many free segments (up to hundreds of thousands) to find
one that is large enough to satisfy the allocation. This can take a long
time (up to dozens of ms), and is done while holding the ms_lock, which
other threads may spin waiting for.
When this performance problem is encountered, profiling will show
high CPU time in metaslab_block_picker, as well as in mutex_enter from
various callers.
The problem is very evident on a test system with a sync write workload
with 8K writes to a recordsize=8k filesystem, with 4TB of SSD storage,
84% full and 88% fragmented. It has also been observed on production
systems with 90TB of storage, 76% full and 87% fragmented.
The fix is to change metaslab_df_alloc() to search only up to 16MB from
the previous allocation (of this alignment). After that, we will pick a
segment that is of the exact size requested (or larger). This reduces
the number of iterations to a few hundred on fragmented pools (a ~100x
improvement).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-62324
Closes#8877
When iterating over a ZAP object, we're almost always certain to iterate
over the entire object. If there are multiple leaf blocks, we can
realize a performance win by issuing reads for all the leaf blocks in
parallel when the iteration begins.
For example, if we have 10,000 snapshots, "zfs destroy -nv
pool/fs@1%9999" can take 30 minutes when the cache is cold. This change
provides a >3x performance improvement, by issuing the reads for all ~64
blocks of each ZAP object in parallel.
Reviewed-by: Andreas Dilger <andreas.dilger@whamcloud.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58347
Closes#8862
We've observed that on some highly fragmented pools, most metaslab
allocations are small (~2-8KB), but there are some large, 128K
allocations. The large allocations are for ZIL blocks. If there is a
lot of fragmentation, the large allocations can be hard to satisfy.
The most common impact of this is that we need to check (and thus load)
lots of metaslabs from the ZIL allocation code path, causing sync writes
to wait for metaslabs to load, which can take a second or more. In the
worst case, we may not be able to satisfy the allocation, in which case
the ZIL will resort to txg_wait_synced() to ensure the change is on
disk.
To provide a workaround for this, this change adds a tunable that can
reduce the size of ZIL blocks.
External-issue: DLPX-61719
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#8865
Historically while doing performance testing we've noticed that IOPS
can be significantly reduced when all vdevs in the pool are hitting
the zfs_mg_fragmentation_threshold percentage. Specifically in a
hypothetical pool with two vdevs, what can happen is the following:
Vdev A would go above that threshold and only vdev B would be used.
Then vdev B would pass that threshold but vdev A would go below it
(we've been freeing from A to allocate to B). The allocations would
go back and forth utilizing one vdev at a time with IOPS taking a hit.
Empirically, we've seen that our vdev selection for allocations is
good enough that fragmentation increases uniformly across all vdevs
the majority of the time. Thus we set the threshold percentage high
enough to avoid hitting the speed bump on pools that are being pushed
to the edge. We effectively disable its effect in the majority of the
cases but we don't remove (at least for now) just in case we hit any
weird behavior in the future.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8859
Exported and documented a new module parameter.
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: DHE <git@dehacked.net>
Closes#8706
When receiving a DRR_OBJECT record the receive_object() function
needs to determine how to handle a spill block associated with the
object. It may need to be removed or kept depending on how the
object was modified at the source.
This determination is currently accomplished using a heuristic which
takes in to account the DRR_OBJECT record and the existing object
properties. This is a problem because there isn't quite enough
information available to do the right thing under all circumstances.
For example, when only the block size changes the spill block is
removed when it should be kept.
What's needed to resolve this is an additional flag in the DRR_OBJECT
which indicates if the object being received references a spill block.
The DRR_OBJECT_SPILL flag was added for this purpose. When set then
the object references a spill block and it must be kept. Either
it is update to date, or it will be replaced by a subsequent DRR_SPILL
record. Conversely, if the object being received doesn't reference
a spill block then any existing spill block should always be removed.
Since previous versions of ZFS do not understand this new flag
additional DRR_SPILL records will be inserted in to the stream.
This has the advantage of being fully backward compatible. Existing
ZFS systems receiving this stream will recreate the spill block if
it was incorrectly removed. Updated ZFS versions will correctly
ignore the additional spill blocks which can be identified by
checking for the DRR_SPILL_UNMODIFIED flag.
The small downside to this approach is that is may increase the size
of the stream and of the received snapshot on previous versions of
ZFS. Additionally, when receiving streams generated by previous
unpatched versions of ZFS spill blocks may still be lost.
OpenZFS-issue: https://www.illumos.org/issues/9952
FreeBSD-issue: https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=233277
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8668
As far as I know and can tell from testing, \fB\fB...\fR\fR is exactly
equivalent to \fB...\fR.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
The features are sorted in the en_US locale, not the C locale.
Specifically, that means that bookmark_v2 comes _after_ bookmarks.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
This command is being used to unindent, so it should be at the end of
each block. This is consistent with the other man pages.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
It is org.open-zfs:large_blocks (plural).
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
The first sentence of this commit comes from the wiki, and was
originally written by:
Rich Ercolani <rincebrain@gmail.com>
with changes by:
Tom Caputi <tcaputi@datto.com>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641Closes#8642
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
encryption depends on bookmark_v2.
bookmark_v2 depends on bookmarks.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
This needs to use tabs instead of spaces to display correctly (i.e. with
things lined up).
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
1. Support QAT when ZFS is root file-system:
When ZFS module is loaded before QAT started, the QAT can
be started again in post-process, e.g.:
echo 0 > /sys/module/zfs/parameters/zfs_qat_compress_disable
echo 0 > /sys/module/zfs/parameters/zfs_qat_encrypt_disable
echo 0 > /sys/module/zfs/parameters/zfs_qat_checksum_disable
2. Verify alder checksum of the de-compress result
3. Allocate Digest, IV and AAD buffer in physical contiguous
memory by QAT_PHYS_CONTIG_ALLOC.
4. Update the documentation for zfs_qat_compress_disable,
zfs_qat_checksum_disable, zfs_qat_encrypt_disable.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Weigang Li <weigang.li@intel.com>
Signed-off-by: Chengfeix Zhu <chengfeix.zhu@intel.com>
Closes#8323Closes#8610
zfs.8 correctly said that GRUB did not support them, but
zpool-features.5 said that "Booting off pools...is supported." Now,
zpool-features.5 discusses GRUB specifically and indicates its lack of
support for these features. Also, I have clarified the wording in both
places to indicate that the pool feature cannot be used. It's not a
filesystem dataset thing, but pool-wide.
I described this as "cannot be used". I think technically the feature
can be enabled, just not active. However, the effect is essentially the
same: you cannot enable those checksum algorithms on any dataset in the
pool, so you might as well not enable the feature (which is just
pointing a loaded gun at your foot). In the past, an argument could be
made that having all the features enabled was useful for simplicity, as
long as you didn't activate the GRUB-incompatible features, but that's
getting less and less realistic over time. A user can still do that,
but we should not encourage that.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8626Closes#8446
The old wording was effectively "You can not use this (except you can)",
which just seems confusing.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8626
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8626
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8626
This had a mix of command vs subcommand, quoted vs not quoted, and
bolded vs. not bolded command names.
Also, fix man page sections from 1M (Solaris) to 8 (Linux).
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8626
UNMAP/TRIM support is a frequently-requested feature to help
prevent performance from degrading on SSDs and on various other
SAN-like storage back-ends. By issuing UNMAP/TRIM commands for
sectors which are no longer allocated the underlying device can
often more efficiently manage itself.
This TRIM implementation is modeled on the `zpool initialize`
feature which writes a pattern to all unallocated space in the
pool. The new `zpool trim` command uses the same vdev_xlate()
code to calculate what sectors are unallocated, the same per-
vdev TRIM thread model and locking, and the same basic CLI for
a consistent user experience. The core difference is that
instead of writing a pattern it will issue UNMAP/TRIM commands
for those extents.
The zio pipeline was updated to accommodate this by adding a new
ZIO_TYPE_TRIM type and associated spa taskq. This new type makes
is straight forward to add the platform specific TRIM/UNMAP calls
to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are
handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs.
This makes it possible to largely avoid changing the pipieline,
one exception is that TRIM zio's may exceed the 16M block size
limit since they contain no data.
In addition to the manual `zpool trim` command, a background
automatic TRIM was added and is controlled by the 'autotrim'
property. It relies on the exact same infrastructure as the
manual TRIM. However, instead of relying on the extents in a
metaslab's ms_allocatable range tree, a ms_trim tree is kept
per metaslab. When 'autotrim=on', ranges added back to the
ms_allocatable tree are also added to the ms_free tree. The
ms_free tree is then periodically consumed by an autotrim
thread which systematically walks a top level vdev's metaslabs.
Since the automatic TRIM will skip ranges it considers too small
there is value in occasionally running a full `zpool trim`. This
may occur when the freed blocks are small and not enough time
was allowed to aggregate them. An automatic TRIM and a manual
`zpool trim` may be run concurrently, in which case the automatic
TRIM will yield to the manual TRIM.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Contributions-by: Tim Chase <tim@chase2k.com>
Contributions-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8419Closes#598
When Multihost is enabled, and a pool is imported, uberblock writes
include ub_mmp_delay to allow an importing node to calculate the
duration of an activity test. This value, is not enough information.
If zfs_multihost_fail_intervals > 0 on the node with the pool imported,
the safe minimum duration of the activity test is well defined, but does
not depend on ub_mmp_delay:
zfs_multihost_fail_intervals * zfs_multihost_interval
and if zfs_multihost_fail_intervals == 0 on that node, there is no such
well defined safe duration, but the importing host cannot tell whether
mmp_delay is high due to I/O delays, or due to a very large
zfs_multihost_interval setting on the host which last imported the pool.
As a result, it may use a far longer period for the activity test than
is necessary.
This patch renames ub_mmp_sequence to ub_mmp_config and uses it to
record the zfs_multihost_interval and zfs_multihost_fail_intervals
values, as well as the mmp sequence. This allows a shorter activity
test duration to be calculated by the importing host in most situations.
These values are also added to the multihost_history kstat records.
It calculates the activity test duration differently depending on
whether the new fields are present or not; for importing pools with
only ub_mmp_delay, it uses
(zfs_multihost_interval + ub_mmp_delay) * zfs_multihost_import_intervals
Which results in an activity test duration less sensitive to the leaf
count.
In addition, it makes a few other improvements:
* It updates the "sequence" part of ub_mmp_config when MMP writes
in between syncs occur. This allows an importing host to detect MMP
on the remote host sooner, when the pool is idle, as it is not limited
to the granularity of ub_timestamp (1 second).
* It issues writes immediately when zfs_multihost_interval is changed
so remote hosts see the updated value as soon as possible.
* It fixes a bug where setting zfs_multihost_fail_intervals = 1 results
in immediate pool suspension.
* Update tests to verify activity check duration is based on recorded
tunable values, not tunable values on importing host.
* Update tests to verify the expected number of uberblocks have valid
MMP fields - fail_intervals, mmp_interval, mmp_seq (sequence number),
that sequence number is incrementing, and that uberblock values match
tunable settings.
Reviewed-by: Andreas Dilger <andreas.dilger@whamcloud.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes#7842
Before sequential scrub patches ZFS never aggregated I/Os above 128KB.
Sequential scrub bumped that to 1MB, supposedly to reduce number of
head seeks for spinning disks. But for SSDs it makes little to no
sense, especially on FreeBSD, where due to MAXPHYS limitation device
will likely still see bunch of 128KB I/Os instead of one large.
Having more strict aggregation limit for SSDs allows to avoid
allocation of large memory buffer and copy to/from it, that is a
serious problem when throughput reaches gigabytes per second.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#8494