Commit Graph

10 Commits

Author SHA1 Message Date
Matthew Macy
22dcf89181
Add missed thread_exit() to vdev_{autotrim,rebuild}_thread
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #10668
2020-08-05 10:17:07 -07:00
Matthew Macy
27d96d2254
Rename refcount.h to zfs_refcount.h
Renamed to avoid conflicting with refcount.h when a different
implementation is already provided by the platform.

Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #10620
2020-07-29 16:35:33 -07:00
George Amanakis
b7654bd794
Trim L2ARC
The l2arc_evict() function is responsible for evicting buffers which
reference the next bytes of the L2ARC device to be overwritten. Teach
this function to additionally TRIM that vdev space before it is
overwritten if the device has been filled with data. This is done by
vdev_trim_simple() which trims by issuing a new type of TRIM,
TRIM_TYPE_SIMPLE.

We also implement a "Trim Ahead" feature. It is a zfs module parameter,
expressed in % of the current write size. This trims ahead of the
current write size. A minimum of 64MB will be trimmed. The default is 0
which disables TRIM on L2ARC as it can put significant stress to
underlying storage devices. To enable TRIM on L2ARC we set
l2arc_trim_ahead > 0.

We also implement TRIM of the whole cache device upon addition to a
pool, pool creation or when the header of the device is invalid upon
importing a pool or onlining a cache device. This is dependent on
l2arc_trim_ahead > 0. TRIM of the whole device is done with
TRIM_TYPE_MANUAL so that its status can be monitored by zpool status -t.
We save the TRIM state for the whole device and the time of completion
on-disk in the header, and restore these upon L2ARC rebuild so that
zpool status -t can correctly report them. Whole device TRIM is done
asynchronously so that the user can export of the pool or remove the
cache device while it is trimming (ie if it is too slow).

We do not TRIM the whole device if persistent L2ARC has been disabled by
l2arc_rebuild_enabled = 0 because we may not want to lose all cached
buffers (eg we may want to import the pool with
l2arc_rebuild_enabled = 0 only once because of memory pressure). If
persistent L2ARC has been disabled by setting the module parameter
l2arc_rebuild_blocks_min_l2size to a value greater than the size of the
cache device then the whole device is trimmed upon creation or import of
a pool if l2arc_trim_ahead > 0.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam D. Moss <c@yotes.com>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes #9713
Closes #9789 
Closes #10224
2020-06-09 10:15:08 -07:00
Jorgen Lundman
eeb8fae9c7
Upstream: add missing thread_exit()
Undo FreeBSD wrapper for thread_create() added to call thread_exit.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Closes #10314
2020-05-14 15:58:09 -07:00
Brian Behlendorf
2288d41968
Add trim support to zpool wait
Manual trims fall into the category of long-running pool activities
which people might want to wait synchronously for. This change adds
support to 'zpool wait' for waiting for manual trim operations to
complete. It also adds a '-w' flag to 'zpool trim' which can be used to
turn 'zpool trim' into a synchronous operation.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
Closes #10071
2020-03-04 15:07:11 -08:00
Brian Behlendorf
2c3a83701d Linux 5.6 compat: time_t
As part of the Linux kernel's y2038 changes the time_t type has been
fully retired.  Callers are now required to use the time64_t type.

Rather than move to the new type, I've removed the few remaining
places where a time_t is used in the kernel code.  They've been
replaced with a uint64_t which is already how ZFS internally
handled these values.

Going forward we should work towards updating the remaining user
space time_t consumers to the 64-bit interfaces.

Reviewed-by: Matthew Macy <mmacy@freebsd.org>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10052
Closes #10064
2020-02-27 09:31:02 -08:00
Paul Dagnelie
ca5777793e Reduce loaded range tree memory usage
This patch implements a new tree structure for ZFS, and uses it to 
store range trees more efficiently.

The new structure is approximately a B-tree, though there are some 
small differences from the usual characterizations. The tree has core 
nodes and leaf nodes; each contain data elements, which the elements 
in the core nodes acting as separators between its children. The 
difference between core and leaf nodes is that the core nodes have an 
array of children, while leaf nodes don't. Every node in the tree may 
be only partially full; in most cases, they are all at least 50% full 
(in terms of element count) except for the root node, which can be 
less full. Underfull nodes will steal from their neighbors or merge to 
remain full enough, while overfull nodes will split in two. The data 
elements are contained in tree-controlled buffers; they are copied 
into these on insertion, and overwritten on deletion. This means that 
the elements are not independently allocated, which reduces overhead, 
but also means they can't be shared between trees (and also that 
pointers to them are only valid until a side-effectful tree operation 
occurs). The overhead varies based on how dense the tree is, but is 
usually on the order of about 50% of the element size; the per-node 
overheads are very small, and so don't make a significant difference. 
The trees can accept arbitrary records; they accept a size and a 
comparator to allow them to be used for a variety of purposes.

The new trees replace the AVL trees used in the range trees today. 
Currently, the range_seg_t structure contains three 8 byte integers 
of payload and two 24 byte avl_tree_node_ts to handle its storage in 
both an offset-sorted tree and a size-sorted tree (total size: 64 
bytes). In the new model, the range seg structures are usually two 4 
byte integers, but a separate one needs to exist for the size-sorted 
and offset-sorted tree. Between the raw size, the 50% overhead, and 
the double storage, the new btrees are expected to use 8*1.5*2 = 24 
bytes per record, or 33.3% as much memory as the AVL trees (this is 
for the purposes of storing metaslab range trees; for other purposes, 
like scrubs, they use ~50% as much memory).

We reduced the size of the payload in the range segments by teaching 
range trees about starting offsets and shifts; since metaslabs have a 
fixed starting offset, and they all operate in terms of disk sectors, 
we can store the ranges using 4-byte integers as long as the size of 
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle 
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not 
anticipate disks of this size in the near future, there should be 
almost no cases where metaslabs need 64-byte integers to store their 
ranges. We do still have the capability to store 64-byte integer ranges 
to account for cases where we are storing per-vdev (or per-dnode) trees, 
which could reasonably go above the limits discussed. We also do not 
store fill information in the compact version of the node, since it 
is only used for sorted scrub.

We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than 
they are for the avl tree, remove usually requires a find operation, 
while in the AVL tree model the element itself suffices. Some clever 
changes actually caused an overall speedup in metaslab loading; we use 
approximately 40% less cpu to load metaslabs in our tests on Illumos.

Another memory and performance optimization was achieved by changing 
what is stored in the size-sorted trees. When a disk is heavily 
fragmented, the df algorithm used by default in ZFS will almost always 
find a number of small regions in its initial cursor-based search; it 
will usually only fall back to the size-sorted tree to find larger 
regions. If we increase the size of the cursor-based search slightly, 
and don't store segments that are smaller than a tunable size floor 
in the size-sorted tree, we can further cut memory usage down to 
below 20% of what the AVL trees store. This also results in further 
reductions in CPU time spent loading metaslabs.

The 16KiB size floor was chosen because it results in substantial memory 
usage reduction while not usually resulting in situations where we can't 
find an appropriate chunk with the cursor and are forced to use an 
oversized chunk from the size-sorted tree. In addition, even if we do 
have to use an oversized chunk from the size-sorted tree, the chunk 
would be too small to use for ZIL allocations, so it isn't as big of a 
loss as it might otherwise be. And often, more small allocations will 
follow the initial one, and the cursor search will now find the 
remainder of the chunk we didn't use all of and use it for subsequent 
allocations. Practical testing has shown little or no change in 
fragmentation as a result of this change.

If the size-sorted tree becomes empty while the offset sorted one still 
has entries, it will load all the entries from the offset sorted tree 
and disregard the size floor until it is unloaded again. This operation 
occurs rarely with the default setting, only on incredibly thoroughly 
fragmented pools.

There are some other small changes to zdb to teach it to handle btrees, 
but nothing major.
                                           
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy seb@delphix.com
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9181
2019-10-09 10:36:03 -07:00
Matthew Macy
03fdcb9adc Make module tunables cross platform
Adds ZFS_MODULE_PARAM to abstract module parameter
setting to operating systems other than Linux.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes #9230
2019-09-05 14:49:49 -07:00
Paul Dagnelie
f09fda5071 Cap metaslab memory usage
On systems with large amounts of storage and high fragmentation, a huge 
amount of space can be used by storing metaslab range trees. Since 
metaslabs are only unloaded during a txg sync, and only if they have 
been inactive for 8 txgs, it is possible to get into a state where all 
of the system's memory is consumed by range trees and metaslabs, and 
txgs cannot sync. While ZFS knows how to evict ARC data when needed, 
it has no such mechanism for range tree data. This can result in boot 
hangs for some system configurations.

First, we add the ability to unload metaslabs outside of syncing 
context. Second, we store a multilist of all loaded metaslabs, sorted 
by their selection txg, so we can quickly identify the oldest 
metaslabs.  We use a multilist to reduce lock contention during heavy 
write workloads. Finally, we add logic that will unload a metaslab 
when we're loading a new metaslab, if we're using more than a certain 
fraction of the available memory on range trees.

Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9128
2019-08-16 09:08:21 -06:00
Brian Behlendorf
1b939560be
Add TRIM support
UNMAP/TRIM support is a frequently-requested feature to help
prevent performance from degrading on SSDs and on various other
SAN-like storage back-ends.  By issuing UNMAP/TRIM commands for
sectors which are no longer allocated the underlying device can
often more efficiently manage itself.

This TRIM implementation is modeled on the `zpool initialize`
feature which writes a pattern to all unallocated space in the
pool.  The new `zpool trim` command uses the same vdev_xlate()
code to calculate what sectors are unallocated, the same per-
vdev TRIM thread model and locking, and the same basic CLI for
a consistent user experience.  The core difference is that
instead of writing a pattern it will issue UNMAP/TRIM commands
for those extents.

The zio pipeline was updated to accommodate this by adding a new
ZIO_TYPE_TRIM type and associated spa taskq.  This new type makes
is straight forward to add the platform specific TRIM/UNMAP calls
to vdev_disk.c and vdev_file.c.  These new ZIO_TYPE_TRIM zios are
handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs.
This makes it possible to largely avoid changing the pipieline,
one exception is that TRIM zio's may exceed the 16M block size
limit since they contain no data.

In addition to the manual `zpool trim` command, a background
automatic TRIM was added and is controlled by the 'autotrim'
property.  It relies on the exact same infrastructure as the
manual TRIM.  However, instead of relying on the extents in a
metaslab's ms_allocatable range tree, a ms_trim tree is kept
per metaslab.  When 'autotrim=on', ranges added back to the
ms_allocatable tree are also added to the ms_free tree.  The
ms_free tree is then periodically consumed by an autotrim
thread which systematically walks a top level vdev's metaslabs.

Since the automatic TRIM will skip ranges it considers too small
there is value in occasionally running a full `zpool trim`.  This
may occur when the freed blocks are small and not enough time
was allowed to aggregate them.  An automatic TRIM and a manual
`zpool trim` may be run concurrently, in which case the automatic
TRIM will yield to the manual TRIM.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Contributions-by: Tim Chase <tim@chase2k.com>
Contributions-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8419 
Closes #598
2019-03-29 09:13:20 -07:00