Scatter ABD's are allocated from a number of pages. In contrast to
linear ABD's, these pages are disjoint in the kernel's virtual address
space, so they can't be accessed as a contiguous buffer. Therefore
routines that need a linear buffer (e.g. abd_borrow_buf() and friends)
must allocate a separate linear buffer (with zio_buf_alloc()), and copy
the contents of the pages to/from the linear buffer. This can have a
measurable performance overhead on some workloads.
https://github.com/zfsonlinux/zfs/commit/87c25d567fb7969b44c7d8af63990e
("abd_alloc should use scatter for >1K allocations") increased the use
of scatter ABD's, specifically switching 1.5K through 4K (inclusive)
buffers from linear to scatter. For workloads that access blocks whose
compressed sizes are in this range, that commit introduced an additional
copy into the read code path. For example, the
sequential_reads_arc_cached tests in the test suite were reduced by
around 5% (this is doing reads of 8K-logical blocks, compressed to 3K,
which are cached in the ARC).
This commit treats single-chunk scattered buffers as linear buffers,
because they are contiguous in the kernel's virtual address space.
All single-page (4K) ABD's can be represented this way. Some multi-page
ABD's can also be represented this way, if we were able to allocate a
single "chunk" (higher-order "page" which represents a power-of-2 series
of physically-contiguous pages). This is often the case for 2-page (8K)
ABD's.
Representing a single-entry scatter ABD as a linear ABD has the
performance advantage of avoiding the copy (and allocation) in
abd_borrow_buf_copy / abd_return_buf_copy. A performance increase of
around 5% has been observed for ARC-cached reads (of small blocks which
can take advantage of this), fixing the regression introduced by
87c25d567.
Note that this optimization is only possible because all physical memory
is always mapped into the kernel's address space. This is not the case
for HIGHMEM pages, so the optimization can not be made on 32-bit
systems.
Reviewed-by: Chunwei Chen <tuxoko@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#8580
torvalds/linux@59b57717f ("blkcg: delay blkg destruction until
after writeback has finished") added a refcount_t to the blkcg
structure. Due to the refcount_t compatibility code, zfs_refcount_t
was used by mistake.
Resolve this by removing the compatibility code and replacing the
occurrences of refcount_t with zfs_refcount_t.
Reviewed-by: Franz Pletz <fpletz@fnordicwalking.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Schumacher <timschumi@gmx.de>
Closes#7885Closes#7932
Minimal changes required to integrate the SPL sources in to the
ZFS repository build infrastructure and packaging.
Build system and packaging:
* Renamed SPL_* autoconf m4 macros to ZFS_*.
* Removed redundant SPL_* autoconf m4 macros.
* Updated the RPM spec files to remove SPL package dependency.
* The zfs package obsoletes the spl package, and the zfs-kmod
package obsoletes the spl-kmod package.
* The zfs-kmod-devel* packages were updated to add compatibility
symlinks under /usr/src/spl-x.y.z until all dependent packages
can be updated. They will be removed in a future release.
* Updated copy-builtin script for in-kernel builds.
* Updated DKMS package to include the spl.ko.
* Updated stale AUTHORS file to include all contributors.
* Updated stale COPYRIGHT and included the SPL as an exception.
* Renamed README.markdown to README.md
* Renamed OPENSOLARIS.LICENSE to LICENSE.
* Renamed DISCLAIMER to NOTICE.
Required code changes:
* Removed redundant HAVE_SPL macro.
* Removed _BOOT from nvpairs since it doesn't apply for Linux.
* Initial header cleanup (removal of empty headers, refactoring).
* Remove SPL repository clone/build from zimport.sh.
* Use of DEFINE_RATELIMIT_STATE and DEFINE_SPINLOCK removed due
to build issues when forcing C99 compilation.
* Replaced legacy ACCESS_ONCE with READ_ONCE.
* Include needed headers for `current` and `EXPORT_SYMBOL`.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
TEST_ZIMPORT_SKIP="yes"
Closes#7556
* Convert ABD to use the Linux Kernel scatterlist implementation
instead of the hand rolled one from illumos.
* Scatter ABDs are preferentially populated with higher order
compound pages from a single zone. Allocation size is
progressively decreased until it can be satisfied without
performing reclaim or compaction.
* An alternate page allocator is provided for kernels older
than 3.6 and for CONFIG_HIGHMEM systems. This allocator
is designed as a fallback for maximum compatibility.
* Extended abdstats to provide visibility in the the allocator.
* Add cached value for PAGESIZE in userspace.
Contributions-by:
Chunwei Chen <david.chen@osnexus.com>
Gvozden Neskovic <neskovic@gmail.com>
Jinshan Xiong <jinshan.xiong@intel.com>
Isaac Huang <he.huang@intel.com>
David Quigley <david.quigley@intel.com>
Brian Behlendorf <behlendorf1@llnl.gov>
* userspace: aligned buffers. Minimum of 32B alignment is
needed for AVX2. Kernel buffers are aligned 512B or more.
* add abd_get_offset_size() interface
* abd_iter_map(): fix calculation of iter_mapsize
* add abd_raidz_gen_iterate() and abd_raidz_rec_iterate()
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>