Commit Graph

101 Commits

Author SHA1 Message Date
Brian Atkinson
b4e4cbeb20
Always validate checksums for Direct I/O reads
This fixes an oversight in the Direct I/O PR. There is nothing that
stops a process from manipulating the contents of a buffer for a
Direct I/O read while the I/O is in flight. This can lead checksum
verify failures. However, the disk contents are still correct, and this
would lead to false reporting of checksum validation failures.

To remedy this, all Direct I/O reads that have a checksum verification
failure are treated as suspicious. In the event a checksum validation
failure occurs for a Direct I/O read, then the I/O request will be
reissued though the ARC. This allows for actual validation to happen and
removes any possibility of the buffer being manipulated after the I/O
has been issued.

Just as with Direct I/O write checksum validation failures, Direct I/O
read checksum validation failures are reported though zpool status -d in
the DIO column. Also the zevent has been updated to have both:
1. dio_verify_wr -> Checksum verification failure for writes
2. dio_verify_rd -> Checksum verification failure for reads.
This allows for determining what I/O operation was the culprit for the
checksum verification failure. All DIO errors are reported only on the
top-level VDEV.

Even though FreeBSD can write protect pages (stable pages) it still has
the same issue as Linux with Direct I/O reads.

This commit updates the following:
1. Propogates checksum failures for reads all the way up to the
   top-level VDEV.
2. Reports errors through zpool status -d as DIO.
3. Has two zevents for checksum verify errors with Direct I/O. One for
   read and one for write.
4. Updates FreeBSD ABD code to also check for ABD_FLAG_FROM_PAGES and
   handle ABD buffer contents validation the same as Linux.
5. Updated manipulate_user_buffer.c to also manipulate a buffer while a
   Direct I/O read is taking place.
6. Adds a new ZTS test case dio_read_verify that stress tests the new
   code.
7. Updated man pages.
8. Added an IMPLY statement to zio_checksum_verify() to make sure that
   Direct I/O reads are not issued as speculative.
9. Removed self healing through mirror, raidz, and dRAID VDEVs for
   Direct I/O reads.

This issue was first observed when installing a Windows 11 VM on a ZFS
dataset with the dataset property direct set to always. The zpool
devices would report checksum failures, but running a subsequent zpool
scrub would not repair any data and report no errors.

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Closes #16598
2024-10-09 12:28:08 -07:00
George Melikov
b32d48a625 ZLE compression: don't use BPE_PAYLOAD_SIZE
ZLE compressor needs additional bytes to process
d_len argument efficiently.
Don't use BPE_PAYLOAD_SIZE as d_len with it
before we rework zle compressor somehow.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: George Melikov <mail@gmelikov.ru>
Closes #9416
2024-09-19 17:24:51 -07:00
George Melikov
522f2629c8 zio_compress: introduce max size threshold
Now default compression is lz4, which can stop
compression process by itself on incompressible data.
If there are additional size checks -
we will only make our compressratio worse.

New usable compression thresholds are:
- less than BPE_PAYLOAD_SIZE (embedded_data feature);
- at least one saved sector.

Old 12.5% threshold is left to minimize affect
on existing user expectations of CPU utilization.

If data wasn't compressed - it will be saved as
ZIO_COMPRESS_OFF, so if we really need to recompress
data without ashift info and check anything -
we can just compress it with zero threshold.
So, we don't need a new feature flag here!

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: George Melikov <mail@gmelikov.ru>
Closes #9416
2024-09-19 17:23:58 -07:00
Brian Atkinson
a10e552b99
Adding Direct IO Support
Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads.

O_DIRECT support in ZFS will always ensure there is coherency between
buffered and O_DIRECT IO requests. This ensures that all IO requests,
whether buffered or direct, will see the same file contents at all
times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While
data is written directly to VDEV disks, metadata will not be synced
until the associated  TXG is synced.
For both O_DIRECT read and write request the offset and request sizes,
at a minimum, must be PAGE_SIZE aligned. In the event they are not,
then EINVAL is returned unless the direct property is set to always (see
below).

For O_DIRECT writes:
The request also must be block aligned (recordsize) or the write
request will take the normal (buffered) write path. In the event that
request is block aligned and a cached copy of the buffer in the ARC,
then it will be discarded from the ARC forcing all further reads to
retrieve the data from disk.

For O_DIRECT reads:
The only alignment restrictions are PAGE_SIZE alignment. In the event
that the requested data is in buffered (in the ARC) it will just be
copied from the ARC into the user buffer.

For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in
the event that file contents are mmap'ed. In this case, all requests
that are at least PAGE_SIZE aligned will just fall back to the buffered
paths. If the request however is not PAGE_SIZE aligned, EINVAL will
be returned as always regardless if the file's contents are mmap'ed.

Since O_DIRECT writes go through the normal ZIO pipeline, the
following operations are supported just as with normal buffered writes:
Checksum
Compression
Encryption
Erasure Coding
There is one caveat for the data integrity of O_DIRECT writes that is
distinct for each of the OS's supported by ZFS.
FreeBSD - FreeBSD is able to place user pages under write protection so
          any data in the user buffers and written directly down to the
	  VDEV disks is guaranteed to not change. There is no concern
	  with data integrity and O_DIRECT writes.
Linux - Linux is not able to place anonymous user pages under write
        protection. Because of this, if the user decides to manipulate
	the page contents while the write operation is occurring, data
	integrity can not be guaranteed. However, there is a module
	parameter `zfs_vdev_direct_write_verify` that controls the
	if a O_DIRECT writes that can occur to a top-level VDEV before
	a checksum verify is run before the contents of the I/O buffer
        are committed to disk. In the event of a checksum verification
	failure the write will return EIO. The number of O_DIRECT write
	checksum verification errors can be observed by doing
	`zpool status -d`, which will list all verification errors that
	have occurred on a top-level VDEV. Along with `zpool status`, a
	ZED event will be issues as `dio_verify` when a checksum
	verification error occurs.

ZVOLs and dedup is not currently supported with Direct I/O.

A new dataset property `direct` has been added with the following 3
allowable values:
disabled - Accepts O_DIRECT flag, but silently ignores it and treats
	   the request as a buffered IO request.
standard - Follows the alignment restrictions  outlined above for
	   write/read IO requests when the O_DIRECT flag is used.
always   - Treats every write/read IO request as though it passed
           O_DIRECT and will do O_DIRECT if the alignment restrictions
	   are met otherwise will redirect through the ARC. This
	   property will not allow a request to fail.

There is also a module parameter zfs_dio_enabled that can be used to
force all reads and writes through the ARC. By setting this module
parameter to 0, it mimics as if the  direct dataset property is set to
disabled.

Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Co-authored-by: Mark Maybee <mark.maybee@delphix.com>
Co-authored-by: Matt Macy <mmacy@FreeBSD.org>
Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov>
Closes #10018
2024-09-14 13:47:59 -07:00
Rob Norris
82ff9aafd6 value strings: pretty printers for flags and enums
This adds zfs_valstr, a collection of pretty printers for bitfields and
enums. These are useful in debugging, logging and other display contexts
where raw values are difficult for the untrained (or even trained!) eye
to decipher.

Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
2024-09-05 13:40:05 -07:00
Rob Norris
d54d0fff39 dnode: allow storage class to be overridden by object type
spa_preferred_class() selects a storage class based on (among other
things) the DMU object type. This only works for old-style object types
that match only one specific kind of thing. For DMU_OTN_ types we need
another way to signal the storage class.

This commit allows the object type to be overridden in the IO policy for
the purposes of choosing a storage class. It then adds the ability to
set the storage type on a dnode hold, such that all writes generated
under that hold will get it.

This method has two shortcomings:

- it would be better if we could "name" a set of storage class
  preferences rather than it being implied by the object type.
- it would be better if this info were stored in the dnode on disk.

In the absence of those things, this seems like the smallest possible
change.

Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes #15894
2024-07-29 17:05:41 -07:00
Alexander Motin
645b833079
Improve write issue taskqs utilization
- Reduce number of allocators on small system down to one per 4
CPU cores, keeping maximum at 4 on 16+ core systems. Small systems
should not have the lock contention multiple allocators supposed
to solve, while having several metaslabs open and modified each
TXG is not free.
 - Reduce number of write issue taskqs down to one per 16 CPU
cores and an integer fraction of number of allocators.  On mid-
sized systems, where multiple allocators already make sense, too
many write issue taskqs may reduce write speed on single-file
workloads, since single file is handled by only one taskq to
reduce fragmentation. On large systems, that can actually benefit
from many taskq's better IOPS, the bottleneck is less important,
since in worst case there will be at least 16 cores to handle it.
 - Distribute dnodes between allocators (and taskqs) in a round-
robin fashion instead of relying on sync taskqs to be balanced.
The last is not guarantied and may depend on scheduling.
 - Remove io_wr_iss_tq from struct zio.  io_allocator is enough.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #16130
2024-05-01 11:07:20 -07:00
George Wilson
c183d164aa
Parallel pool import
This commit allow spa_load() to drop the spa_namespace_lock so
that imports can happen concurrently. Prior to dropping the
spa_namespace_lock, the import logic will set the spa_load_thread
value to track the thread which is doing the import.

Consumers of spa_lookup() retain the same behavior by blocking
when either a thread is holding the spa_namespace_lock or the
spa_load_thread value is set. This will ensure that critical
concurrent operations cannot take place while a pool is being
imported.

The zpool command is also enhanced to provide multi-threaded support
when invoking zpool import -a.

Lastly, zinject provides a mechanism to insert artificial delays
when importing a pool and new zfs tests are added to verify parallel
import functionality.

Contributions-by: Don Brady <don.brady@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Wilson <gwilson@delphix.com>
Closes #16093
2024-04-22 09:42:38 -07:00
Rob Norris
c9c838aa1f zio: remove io_cmd and DKIOCFLUSHWRITECACHE
There's no other options, so we can just always assume its a flush.

Includes some light refactoring where a switch statement was doing
control flow that no longer works.

Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes #16064
2024-04-11 17:17:11 -07:00
Rob Norris
cac416f106 zio: remove zio_ioctl()
It only had one user, zio_flush(), and there are no other vdev ioctls
anyway.

Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes #16064
2024-04-11 17:16:46 -07:00
ednadolski-ix
3bd4df3841
Improve ZFS objset sync parallelism
As part of transaction group commit, dsl_pool_sync() sequentially calls
dsl_dataset_sync() for each dirty dataset, which subsequently calls
dmu_objset_sync().  dmu_objset_sync() in turn uses up to 75% of CPU
cores to run sync_dnodes_task() in taskq threads to sync the dirty
dnodes (files).

There are two problems:

1. Each ZVOL in a pool is a separate dataset/objset having a single
   dnode.  This means the objsets are synchronized serially, which
   leads to a bottleneck of ~330K blocks written per second per pool.

2. In the case of multiple dirty dnodes/files on a dataset/objset on a
   big system they will be sync'd in parallel taskq threads. However,
   it is inefficient to to use 75% of CPU cores of a big system to do
   that, because of (a) bottlenecks on a single write issue taskq, and
   (b) allocation throttling.  In addition, if not for the allocation
   throttling sorting write requests by bookmarks (logical address),
   writes for different files may reach space allocators interleaved,
   leading to unwanted fragmentation.

The solution to both problems is to always sync no more and (if
possible) no fewer dnodes at the same time than there are allocators
the pool.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Edmund Nadolski <edmund.nadolski@ixsystems.com>
Closes #15197
2023-11-06 10:38:42 -08:00
Alexander Motin
b22bab2547
Remove fastwrite mechanism.
Fastwrite was introduced many years ago to improve ZIL writes spread
between multiple top-level vdevs by tracking number of allocated but
not written blocks and choosing vdev with smaller count.  It suposed
to reduce ZIL knowledge about allocation, but actually made ZIL to
even more actively report allocation code about the allocations,
complicating both ZIL and metaslabs code.

On top of that, it seems ZIO_FLAG_FASTWRITE setting in dmu_sync()
was lost many years ago, that was one of the declared benefits. Plus
introduction of embedded log metaslab class solved another problem
with allocation rotor accounting both normal and log allocations,
since in most cases those are now in different metaslab classes.

After all that, I'd prefer to simplify already too complicated ZIL,
ZIO and metaslab code if the benefit of complexity is not obvious.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #15107
2023-07-28 13:30:33 -07:00
Alexander Motin
b4a0873092
Some ZIO micro-optimizations.
- Pack struct zio_prop by 4 bytes from 84 to 80.
 - Skip new child ZIO locking while linking to parent.  The newly
allocated ZIO is not externally visible yet, so nobody should care.
 - Skip io_bp_copy writes when not used (write && non-debug).

Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #14985
2023-06-30 08:54:00 -07:00
Alexander Motin
8469b5aac0
Another set of vdev queue optimizations.
Switch FIFO queues (SYNC/TRIM) and active queue of vdev queue from
time-sorted AVL-trees to simple lists.  AVL-trees are too expensive
for such a simple task.  To change I/O priority without searching
through the trees, add io_queue_state field to struct zio.

To not check number of queued I/Os for each priority add vq_cqueued
bitmap to struct vdev_queue.  Update it when adding/removing I/Os.
Make vq_cactive a separate array instead of struct vdev_queue_class
member.  Together those allow to avoid lots of cache misses when
looking for work in vdev_queue_class_to_issue().

Introduce deadline of ~0.5s for LBA-sorted queues.  Before this I
saw some I/Os waiting in a queue for up to 8 seconds and possibly
more due to starvation.  With this change I no longer see it.  I
had to slightly more complicate the comparison function, but since
it uses all the same cache lines the difference is minimal.  For a
sequential I/Os the new code in vdev_queue_io_to_issue() actually
often uses more simple avl_first(), falling back to avl_find() and
avl_nearest() only when needed.

Arrange members in struct zio to access only one cache line when
searching through vdev queues.  While there, remove io_alloc_node,
reusing the io_queue_node instead.  Those two are never used same
time.

Remove zfs_vdev_aggregate_trim parameter.  It was disabled for 4
years since implemented, while still wasted time maintaining the
offset-sorted tree of TRIM requests.  Just remove the tree.

Remove locking from txg_all_lists_empty().  It is racy by design,
while 2 pair of locks/unlocks take noticeable time under the vdev
queue lock.

With these changes in my tests with volblocksize=4KB I measure vdev
queue lock spin time reduction by 50% on read and 75% on write.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #14925
2023-06-27 09:09:48 -07:00
Alexander Motin
ccec7fbe1c
Remove ARC/ZIO physdone callbacks.
Those callbacks were introduced many years ago as part of a bigger
patch to smoothen the write throttling within a txg. They allow to
account completion of individual physical writes within a logical
one, improving cases when some of physical writes complete much
sooner than others, gradually opening the write throttle.

Few years after that ZFS got allocation throttling, working on a
level of logical writes and limiting number of writes queued to
vdevs at any point, and so limiting latency distribution between
the physical writes and especially writes of multiple copies.
The addition of scheduling deadline I proposed in #14925 should
further reduce the latency distribution.  Grown memory sizes over
the past 10 years should also reduce importance of the smoothing.

While the use of physdone callback may still in theory provide
some smoother throttling, there are cases where we simply can not
afford it.  Since dirty data accounting is protected by pool-wide
lock, in case of 6-wide RAIDZ, for example, it requires us to take
it 8 times per logical block write, creating huge lock contention.

My tests of this patch show radical reduction of the lock spinning
time on workloads when smaller blocks are written to RAIDZ pools,
when each of the disks receives 8-16KB chunks, but the total rate
reaching 100K+ blocks per second.  Same time attempts to measure
any write time fluctuations didn't show anything noticeable.

While there, remove also io_child_count/io_parent_count counters.
They are used only for couple assertions that can be avoided.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #14948
2023-06-15 10:49:03 -07:00
Alexander Motin
70ea484e3e
Finally drop long disabled vdev cache.
It was a vdev level read cache, designed to aggregate many small
reads by speculatively issuing bigger reads instead and caching
the result.  But since it has almost no idea about what is going
on with exception of ZIO_FLAG_DONT_CACHE flag set by higher layers,
it was found to make more harm than good, for which reason it was
disabled for the past 12 years.  These days we have much better
instruments to enlarge the I/Os, such as speculative and prescient
prefetches, I/O scheduler, I/O aggregation etc.

Besides just the dead code removal this removes one extra mutex
lock/unlock per write inside vdev_cache_write(), not otherwise
disabled and trying to do some work.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #14953
2023-06-09 12:40:55 -07:00
Matthew Ahrens
3095ca91c2
Verify block pointers before writing them out
If a block pointer is corrupted (but the block containing it checksums
correctly, e.g. due to a bug that overwrites random memory), we can
often detect it before the block is read, with the `zfs_blkptr_verify()`
function, which is used in `arc_read()`, `zio_free()`, etc.

However, such corruption is not typically recoverable.  To recover from
it we would need to detect the memory error before the block pointer is
written to disk.

This PR verifies BP's that are contained in indirect blocks and dnodes
before they are written to disk, in `dbuf_write_ready()`. This way,
we'll get a panic before the on-disk data is corrupted. This will help
us to diagnose what's causing the corruption, as well as being much
easier to recover from.

To minimize performance impact, only checks that can be done without
holding the spa_config_lock are performed.

Additionally, when corruption is detected, the raw words of the block
pointer are logged.  (Note that `dprintf_bp()` is a no-op by default,
but if enabled it is not safe to use with invalid block pointers.)

Reviewed-by: Rich Ercolani <rincebrain@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Zuchowski <pzuchowski@datto.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #14817
2023-05-08 11:20:23 -07:00
George Amanakis
431083f75b
Fixes in persistent error log
Address the following bugs in persistent error log:

1) Check nested clones, eg "fs->snap->clone->snap2->clone2".

2) When deleting files containing error blocks in those clones (from
   "clone" the example above), do not break the check chain.

3) When deleting files in the originating fs before syncing the errlog
   to disk, do not break the check chain. This happens because at the
   time of introducing the error block in the error list, we do not have
   its birth txg and the head filesystem. If the original file is
   deleted before the error list is synced to the error log (which is
   when we actually lookup the birth txg and the head filesystem), then
   we do not have access to this info anymore and break the check chain.

The most prominent change is related to achieving (3). We expand the
spa_error_entry_t structure to accommodate the newly introduced
zbookmark_err_phys_t structure (containing the birth txg of the error
block).Due to compatibility reasons we cannot remove the
zbookmark_phys_t structure and we also need to place the new structure
after se_avl, so it is not accounted for in avl_find(). Then we modify
spa_log_error() to also provide the birth txg of the error block. With
these changes in place we simplify the previously introduced function
get_head_and_birth_txg() (now named get_head_ds()).

We chose not to follow the same approach for the head filesystem (thus
completely removing get_head_ds()) to avoid introducing new lock
contentions.

The stack sizes of nested functions (as measured by checkstack.pl in the
linux kernel) are:
check_filesystem [zfs]: 272 (was 912)
check_clones [zfs]: 64

We also introduced two new tests covering the above changes.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes #14633
2023-03-28 16:51:58 -07:00
Pawel Jakub Dawidek
67a1b03791
Implementation of block cloning for ZFS
Block Cloning allows to manually clone a file (or a subset of its
blocks) into another (or the same) file by just creating additional
references to the data blocks without copying the data itself.
Those references are kept in the Block Reference Tables (BRTs).

The whole design of block cloning is documented in module/zfs/brt.c.

Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Christian Schwarz <christian.schwarz@nutanix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rich Ercolani <rincebrain@gmail.com>
Signed-off-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Closes #13392
2023-03-10 11:59:53 -08:00
Richard Yao
4938d01db7
Convert enum zio_flag to uint64_t
We ran out of space in enum zio_flag for additional flags. Rather than
introduce enum zio_flag2 and then modify a bunch of functions to take a
second flags variable, we expand the type to 64 bits via `typedef
uint64_t zio_flag_t`.

Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@klarasystems.com>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Co-authored-by: Richard Yao <richard.yao@klarasystems.com>
Closes #14086
2022-10-27 09:54:54 -07:00
Alek P
e8cf3a4f76
Implement a new type of zfs receive: corrective receive (-c)
This type of recv is used to heal corrupted data when a replica
of the data already exists (in the form of a send file for example).
With the provided send stream, corrective receive will read from
disk blocks described by the WRITE records. When any of the reads
come back with ECKSUM we use the data from the corresponding WRITE
record to rewrite the corrupted block.

Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Zuchowski <pzuchowski@datto.com>
Signed-off-by: Alek Pinchuk <apinchuk@axcient.com>
Closes #9372
2022-07-28 15:52:46 -07:00
Alexander Motin
33dba8c792
Fix scrub resume from newly created hole
It may happen that scan bookmark points to a block that was turned
into a part of a big hole.  In such case dsl_scan_visitbp() may skip
it and dsl_scan_check_resume() will not be called for it.  As result
new scan suspend won't be possible until the end of the object, that
may take hours if the object is a multi-terabyte ZVOL on a slow HDD
pool, stretching TXG to all that time, creating all sorts of problems.

This patch changes the resume condition to any greater or equal block,
so even if we miss the bookmarked block, the next one we find will
delete the bookmark, allowing new suspend.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #13643
2022-07-20 17:02:36 -07:00
Tino Reichardt
1d3ba0bf01
Replace dead opensolaris.org license link
The commit replaces all findings of the link:
http://www.opensolaris.org/os/licensing with this one:
https://opensource.org/licenses/CDDL-1.0

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Closes #13619
2022-07-11 14:16:13 -07:00
наб
dd66857d92 Remaining {=> const} char|void *tag
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #13348
2022-06-29 14:08:59 -07:00
Tino Reichardt
985c33b132
Introduce BLAKE3 checksums as an OpenZFS feature
This commit adds BLAKE3 checksums to OpenZFS, it has similar
performance to Edon-R, but without the caveats around the latter.

Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3
Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3

Short description of Wikipedia:

  BLAKE3 is a cryptographic hash function based on Bao and BLAKE2,
  created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and
  Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real
  World Crypto. BLAKE3 is a single algorithm with many desirable
  features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE
  and BLAKE2, which are algorithm families with multiple variants.
  BLAKE3 has a binary tree structure, so it supports a practically
  unlimited degree of parallelism (both SIMD and multithreading) given
  enough input. The official Rust and C implementations are
  dual-licensed as public domain (CC0) and the Apache License.

Along with adding the BLAKE3 hash into the OpenZFS infrastructure a
new benchmarking file called chksum_bench was introduced.  When read
it reports the speed of the available checksum functions.

On Linux: cat /proc/spl/kstat/zfs/chksum_bench
On FreeBSD: sysctl kstat.zfs.misc.chksum_bench

This is an example output of an i3-1005G1 test system with Debian 11:

implementation      1k      4k     16k     64k    256k      1m      4m
edonr-generic     1196    1602    1761    1749    1762    1759    1751
skein-generic      546     591     608     615     619     612     616
sha256-generic     240     300     316     314     304     285     276
sha512-generic     353     441     467     476     472     467     426
blake3-generic     308     313     313     313     312     313     312
blake3-sse2        402    1289    1423    1446    1432    1458    1413
blake3-sse41       427    1470    1625    1704    1679    1607    1629
blake3-avx2        428    1920    3095    3343    3356    3318    3204
blake3-avx512      473    2687    4905    5836    5844    5643    5374

Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X)

implementation      1k      4k     16k     64k    256k      1m      4m
edonr-generic     1840    2458    2665    2719    2711    2723    2693
skein-generic      870     966     996     992    1003    1005    1009
sha256-generic     415     442     453     455     457     457     457
sha512-generic     608     690     711     718     719     720     721
blake3-generic     301     313     311     309     309     310     310
blake3-sse2        343    1865    2124    2188    2180    2181    2186
blake3-sse41       364    2091    2396    2509    2463    2482    2488
blake3-avx2        365    2590    4399    4971    4915    4802    4764

Output on Debian 5.10.0-9-powerpc64le system: (POWER 9)

implementation      1k      4k     16k     64k    256k      1m      4m
edonr-generic     1213    1703    1889    1918    1957    1902    1907
skein-generic      434     492     520     522     511     525     525
sha256-generic     167     183     187     188     188     187     188
sha512-generic     186     216     222     221     225     224     224
blake3-generic     153     152     154     153     151     153     153
blake3-sse2        391    1170    1366    1406    1428    1426    1414
blake3-sse41       352    1049    1212    1174    1262    1258    1259

Output on Debian 5.10.0-11-arm64 system: (Pi400)

implementation      1k      4k     16k     64k    256k      1m      4m
edonr-generic      487     603     629     639     643     641     641
skein-generic      271     299     303     308     309     309     307
sha256-generic     117     127     128     130     130     129     130
sha512-generic     145     165     170     172     173     174     175
blake3-generic      81      29      71      89      89      89      89
blake3-sse2        112     323     368     379     380     371     374
blake3-sse41       101     315     357     368     369     364     360

Structurally, the new code is mainly split into these parts:
- 1x cross platform generic c variant: blake3_generic.c
- 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512)
- 2x assembly for ARMv8 (NEON converted from SSE2)
- 2x assembly for PPC64-LE (POWER8 converted from SSE2)
- one file for switching between the implementations

Note the PPC64 assembly requires the VSX instruction set and the
kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly.

Reviewed-by: Felix Dörre <felix@dogcraft.de>
Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Co-authored-by: Rich Ercolani <rincebrain@gmail.com>
Closes #10058
Closes #12918
2022-06-08 15:55:57 -07:00
George Amanakis
0409d33273
Improve zpool status output, list all affected datasets
Currently, determining which datasets are affected by corruption is
a manual process.

The primary difficulty in reporting the list of affected snapshots is
that since the error was initially found, the snapshot where the error
originally occurred in, may have been deleted. To solve this issue, we
add the ID of the head dataset of the original snapshot which the error
was detected in, to the stored error report. Then any time a filesystem
is deleted, the errors associated with it are deleted as well. Any time
a clone promote occurs, we modify reports associated with the original
head to refer to the new head. The stored error reports are identified
by this head ID, the birth time of the block which the error occurred
in, as well as some information about the error itself are also stored.

Once this information is stored, we can find the set of datasets
affected by an error by walking back the list of snapshots in the given
head until we find one with the appropriate birth txg, and then traverse
through the snapshots of the clone family, terminating a branch if the
block was replaced in a given snapshot. Then we report this information
back to libzfs, and to the zpool status command, where it is displayed
as follows:

 pool: test
 state: ONLINE
status: One or more devices has experienced an error resulting in data
        corruption.  Applications may be affected.
action: Restore the file in question if possible.  Otherwise restore the
        entire pool from backup.
   see: https://openzfs.github.io/openzfs-docs/msg/ZFS-8000-8A
  scan: scrub repaired 0B in 00:00:00 with 800 errors on Fri Dec  3
08:27:57 2021
config:

        NAME        STATE     READ WRITE CKSUM
        test        ONLINE       0     0     0
          sdb       ONLINE       0     0 1.58K

errors: Permanent errors have been detected in the following files:

        test@1:/test.0.0
        /test/test.0.0
        /test/1clone/test.0.0

A new feature flag is introduced to mark the presence of this change, as
well as promotion and backwards compatibility logic. This is an updated
version of #9175. Rebase required fixing the tests, updating the ABI of
libzfs, updating the man pages, fixing bugs, fixing the error returns,
and updating the old on-disk error logs to the new format when
activating the feature.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Co-authored-by: TulsiJain <tulsi.jain@delphix.com>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes #9175
Closes #12812
2022-04-25 17:25:42 -07:00
Rich Ercolani
56fa4aa96e
Default to ON for compression
A simple change, but so many tests break with it,
and those are the majority of this.

Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes #13078
2022-03-03 10:43:38 -08:00
наб
18168da727
module/*.ko: prune .data, global .rodata
Evaluated every variable that lives in .data (and globals in .rodata)
in the kernel modules, and constified/eliminated/localised them
appropriately. This means that all read-only data is now actually
read-only data, and, if possible, at file scope. A lot of previously-
global-symbols became inlinable (and inlined!) constants. Probably
not in a big Wowee Performance Moment, but hey.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12899
2022-01-14 15:37:55 -08:00
Rich Ercolani
269b5dadcf
Enable edonr in FreeBSD
The code is integrated, builds fine, runs fine, there's not really
any reason not to.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes #12735
2021-11-16 12:40:10 -07:00
Teodor Spæren
d785245857
zio: use unsigned values for enum
cppcheck complains about the use of 1 << 31, because enums are signed
ints which cannot represent this. As discussed in issue #12611, it
appears that with C99, we can use an unsiged int for the enum, on most
platforms.

I've crafted this commit for just the include/sys/zio.h header, as it's
the only one with a shift of 31. If this is something we want to adopt
in the rest of the project, I will go through and apply it to the rest
of the project.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Teodor Spæren <teodor@sparen.no>
Closes #12611 
Closes #12615
2021-10-11 10:58:06 -07:00
Jorgen Lundman
5a54a4e051
Upstream: Add snapshot and zvol events
For kernel to send snapshot mount/unmount events to zed.

For kernel to send symlink creates/removes on zvol plumbing.
(/dev/run/dsk/zvol/$pool/$zvol -> /dev/diskX)

If zed misses the ENODEV, all errors after are EINVAL. Treat any error
as kernel module failure.

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Closes #12416
2021-09-09 10:44:21 -07:00
Alexander
23c13c7e80
A few fixes of callback typecasting (for the upcoming ClangCFI)
* zio: avoid callback typecasting
* zil: avoid zil_itxg_clean() callback typecasting
* zpl: decouple zpl_readpage() into two separate callbacks
* nvpair: explicitly declare callbacks for xdr_array()
* linux/zfs_nvops: don't use external iput() as a callback
* zcp_synctask: don't use fnvlist_free() as a callback
* zvol: don't use ops->zv_free() as a callback for taskq_dispatch()

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Alexander Lobakin <alobakin@pm.me>
Closes #12260
2021-07-20 08:03:33 -06:00
наб
e618e4a4ff include: move SPA_MINBLOCKSHIFT and zio_encrypt to sys/fs/zfs.h
These are used by userspace, so should live in a public header

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12116
2021-05-29 14:26:32 -07:00
Matthew Ahrens
330c6c0523
Clean up RAIDZ/DRAID ereport code
The RAIDZ and DRAID code is responsible for reporting checksum errors on
their child vdevs.  Checksum errors represent events where a disk
returned data or parity that should have been correct, but was not.  In
other words, these are instances of silent data corruption.  The
checksum errors show up in the vdev stats (and thus `zpool status`'s
CKSUM column), and in the event log (`zpool events`).

Note, this is in contrast with the more common "noisy" errors where a
disk goes offline, in which case ZFS knows that the disk is bad and
doesn't try to read it, or the device returns an error on the requested
read or write operation.

RAIDZ/DRAID generate checksum errors via three code paths:

1. When RAIDZ/DRAID reconstructs a damaged block, checksum errors are
reported on any children whose data was not used during the
reconstruction.  This is handled in `raidz_reconstruct()`.  This is the
most common type of RAIDZ/DRAID checksum error.

2. When RAIDZ/DRAID is not able to reconstruct a damaged block, that
means that the data has been lost.  The zio fails and an error is
returned to the consumer (e.g. the read(2) system call).  This would
happen if, for example, three different disks in a RAIDZ2 group are
silently damaged.  Since the damage is silent, it isn't possible to know
which three disks are damaged, so a checksum error is reported against
every child that returned data or parity for this read.  (For DRAID,
typically only one "group" of children is involved in each io.)  This
case is handled in `vdev_raidz_cksum_finish()`. This is the next most
common type of RAIDZ/DRAID checksum error.

3. If RAIDZ/DRAID is not able to reconstruct a damaged block (like in
case 2), but there happens to be additional copies of this block due to
"ditto blocks" (i.e. multiple DVA's in this blkptr_t), and one of those
copies is good, then RAIDZ/DRAID compares each sector of the data or
parity that it retrieved with the good data from the other DVA, and if
they differ then it reports a checksum error on this child.  This
differs from case 2 in that the checksum error is reported on only the
subset of children that actually have bad data or parity.  This case
happens very rarely, since normally only metadata has ditto blocks.  If
the silent damage is extensive, there will be many instances of case 2,
and the pool will likely be unrecoverable.

The code for handling case 3 is considerably more complicated than the
other cases, for two reasons:

1. It needs to run after the main raidz read logic has completed.  The
data RAIDZ read needs to be preserved until after the alternate DVA has
been read, which necessitates refcounts and callbacks managed by the
non-raidz-specific zio layer.

2. It's nontrivial to map the sections of data read by RAIDZ to the
correct data.  For example, the correct data does not include the parity
information, so the parity must be recalculated based on the correct
data, and then compared to the parity that was read from the RAIDZ
children.

Due to the complexity of case 3, the rareness of hitting it, and the
minimal benefit it provides above case 2, this commit removes the code
for case 3.  These types of errors will now be handled the same as case
2, i.e. the checksum error will be reported against all children that
returned data or parity.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11735
2021-03-19 16:22:10 -07:00
Brian Behlendorf
b2255edcc0
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID.  This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.

A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`.  No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.

    zpool create <pool> draid[1,2,3] <vdevs...>

Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons.  The supported options include:

    zpool create <pool> \
        draid[<parity>][:<data>d][:<children>c][:<spares>s] \
        <vdevs...>

    - draid[parity]       - Parity level (default 1)
    - draid[:<data>d]     - Data devices per group (default 8)
    - draid[:<children>c] - Expected number of child vdevs
    - draid[:<spares>s]   - Distributed hot spares (default 0)

Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.

```
  pool: tank
 state: ONLINE
config:

    NAME                  STATE     READ WRITE CKSUM
    slag7                 ONLINE       0     0     0
      draid2:8d:68c:2s-0  ONLINE       0     0     0
        L0                ONLINE       0     0     0
        L1                ONLINE       0     0     0
        ...
        U25               ONLINE       0     0     0
        U26               ONLINE       0     0     0
        spare-53          ONLINE       0     0     0
          U27             ONLINE       0     0     0
          draid2-0-0      ONLINE       0     0     0
        U28               ONLINE       0     0     0
        U29               ONLINE       0     0     0
        ...
        U42               ONLINE       0     0     0
        U43               ONLINE       0     0     0
    special
      mirror-1            ONLINE       0     0     0
        L5                ONLINE       0     0     0
        U5                ONLINE       0     0     0
      mirror-2            ONLINE       0     0     0
        L6                ONLINE       0     0     0
        U6                ONLINE       0     0     0
    spares
      draid2-0-0          INUSE     currently in use
      draid2-0-1          AVAIL
```

When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command.  These options are leverages
by zloop.sh to test a wide range of dRAID configurations.

    -K draid|raidz|random - kind of RAID to test
    -D <value>            - dRAID data drives per group
    -S <value>            - dRAID distributed hot spares
    -R <value>            - RAID parity (raidz or dRAID)

The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.

Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 13:51:51 -08:00
Don Brady
4f07282786
Avoid posting duplicate zpool events
Duplicate io and checksum ereport events can misrepresent that 
things are worse than they seem. Ideally the zpool events and the 
corresponding vdev stat error counts in a zpool status should be 
for unique errors -- not the same error being counted over and over. 
This can be demonstrated in a simple example. With a single bad 
block in a datafile and just 5 reads of the file we end up with a 
degraded vdev, even though there is only one unique error in the pool.

The proposed solution to the above issue, is to eliminate duplicates 
when posting events and when updating vdev error stats. We now save 
recent error events of interest when posting events so that we can 
easily check for duplicates when posting an error. 

Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes #10861
2020-09-04 10:34:28 -07:00
Michael Niewöhner
10b3c7f5e4 Add zstd support to zfs
This PR adds two new compression types, based on ZStandard:

- zstd: A basic ZStandard compression algorithm Available compression.
  Levels for zstd are zstd-1 through zstd-19, where the compression
  increases with every level, but speed decreases.

- zstd-fast: A faster version of the ZStandard compression algorithm
  zstd-fast is basically a "negative" level of zstd. The compression
  decreases with every level, but speed increases.

  Available compression levels for zstd-fast:
   - zstd-fast-1 through zstd-fast-10
   - zstd-fast-20 through zstd-fast-100 (in increments of 10)
   - zstd-fast-500 and zstd-fast-1000

For more information check the man page.

Implementation details:

Rather than treat each level of zstd as a different algorithm (as was
done historically with gzip), the block pointer `enum zio_compress`
value is simply zstd for all levels, including zstd-fast, since they all
use the same decompression function.

The compress= property (a 64bit unsigned integer) uses the lower 7 bits
to store the compression algorithm (matching the number of bits used in
a block pointer, as the 8th bit was borrowed for embedded block
pointers).  The upper bits are used to store the compression level.

It is necessary to be able to determine what compression level was used
when later reading a block back, so the concept used in LZ4, where the
first 32bits of the on-disk value are the size of the compressed data
(since the allocation is rounded up to the nearest ashift), was
extended, and we store the version of ZSTD and the level as well as the
compressed size. This value is returned when decompressing a block, so
that if the block needs to be recompressed (L2ARC, nop-write, etc), that
the same parameters will be used to result in the matching checksum.

All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`,
`zio_prop_t`, etc.) uses the separated _compress and _complevel
variables.  Only the properties ZAP contains the combined/bit-shifted
value. The combined value is split when the compression_changed_cb()
callback is called, and sets both objset members (os_compress and
os_complevel).

The userspace tools all use the combined/bit-shifted value.

Additional notes:

zdb can now also decode the ZSTD compression header (flag -Z) and
inspect the size, version and compression level saved in that header.
For each record, if it is ZSTD compressed, the parameters of the decoded
compression header get printed.

ZSTD is included with all current tests and new tests are added
as-needed.

Per-dataset feature flags now get activated when the property is set.
If a compression algorithm requires a feature flag, zfs activates the
feature when the property is set, rather than waiting for the first
block to be born.  This is currently only used by zstd but can be
extended as needed.

Portions-Sponsored-By: The FreeBSD Foundation
Co-authored-by: Allan Jude <allanjude@freebsd.org>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Co-authored-by: Michael Niewöhner <foss@mniewoehner.de>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
Closes #6247
Closes #9024
Closes #10277
Closes #10278
2020-08-20 10:30:06 -07:00
Ryan Moeller
60265072e0
Improve compatibility with C++ consumers
C++ is a little picky about not using keywords for names, or string
constness.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes #10409
2020-06-06 12:54:04 -07:00
Paul Zuchowski
bc67cba7c0
Fix zdb -R with 'b' flag
zdb -R :b fails due to the indirect block being compressed,
and the 'b' and 'd' flag not working in tandem when specified.
Fix the flag parsing code and create a zfs test for zdb -R
block display.  Also fix the zio flags where the dotted notation
for the vdev portion of DVA (i.e. 0.0:offset:length) fails.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes #9640
Closes #9729
2020-02-10 14:00:05 -08:00
Attila Fülöp
31b160f0a6
ICP: Improve AES-GCM performance
Currently SIMD accelerated AES-GCM performance is limited by two
factors:

a. The need to disable preemption and interrupts and save the FPU
state before using it and to do the reverse when done. Due to the
way the code is organized (see (b) below) we have to pay this price
twice for each 16 byte GCM block processed.

b. Most processing is done in C, operating on single GCM blocks.
The use of SIMD instructions is limited to the AES encryption of the
counter block (AES-NI) and the Galois multiplication (PCLMULQDQ).
This leads to the FPU not being fully utilized for crypto
operations.

To solve (a) we do crypto processing in larger chunks while owning
the FPU. An `icp_gcm_avx_chunk_size` module parameter was introduced
to make this chunk size tweakable. It defaults to 32 KiB. This step
alone roughly doubles performance. (b) is tackled by porting and
using the highly optimized openssl AES-GCM assembler routines, which
do all the processing (CTR, AES, GMULT) in a single routine. Both
steps together result in up to 32x reduction of the time spend in
the en/decryption routines, leading up to approximately 12x
throughput increase for large (128 KiB) blocks.

Lastly, this commit changes the default encryption algorithm from
AES-CCM to AES-GCM when setting the `encryption=on` property.

Reviewed-By: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-By: Jason King <jason.king@joyent.com>
Reviewed-By: Tom Caputi <tcaputi@datto.com>
Reviewed-By: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes #9749
2020-02-10 12:59:50 -08:00
Matthew Macy
3c502d3b75 Exclude data from cores unconditionally and metadata conditionally
This change allows us to align the code dump logic across platforms.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9691
2019-12-09 12:29:56 -08:00
Matthew Macy
f95704ca5e Disable EDONR on FreeBSD
FreeBSD uses its own crypto framework in-kernel which, at this time,
has no EDONR implementation.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Allan Jude <allanjude@freebsd.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes #9664
2019-12-05 13:10:29 -08:00
Matthew Macy
d6f67df63c Minor diff reduction with ZoF in include/sys
- move linux/ includes to platform headers
- add void * io_bio to zio for tracking the underlying bio
- add freebsd specific fields to abd_scatter

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9615
2019-11-27 11:11:03 -08:00
Matthew Macy
1952fe0e25 Move platform dependent errno aliases
EBADE, EBADR, and ENOANO do not exist on FreeBSD

The libspl errno.h is similarly platform dependent.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9498
2019-10-25 13:40:50 -07:00
Matthew Ahrens
050d720c43 Remove dedupditto functionality
If dedup is in use, the `dedupditto` property can be set, causing ZFS to
keep an extra copy of data that is referenced many times (>100x).  The
idea was that this data is more important than other data and thus we
want to be really sure that it is not lost if the disk experiences a
small amount of random corruption.

ZFS (and system administrators) rely on the pool-level redundancy to
protect their data (e.g. mirroring or RAIDZ).  Since the user/sysadmin
doesn't have control over what data will be offered extra redundancy by
dedupditto, this extra redundancy is not very useful.  The bulk of the
data is still vulnerable to loss based on the pool-level redundancy.
For example, if particle strikes corrupt 0.1% of blocks, you will either
be saved by mirror/raidz, or you will be sad.  This is true even if
dedupditto saved another 0.01% of blocks from being corrupted.

Therefore, the dedupditto functionality is rarely enabled (i.e. the
property is rarely set), and it fulfills its promise of increased
redundancy even more rarely.

Additionally, this feature does not work as advertised (on existing
releases), because scrub/resilver did not repair the extra (dedupditto)
copy (see https://github.com/zfsonlinux/zfs/pull/8270).

In summary, this seldom-used feature doesn't work, and even if it did it
wouldn't provide useful data protection.  It has a non-trivial
maintenance burden (again see https://github.com/zfsonlinux/zfs/pull/8270).

We should remove the dedupditto functionality.  For backwards
compatibility with the existing CLI, "zpool set dedupditto" will still
"succeed" (exit code zero), but won't have any effect.  For backwards
compatibility with existing pools that had dedupditto enabled at some
point, the code will still be able to understand dedupditto blocks and
free them when appropriate.  However, ZFS won't write any new dedupditto
blocks.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Issue #8270 
Closes #8310
2019-06-19 14:54:02 -07:00
Brian Behlendorf
1b939560be
Add TRIM support
UNMAP/TRIM support is a frequently-requested feature to help
prevent performance from degrading on SSDs and on various other
SAN-like storage back-ends.  By issuing UNMAP/TRIM commands for
sectors which are no longer allocated the underlying device can
often more efficiently manage itself.

This TRIM implementation is modeled on the `zpool initialize`
feature which writes a pattern to all unallocated space in the
pool.  The new `zpool trim` command uses the same vdev_xlate()
code to calculate what sectors are unallocated, the same per-
vdev TRIM thread model and locking, and the same basic CLI for
a consistent user experience.  The core difference is that
instead of writing a pattern it will issue UNMAP/TRIM commands
for those extents.

The zio pipeline was updated to accommodate this by adding a new
ZIO_TYPE_TRIM type and associated spa taskq.  This new type makes
is straight forward to add the platform specific TRIM/UNMAP calls
to vdev_disk.c and vdev_file.c.  These new ZIO_TYPE_TRIM zios are
handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs.
This makes it possible to largely avoid changing the pipieline,
one exception is that TRIM zio's may exceed the 16M block size
limit since they contain no data.

In addition to the manual `zpool trim` command, a background
automatic TRIM was added and is controlled by the 'autotrim'
property.  It relies on the exact same infrastructure as the
manual TRIM.  However, instead of relying on the extents in a
metaslab's ms_allocatable range tree, a ms_trim tree is kept
per metaslab.  When 'autotrim=on', ranges added back to the
ms_allocatable tree are also added to the ms_free tree.  The
ms_free tree is then periodically consumed by an autotrim
thread which systematically walks a top level vdev's metaslabs.

Since the automatic TRIM will skip ranges it considers too small
there is value in occasionally running a full `zpool trim`.  This
may occur when the freed blocks are small and not enough time
was allowed to aggregate them.  An automatic TRIM and a manual
`zpool trim` may be run concurrently, in which case the automatic
TRIM will yield to the manual TRIM.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Contributions-by: Tim Chase <tim@chase2k.com>
Contributions-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8419 
Closes #598
2019-03-29 09:13:20 -07:00
Tony Hutter
ad796b8a3b Add zpool status -s (slow I/Os) and -p (parseable)
This patch adds a new slow I/Os (-s) column to zpool status to show the
number of VDEV slow I/Os. This is the number of I/Os that didn't
complete in zio_slow_io_ms milliseconds. It also adds a new parsable
(-p) flag to display exact values.

 	NAME         STATE     READ WRITE CKSUM  SLOW
 	testpool     ONLINE       0     0     0     -
	  mirror-0   ONLINE       0     0     0     -
 	    loop0    ONLINE       0     0     0    20
 	    loop1    ONLINE       0     0     0     0

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes #7756
Closes #6885
2018-11-08 16:47:24 -08:00
Don Brady
cc99f275a2 Pool allocation classes
Allocation Classes add the ability to have allocation classes in a
pool that are dedicated to serving specific block categories, such
as DDT data, metadata, and small file blocks. A pool can opt-in to
this feature by adding a 'special' or 'dedup' top-level VDEV.

Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Reviewed-by: Andreas Dilger <andreas.dilger@chamcloud.com>
Reviewed-by: DHE <git@dehacked.net>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Gregor Kopka <gregor@kopka.net>
Reviewed-by: Kash Pande <kash@tripleback.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes #5182
2018-09-05 18:33:36 -07:00
Matthew Ahrens
62840030a7 Reduce taskq and context-switch cost of zio pipe
When doing a read from disk, ZFS creates 3 ZIO's: a zio_null(), the
logical zio_read(), and then a physical zio. Currently, each of these
results in a separate taskq_dispatch(zio_execute).

On high-read-iops workloads, this causes a significant performance
impact. By processing all 3 ZIO's in a single taskq entry, we reduce the
overhead on taskq locking and context switching.  We accomplish this by
allowing zio_done() to return a "next zio to execute" to zio_execute().

This results in a ~12% performance increase for random reads, from
96,000 iops to 108,000 iops (with recordsize=8k, on SSD's).

Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-59292
Closes #7736
2018-08-02 15:51:45 -07:00
Paul Dagnelie
492f64e941 OpenZFS 9112 - Improve allocation performance on high-end systems
Overview
========

We parallelize the allocation process by creating the concept of
"allocators". There are a certain number of allocators per metaslab
group, defined by the value of a tunable at pool open time.  Each
allocator for a given metaslab group has up to 2 active metaslabs; one
"primary", and one "secondary". The primary and secondary weight mean
the same thing they did in in the pre-allocator world; primary metaslabs
are used for most allocations, secondary metaslabs are used for ditto
blocks being allocated in the same metaslab group.  There is also the
CLAIM weight, which has been separated out from the other weights, but
that is less important to understanding the patch.  The active metaslabs
for each allocator are moved from their normal place in the metaslab
tree for the group to the back of the tree. This way, they will not be
selected for use by other allocators searching for new metaslabs unless
all the passive metaslabs are unsuitable for allocations.  If that does
happen, the allocators will "steal" from each other to ensure that IOs
don't fail until there is truly no space left to perform allocations.

In addition, the alloc queue for each metaslab group has been broken
into a separate queue for each allocator. We don't want to dramatically
increase the number of inflight IOs on low-end systems, because it can
significantly increase txg times. On the other hand, we want to ensure
that there are enough IOs for each allocator to allow for good
coalescing before sending the IOs to the disk.  As a result, we take a
compromise path; each allocator's alloc queue max depth starts at a
certain value for every txg. Every time an IO completes, we increase the
max depth. This should hopefully provide a good balance between the two
failure modes, while not dramatically increasing complexity.

We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause
very similar contention when selecting IOs to allocate. This
parallelization uses the same allocator scheme as metaslab selection.

Performance Results
===================

Performance improvements from this change can vary significantly based
on the number of CPUs in the system, whether or not the system has a
NUMA architecture, the speed of the drives, the values for the various
tunables, and the workload being performed. For an fio async sequential
write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB
SSDs, there is a roughly 25% performance improvement.

Future Work
===========

Analysis of the performance of the system with this patch applied shows
that a significant new bottleneck is the vdev disk queues, which also
need to be parallelized.  Prototyping of this change has occurred, and
there was a performance improvement, but more work needs to be done
before its stability has been verified and it is ready to be upstreamed.

Authored by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Alexander Motin <mav@FreeBSD.org>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Gordon Ross <gwr@nexenta.com>
Ported-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>

Porting Notes:
* Fix reservation test failures by increasing tolerance.

OpenZFS-issue: https://illumos.org/issues/9112
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3
Closes #7682
2018-07-31 10:52:33 -07:00