Build products from an out of tree build should be written
relative to the build directory. Sources should be referred
to by their locations in the source directory.
This is accomplished by adding the 'src' and 'obj' variables
for the module Makefile.am, using relative paths to reference
source files, and by setting VPATH when source files are not
co-located with the Makefile. This enables the following:
$ mkdir build
$ cd build
$ ../configure
$ make -s
This change also has the advantage of resolving the following
warning which is generated by modern versions of automake.
Makefile.am:00: warning: source file 'xxx' is in a subdirectory,
Makefile.am:00: but option 'subdir-objects' is disabled
Signed-off-by: Turbo Fredriksson <turbo@bayour.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue zfsonlinux/zfs#1082
This change introduces no functional changes to the memory management
interfaces. It only restructures the existing codes by separating the
kmem, vmem, and kmem cache implementations in the separate source and
header files.
Splitting this functionality in to separate files required the addition
of spl_vmem_{init,fini}() and spl_kmem_cache_{initi,fini}() functions.
Additionally, several minor changes to the #include's were required to
accommodate the removal of extraneous header from kmem.h.
But again, while large this patch introduces no functional changes.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
When the SPL was originally written Linux tracepoints were still
in their infancy. Therefore, an entire debugging subsystem was
added to facilite tracing which served us well for many years.
Now that Linux tracepoints have matured they provide all the
functionality of the previous tracing subsystem. Rather than
maintain parallel functionality it makes sense to fully adopt
tracepoints. Therefore, this patch retires the legacy debugging
infrastructure.
See zfsonlinux/zfs@bc9f413 for the tracepoint changes.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#408
Many of the time functions had grown overly complex in order to
handle kernel compatibility issues. However, as of Linux 2.6.26
all the required functionality is available. This allows us to
retire numerous configure checks and greatly simplify the time
compatibility wrappers.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This commit introduces a "copy-builtin" script designed to prepare a
kernel source tree for building SPL as a builtin module. The script
makes a full copy of all needed files, thus making the kernel source
tree fully independent of the spl source package.
To achieve that, some compilation flags (-include, -I) have been moved
to module/Makefile. This Makefile is only used when compiling external
modules; when compiling builtin modules, a Kbuild file generated by the
configure-builtin script is used instead. This makes sure Makefiles
inside the kernel source tree does not contain references to the spl
source package.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue zfsonlinux/zfs#851
In zfs, each module Makefile contains a MODULE variable which contains
the name of the module, and the following declarations reference this
variable.
In spl, there is a MODULES variable which is never used. Rename it to
MODULE and use it like in zfs. This improves consistency between the two
build systems.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue zfsonlinux/zfs#851
Originally I believed that these interfaces would be needed.
However, in practice it turned out that it was more straight
forward and maintainable to use the native Linux interfaces.
As such, this is all dead code and can be safely removed.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#109
While portions of the code needed to support z_compress_level() and
z_uncompress() where in place. In reality the current implementation
was non-functional, it just was compilable.
The critical missing component was to setup a workspace for the
compress/uncompress stream structures to use. A kmem_cache was
added for the workspace area because we require a large chunk
of memory. This avoids to need to continually alloc/free this
memory and vmap() the pages which is very slow. Several objects
will reside in the per-cpu kmem_cache making them quick to acquire
and release. A further optimization would be to adjust the
implementation to additional ensure the memory is local to the cpu.
Currently that may not be the case.
Thread specific data has implemented using a hash table, this avoids
the need to add a member to the task structure and allows maximum
portability between kernels. This implementation has been optimized
to keep the tsd_set() and tsd_get() times as small as possible.
The majority of the entries in the hash table are for specific tsd
entries. These entries are hashed by the product of their key and
pid because by design the key and pid are guaranteed to be unique.
Their product also has the desirable properly that it will be uniformly
distributed over the hash bins providing neither the pid nor key is zero.
Under linux the zero pid is always the init process and thus won't be
used, and this implementation is careful to never to assign a zero key.
By default the hash table is sized to 512 bins which is expected to
be sufficient for light to moderate usage of thread specific data.
The hash table contains two additional type of entries. They first
type is entry is called a 'key' entry and it is added to the hash during
tsd_create(). It is used to store the address of the destructor function
and it is used as an anchor point. All tsd entries which use the same
key will be linked to this entry. This is used during tsd_destory() to
quickly call the destructor function for all tsd associated with the key.
The 'key' entry may be looked up with tsd_hash_search() by passing the
key you wish to lookup and DTOR_PID constant as the pid.
The second type of entry is called a 'pid' entry and it is added to the
hash the first time a process set a key. The 'pid' entry is also used
as an anchor and all tsd for the process will be linked to it. This
list is using during tsd_exit() to ensure all registered destructors
are run for the process. The 'pid' entry may be looked up with
tsd_hash_search() by passing the PID_KEY constant as the key, and
the process pid. Note that tsd_exit() is called by thread_exit()
so if your using the Solaris thread API you should not need to call
tsd_exit() directly.
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory. The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.
For example, this project is designed to work on various different
Linux distributions each of which work slightly differently. This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.
Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution. When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.
wget -c http://github.com/downloads/behlendorf/spl/spl-x.y.z.tar.gz
tar -xzf spl-x.y.z.tar.gz
cd spl-x-y-z
------------------------- run concurrently ----------------------
<ubuntu system> <fedora system> <debian system> <rhel6 system>
mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6
cd ubuntu cd fedora cd debian cd rhel6
../configure ../configure ../configure ../configure
make make make make
make check make check make check make check
This is something the project has almost supported for a long time
but finishing this support should save me lots of time.
The previous credential implementation simply provided the needed types and
a couple of dummy functions needed. This update correctly ties the basic
Solaris credential API in to one of two Linux kernel APIs.
Prior to 2.6.29 the linux kernel embeded all credentials in the task
structure. For these kernels, we pass around the entire task struct as if
it were the credential, then we use the helper functions to extract the
credential related bits.
As of 2.6.29 a new credential type was added which we can and do fairly
cleanly layer on top of. Once again the helper functions nicely hide
the implementation details from all callers.
Three tests were added to the splat test framework to verify basic
correctness. They should be extended as needed when need credential
functions are added.
An update to the build system to properly support all commonly
used Makefile targets these include:
make all # Build everything
make install # Install everything
make clean # Clean up build products
make distclean # Clean up everything
make dist # Create package tarball
make srpm # Create package source RPM
make rpm # Create package binary RPMs
make tags # Create ctags and etags for everything
Extra care was taken to ensure that the source RPMs are fully
rebuildable against Fedora/RHEL/Chaos kernels. To build binary
RPMs from the source RPM for your system simply run:
rpmbuild --rebuild spl-x.y.z-1.src.rpm
This will produce two binary RPMs with correct 'requires'
dependencies for your kernel. One will contain all spl modules
and support utilities, the other is a devel package for compiling
additional kernel modules which are dependant on the spl.
spl-x.y.z-1_<kernel version>.x86_64.rpm
spl-devel-x.y.2-1_<kernel version>.x86_64.rpm