Commit Graph

4 Commits

Author SHA1 Message Date
Tino Reichardt
b1958b531b
ZTS: Replace MD5 and SHA256 wit XXH128
For data integrity checks as done in ZTS, the verification for
unintended data corruption with xxhash128 should be a lot faster
and perfectly usable.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Closes #16577
2024-09-28 09:24:05 -07:00
Brian Behlendorf
d7ab2816ee
CI: Add logs to zloop workflow
On failure attempt to include the most relevant portions of the
ztest logs in the CI output.  This full logs are still available
for download but often a backtrace and the last output is enough.

Install libunwind to improve the odds of a useful backtrace.

Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #16573
2024-09-27 09:05:49 -07:00
Tino Reichardt
45a4a94b64 ZTS: Remove functional tests via matrix
This commit changes the workflow of the github actions.

- Ubuntu 20.04, 22.04, 24.04 will be tested via QEMU now
- remove unused scripts of this commit: b7bc334d1
- re-add the zloop standalone testings via zloop.yml

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Closes #16549
2024-09-20 08:01:05 -07:00
Tino Reichardt
bca9b64e7b ZTS: Use QEMU for tests on Linux and FreeBSD
This commit adds functional tests for these systems:
- AlmaLinux 8, AlmaLinux 9, ArchLinux
- CentOS Stream 9, Fedora 39, Fedora 40
- Debian 11, Debian 12
- FreeBSD 13, FreeBSD 14, FreeBSD 15
- Ubuntu 20.04, Ubuntu 22.04, Ubuntu 24.04

- enabled by default:
 - AlmaLinux 8, AlmaLinux 9
 - Debian 11, Debian 12
 - Fedora 39, Fedora 40
 - FreeBSD 13, FreeBSD 14

Workflow for each operating system:
- install qemu on the github runner
- download current cloud image of operating system
- start and init that image via cloud-init
- install dependencies and poweroff system
- start system and build openzfs and then poweroff again
- clone build system and start 2 instances of it
- run functional testings and complete in around 3h
- when tests are done, do some logfile preparing
- show detailed results for each system
- in the end, generate the job summary

Real-world benefits from this PR:

1. The github runner scripts are in the zfs repo itself. That means
   you can just open a PR against zfs, like "Add Fedora 41 tester", and
   see the results directly in the PR. ZFS admins no longer need
   manually to login to the buildbot server to update the buildbot config
   with new version of Fedora/Almalinux.

2. Github runners allow you to run the entire test suite against your
   private branch before submitting a formal PR to openzfs. Just open a
   PR against your private zfs repo, and the exact same
   Fedora/Alma/FreeBSD runners will fire up and run ZTS. This can be
   useful if you want to iterate on a ZTS change before submitting a
   formal PR.

3. buildbot is incredibly cumbersome. Our buildbot config files alone
   are ~1500 lines (not including any build/setup scripts)!
   It's a huge pain to setup.

4. We're running the super ancient buildbot 0.8.12. It's so ancient
   it requires python2. We actually have to build python2 from source
   for almalinux9 just to get it to run. Ugrading to a more modern
   buildbot is a huge undertaking, and the UI on the newer versions is
   worse.

5. Buildbot uses EC2 instances. EC2 is a pain because:
   * It costs money
   * They throttle IOPS and CPU usage, leading to mysterious,
   * hard-to-diagnose, failures and timeouts in ZTS.
   * EC2 is high maintenance. We have to setup security groups, SSH
   * keys, networking, users, etc, in AWS and it's a pain. We also
   * have to periodically go in an kill zombie EC2 instances that
   * buildbot is unable to kill off.

6. Buildbot doesn't always handle failures well. One of the things we
   saw in the past was the FreeBSD builders would often die, and each
   builder death would take up a "slot" in buildbot. So we would
   periodically have to restart buildbot via a cron job to get the slots
   back.

7. This PR divides up the ZTS test list into two parts, launches two
   VMs, and on each VM runs half the test suite. The test results are
   then merged and shown in the sumary page. So we're basically
   parallelizing ZTS on the same github runner. This leads to lower
   overall ZTS runtimes (2.5-3 hours vs 4+ hours on buildbot), and one
   unified set of results per runner, which is nice.

8. Since the tests are running on a VM, we have much more control over
   what happens. We can capture the serial console output even if the
   test completely brings down the VM. In the future, we could also
   restart the test on the VM where it left off, so that if a single test
   panics the VM, we can just restart it and run the remaining ZTS tests
   (this functionaly is not yet implemented though, just an idea).

9. Using the runners, users can manually kill or restart a test run
   via the github IU. That really isn't possible with buildbot unless
   you're an admin.

10. Anecdotally, the tests seem to be more stable and constant under
    the QEMU runners.

Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes #16537
2024-09-17 12:03:27 -07:00