Commit Graph

123 Commits

Author SHA1 Message Date
Madhav Suresh
c99c90015e Illumos #3006
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first
     argument is zero

Reviewed by Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by George Wilson <george.wilson@delphix.com>
Approved by Eric Schrock <eric.schrock@delphix.com>

References:
  illumos/illumos-gate@fb09f5aad4
  https://illumos.org/issues/3006

Requires:
  zfsonlinux/spl@1c6d149feb

Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1509
2013-06-19 15:14:10 -07:00
Richard Yao
b01615d5ac Constify structures containing function pointers
The PaX team modified the kernel's modpost to report writeable function
pointers as section mismatches because they are potential exploit
targets. We could ignore the warnings, but their presence can obscure
actual issues. Proper const correctness can also catch programming
mistakes.

Building the kernel modules against a PaX/GrSecurity patched Linux 3.4.2
kernel reports 133 section mismatches prior to this patch. This patch
eliminates 130 of them. The quantity of writeable function pointers
eliminated by constifying each structure is as follows:

vdev_opts_t             52
zil_replay_func_t       24
zio_compress_info_t     24
zio_checksum_info_t     9
space_map_ops_t         7
arc_byteswap_func_t     5

The remaining 3 writeable function pointers cannot be addressed by this
patch. 2 of them are in zpl_fs_type. The kernel's sget function requires
that this be non-const. The final writeable function pointer is created
by SPL_SHRINKER_DECLARE. The kernel's set_shrinker() and
remove_shrinker() functions also require that this be non-const.

Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1300
2013-03-04 08:49:32 -08:00
Matthew Ahrens
29809a6cba Illumos #3086: unnecessarily setting DS_FLAG_INCONSISTENT on async
3086 unnecessarily setting DS_FLAG_INCONSISTENT on async
destroyed datasets
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Approved by: Eric Schrock <Eric.Schrock@delphix.com>

References:
  illumos/illumos-gate@ce636f8b38
  illumos changeset: 13776:cd512c80fd75
  https://www.illumos.org/issues/3086

Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-01-08 10:35:43 -08:00
Etienne Dechamps
5d7a86d114 Use the slog even with logbias=throughput.
In the current code, logbias=throughput implies the following:
 1) All synchronous writes are logged in indirect mode.
 2) The slog is not used.

(1) makes sense because it avoids writing the data twice, which is
obviously a good thing when the user wants maximum pool throughput.

(2), however, is a surprising decision. Considering all writes are
indirect, the log record doesn't contain the actual data, only pointers
to DMU blocks. As a result, log records written in logbias=throughput
mode are quite small, and as such, it doesn't make any sense to write
them to the main pool since slogs are usually optimized for small
synchronous writes.

In fact, the current behavior is actually harmful for performance,
because log blocks and data blocks from dmu_sync() seldom have the same
allocation size and as a result are usually allocated from different
metaslabs. This means that if a spindle has to write both log blocks and
DMU blocks (which is likely to happen under heavy load), it will have to
seek between the two. Allocating the log blocks from the slog pool
instead of the main pool avoids these unnecessary seeks.

This commit makes ZFS use the slog on datasets with logbias=throughput.
Real-life performance testing shows a 50% synchronous write performance
increase with some large commit sizes, and no negative effect in other
cases.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1013
2012-10-17 08:56:46 -07:00
Etienne Dechamps
920dd524fb Add FASTWRITE algorithm for synchronous writes.
Currently, ZIL blocks are spread over vdevs using hint block pointers
managed by the ZIL commit code and passed to metaslab_alloc(). Spreading
log blocks accross vdevs is important for performance: indeed, using
mutliple disks in parallel decreases the ZIL commit latency, which is
the main performance metric for synchronous writes. However, the current
implementation suffers from the following issues:

1) It would be best if the ZIL module was not aware of such low-level
details. They should be handled by the ZIO and metaslab modules;

2) Because the hint block pointer is managed per log, simultaneous
commits from multiple logs might use the same vdevs at the same time,
which is inefficient;

3) Because dmu_write() does not honor the block pointer hint, indirect
writes are not spread.

The naive solution of rotating the metaslab rotor each time a block is
allocated for the ZIL or dmu_sync() doesn't work in practice because the
first ZIL block to be written is actually allocated during the previous
commit. Consequently, when metaslab_alloc() decides the vdev for this
block, it will do so while a bunch of other allocations are happening at
the same time (from dmu_sync() and other ZILs). This means the vdev for
this block is chosen more or less at random. When the next commit
happens, there is a high chance (especially when the number of blocks
per commit is slightly less than the number of the disks) that one disk
will have to write two blocks (with a potential seek) while other disks
are sitting idle, which defeats spreading and increases the commit
latency.

This commit introduces a new concept in the metaslab allocator:
fastwrites. Basically, each top-level vdev maintains a counter
indicating the number of synchronous writes (from dmu_sync() and the
ZIL) which have been allocated but not yet completed. When the metaslab
is called with the FASTWRITE flag, it will choose the vdev with the
least amount of pending synchronous writes. If there are multiple vdevs
with the same value, the first matching vdev (starting from the rotor)
is used. Once metaslab_alloc() has decided which vdev the block is
allocated to, it updates the fastwrite counter for this vdev.

The rationale goes like this: when an allocation is done with
FASTWRITE, it "reserves" the vdev until the data is written. Until then,
all future allocations will naturally avoid this vdev, even after a full
rotation of the rotor. As a result, pending synchronous writes at a
given point in time will be nicely spread over all vdevs. This contrasts
with the previous algorithm, which is based on the implicit assumption
that blocks are written instantaneously after they're allocated.

metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to
manually increase or decrease fastwrite counters, respectively. They
should be used with caution, as there is no per-BP tracking of fastwrite
information, so leaks and "double-unmarks" are possible. There is,
however, an assert in the vdev teardown code which will fire if the
fastwrite counters are not zero when the pool is exported or the vdev
removed. Note that as stated above, marking is also done implictly by
metaslab_alloc().

ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to
the metaslab when allocating (assuming ZIO does the allocation, which is
only true in the case of dmu_sync). This flag will also trigger an
unmark when zio_done() fires.

A side-effect of the new algorithm is that when a ZIL stops being used,
its last block can stay in the pending state (allocated but not yet
written) for a long time, polluting the fastwrite counters. To avoid
that, I've implemented a somewhat crude but working solution which
unmarks these pending blocks in zil_sync(), thus guaranteeing that
linguering fastwrites will get pruned at each sync event.

The best performance improvements are observed with pools using a large
number of top-level vdevs and heavy synchronous write workflows
(especially indirect writes and concurrent writes from multiple ZILs).
Real-life testing shows a 200% to 300% performance increase with
indirect writes and various commit sizes.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1013
2012-10-17 08:56:41 -07:00
Brian Behlendorf
8c0712fd88 Condition variable usage, zilog->zl_cv_batch
The following incorrect usage of cv_signal and cv_broadcast()
was caught by code inspection.  The cv_signal and cv_broadcast()
functions must be called under the associated mutex to preventing
racing with cv_wait().

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-10-15 16:01:58 -07:00
Richard Yao
b8d06fca08 Switch KM_SLEEP to KM_PUSHPAGE
Differences between how paging is done on Solaris and Linux can cause
deadlocks if KM_SLEEP is used in any the following contexts.

  * The txg_sync thread
  * The zvol write/discard threads
  * The zpl_putpage() VFS callback

This is because KM_SLEEP will allow for direct reclaim which may result
in the VM calling back in to the filesystem or block layer to write out
pages.  If a lock is held over this operation the potential exists to
deadlock the system.  To ensure forward progress all memory allocations
in these contexts must us KM_PUSHPAGE which disables performing any I/O
to accomplish the memory allocation.

Previously, this behavior was acheived by setting PF_MEMALLOC on the
thread.  However, that resulted in unexpected side effects such as the
exhaustion of pages in ZONE_DMA.  This approach touchs more of the zfs
code, but it is more consistent with the right way to handle these cases
under Linux.

This is patch lays the ground work for being able to safely revert the
following commits which used PF_MEMALLOC:

  21ade34 Disable direct reclaim for z_wr_* threads
  cfc9a5c Fix zpl_writepage() deadlock
  eec8164 Fix ASSERTION(!dsl_pool_sync_context(tx->tx_pool))

Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #726
2012-08-27 12:01:37 -07:00
Etienne Dechamps
b6ad9671ac Add ZIL statistics.
The performance of the ZIL is usually the main bottleneck when dealing with
synchronous, write-heavy workloads (e.g. databases). Understanding the
behavior of the ZIL is required to diagnose performance issues for these
workloads, and to tune ZIL parameters (like zil_slog_limit) accordingly.

This commit adds a new kstat page dedicated to the ZIL with some counters
which, hopefully, scheds some light into what the ZIL is doing, and how it is
doing it.

Currently, these statistics are available in /proc/spl/kstat/zfs/zil.
A description of the fields can be found in zil.h.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #786
2012-06-29 09:56:51 -07:00
Etienne Dechamps
ee191e802c Make zil_slog_limit a tunable module parameter.
zil_slog_limit specifies the maximum commit size to be written to the separate
log device. Larger commits bypass the separate log device and go directly to
the data devices.

The optimal value for zil_slog_limit directly depends on the latency and
throughput characteristics of both the separate log device and the data disks.
Small synchronous writes are faster on low-latency separate log devices (e.g.
SSDs) whereas large synchronous writes are faster on high-latency data disks
(e.g. spindles) because of higher throughput, especially with a large array.
The point is, the line between "small" and "large" synchronous writes in this
scenario is heavily dependent on the hardware used. That's why it should be
made configurable.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #783
2012-06-12 08:45:53 -07:00
Eric Schrock
3e31d2b080 Illumos #883: ZIL reuse during remount corruption
Moving the zil_free() cleanup to zil_close() prevents this
problem from occurring in the first place.  There is a very
good description of the issue and fix in Illumus #883.

Reviewed by: Matt Ahrens <Matt.Ahrens@delphix.com>
Reviewed by: Adam Leventhal <Adam.Leventhal@delphix.com>
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Gordon Ross <gwr@nexenta.com>
Reviewed by: Garrett D'Amore <garrett@nexenta.com>
Reivewed by: Dan McDonald <danmcd@nexenta.com>
Approved by: Gordon Ross <gwr@nexenta.com>

References to Illumos issue and patch:
- https://www.illumos.org/issues/883
- https://github.com/illumos/illumos-gate/commit/c9ba2a43cb

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #340
2011-08-01 12:09:11 -07:00
Brian Behlendorf
c409e4647f Add missing ZFS tunables
This commit adds module options for all existing zfs tunables.
Ideally the average user should never need to modify any of these
values.  However, in practice sometimes you do need to tweak these
values for one reason or another.  In those cases it's nice not to
have to resort to rebuilding from source.  All tunables are visable
to modinfo and the list is as follows:

$ modinfo module/zfs/zfs.ko
filename:       module/zfs/zfs.ko
license:        CDDL
author:         Sun Microsystems/Oracle, Lawrence Livermore National Laboratory
description:    ZFS
srcversion:     8EAB1D71DACE05B5AA61567
depends:        spl,znvpair,zcommon,zunicode,zavl
vermagic:       2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions
parm:           zvol_major:Major number for zvol device (uint)
parm:           zvol_threads:Number of threads for zvol device (uint)
parm:           zio_injection_enabled:Enable fault injection (int)
parm:           zio_bulk_flags:Additional flags to pass to bulk buffers (int)
parm:           zio_delay_max:Max zio millisec delay before posting event (int)
parm:           zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool)
parm:           zil_replay_disable:Disable intent logging replay (int)
parm:           zfs_nocacheflush:Disable cache flushes (bool)
parm:           zfs_read_chunk_size:Bytes to read per chunk (long)
parm:           zfs_vdev_max_pending:Max pending per-vdev I/Os (int)
parm:           zfs_vdev_min_pending:Min pending per-vdev I/Os (int)
parm:           zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int)
parm:           zfs_vdev_time_shift:Deadline time shift for vdev I/O (int)
parm:           zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int)
parm:           zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int)
parm:           zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int)
parm:           zfs_vdev_scheduler:I/O scheduler (charp)
parm:           zfs_vdev_cache_max:Inflate reads small than max (int)
parm:           zfs_vdev_cache_size:Total size of the per-disk cache (int)
parm:           zfs_vdev_cache_bshift:Shift size to inflate reads too (int)
parm:           zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int)
parm:           zfs_recover:Set to attempt to recover from fatal errors (int)
parm:           spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp)
parm:           zfs_zevent_len_max:Max event queue length (int)
parm:           zfs_zevent_cols:Max event column width (int)
parm:           zfs_zevent_console:Log events to the console (int)
parm:           zfs_top_maxinflight:Max I/Os per top-level (int)
parm:           zfs_resilver_delay:Number of ticks to delay resilver (int)
parm:           zfs_scrub_delay:Number of ticks to delay scrub (int)
parm:           zfs_scan_idle:Idle window in clock ticks (int)
parm:           zfs_scan_min_time_ms:Min millisecs to scrub per txg (int)
parm:           zfs_free_min_time_ms:Min millisecs to free per txg (int)
parm:           zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int)
parm:           zfs_no_scrub_io:Set to disable scrub I/O (bool)
parm:           zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool)
parm:           zfs_txg_timeout:Max seconds worth of delta per txg (int)
parm:           zfs_no_write_throttle:Disable write throttling (int)
parm:           zfs_write_limit_shift:log2(fraction of memory) per txg (int)
parm:           zfs_txg_synctime_ms:Target milliseconds between tgx sync (int)
parm:           zfs_write_limit_min:Min tgx write limit (ulong)
parm:           zfs_write_limit_max:Max tgx write limit (ulong)
parm:           zfs_write_limit_inflated:Inflated tgx write limit (ulong)
parm:           zfs_write_limit_override:Override tgx write limit (ulong)
parm:           zfs_prefetch_disable:Disable all ZFS prefetching (int)
parm:           zfetch_max_streams:Max number of streams per zfetch (uint)
parm:           zfetch_min_sec_reap:Min time before stream reclaim (uint)
parm:           zfetch_block_cap:Max number of blocks to fetch at a time (uint)
parm:           zfetch_array_rd_sz:Number of bytes in a array_read (ulong)
parm:           zfs_pd_blks_max:Max number of blocks to prefetch (int)
parm:           zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int)
parm:           zfs_arc_min:Min arc size (ulong)
parm:           zfs_arc_max:Max arc size (ulong)
parm:           zfs_arc_meta_limit:Meta limit for arc size (ulong)
parm:           zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int)
parm:           zfs_arc_grow_retry:Seconds before growing arc size (int)
parm:           zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int)
parm:           zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 10:02:37 -07:00
Brian Behlendorf
701b1f8168 Fix zvol deadlock
It's possible for a zvol_write thread to enter direct memory reclaim
while holding open a transaction group.  This results in the system
attempting to write out data to the disk to free memory.  Unfortunately,
this can't succeed because the the thread doing reclaim is holding open
the txg which must be closed to be synced to disk.  To prevent this
the offending allocation is marked KM_PUSHPAGE which will prevent it
from attempting writeback.

Closes #191
2011-04-26 12:56:35 -07:00
Brian Behlendorf
00b46022c6 Add linux kernel memory support
Required kmem/vmem changes

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2010-08-31 13:41:57 -07:00
Brian Behlendorf
d4ed667343 Fix gcc uninitialized variable warnings
Gcc -Wall warn: 'uninitialized variable'

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2010-08-31 08:38:43 -07:00
Brian Behlendorf
c65aa5b2b9 Fix gcc missing parenthesis warnings
Gcc -Wall warn: 'missing parenthesis'

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2010-08-31 08:38:35 -07:00
Brian Behlendorf
b8864a233c Fix gcc cast warnings
Gcc -Wall warn: 'lacks a cast'
Gcc -Wall warn: 'comparison between pointer and integer'

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2010-08-27 15:33:32 -07:00
Brian Behlendorf
d6320ddb78 Fix gcc c90 compliance warnings
Fix non-c90 compliant code, for the most part these changes
simply deal with where a particular variable is declared.
Under c90 it must alway be done at the very start of a block.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2010-08-27 15:28:32 -07:00
Brian Behlendorf
572e285762 Update to onnv_147
This is the last official OpenSolaris tag before the public
development tree was closed.
2010-08-26 14:24:34 -07:00
Brian Behlendorf
428870ff73 Update core ZFS code from build 121 to build 141. 2010-05-28 13:45:14 -07:00
Brian Behlendorf
45d1cae3b8 Rebase master to b121 2009-08-18 11:43:27 -07:00
Brian Behlendorf
9babb37438 Rebase master to b117 2009-07-02 15:44:48 -07:00
Brian Behlendorf
fb5f0bc833 Rebase master to b105 2009-01-15 13:59:39 -08:00
Brian Behlendorf
172bb4bd5e Move the world out of /zfs/ and seperate out module build tree 2008-12-11 11:08:09 -08:00