mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-17 10:01:01 +03:00
ac04407ffe
4 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Brian Atkinson
|
a10e552b99
|
Adding Direct IO Support
Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018 |
||
Rob Norris
|
a41d0b29a9 |
Linux 6.8 compat: make test functions static
The kernel is now being compiled with -Wmissing-prototypes. Most of our test stub functions had no prototype, and failed to compile. Since they don't need to be visible anywhere else, just make them all static. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Rob Norris <robn@despairlabs.com> Sponsored-by: https://despairlabs.com/sponsor/ Closes #15805 |
||
Brian Behlendorf
|
608f8749a1
|
Perform KABI checks in parallel
Reduce the time required for ./configure to perform the needed KABI checks by allowing kbuild to compile multiple test cases in parallel. This was accomplished by splitting each test's source code from the logic handling whether that code could be compiled or not. By introducing this split it's possible to minimize the number of times kbuild needs to be invoked. As importantly, it means all of the tests can be built in parallel. This does require a little extra care since we expect some tests to fail, so the --keep-going (-k) option must be provided otherwise some tests may not get compiled. Furthermore, since a failure during the kbuild modpost phase will result in an early exit; the final linking phase is limited to tests which passed the initial compilation and produced an object file. Once everything has been built the configure script proceeds as previously. The only significant difference is that it now merely needs to test for the existence of a .ko file to determine the result of a given test. This vastly speeds up the entire process. New test cases should use ZFS_LINUX_TEST_SRC to declare their test source code and ZFS_LINUX_TEST_RESULT to check the result. All of the existing kernel-*.m4 files have been updated accordingly, see config/kernel-current-time.m4 for a basic example. The legacy ZFS_LINUX_TRY_COMPILE macro has been kept to handle special cases but it's use is not encouraged. master (secs) patched (secs) ------------- ---------------- autogen.sh 61 68 configure 137 24 (~17% of current run time) make -j $(nproc) 44 44 make rpms 287 150 Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8547 Closes #9132 Closes #9341 |
||
Brian Behlendorf
|
a584ef2605
|
Direct IO support
Direct IO via the O_DIRECT flag was originally introduced in XFS by IRIX for database workloads. Its purpose was to allow the database to bypass the page and buffer caches to prevent unnecessary IO operations (e.g. readahead) while preventing contention for system memory between the database and kernel caches. On Illumos, there is a library function called directio(3C) that allows user space to provide a hint to the file system that Direct IO is useful, but the file system is free to ignore it. The semantics are also entirely a file system decision. Those that do not implement it return ENOTTY. Since the semantics were never defined in any standard, O_DIRECT is implemented such that it conforms to the behavior described in the Linux open(2) man page as follows. 1. Minimize cache effects of the I/O. By design the ARC is already scan-resistant which helps mitigate the need for special O_DIRECT handling. Data which is only accessed once will be the first to be evicted from the cache. This behavior is in consistent with Illumos and FreeBSD. Future performance work may wish to investigate the benefits of immediately evicting data from the cache which has been read or written with the O_DIRECT flag. Functionally this behavior is very similar to applying the 'primarycache=metadata' property per open file. 2. O_DIRECT _MAY_ impose restrictions on IO alignment and length. No additional alignment or length restrictions are imposed. 3. O_DIRECT _MAY_ perform unbuffered IO operations directly between user memory and block device. No unbuffered IO operations are currently supported. In order to support features such as transparent compression, encryption, and checksumming a copy must be made to transform the data. 4. O_DIRECT _MAY_ imply O_DSYNC (XFS). O_DIRECT does not imply O_DSYNC for ZFS. Callers must provide O_DSYNC to request synchronous semantics. 5. O_DIRECT _MAY_ disable file locking that serializes IO operations. Applications should avoid mixing O_DIRECT and normal IO or mmap(2) IO to the same file. This is particularly true for overlapping regions. All I/O in ZFS is locked for correctness and this locking is not disabled by O_DIRECT. However, concurrently mixing O_DIRECT, mmap(2), and normal I/O on the same file is not recommended. This change is implemented by layering the aops->direct_IO operations on the existing AIO operations. Code already existed in ZFS on Linux for bypassing the page cache when O_DIRECT is specified. References: * http://xfs.org/docs/xfsdocs-xml-dev/XFS_User_Guide/tmp/en-US/html/ch02s09.html * https://blogs.oracle.com/roch/entry/zfs_and_directio * https://ext4.wiki.kernel.org/index.php/Clarifying_Direct_IO's_Semantics * https://illumos.org/man/3c/directio Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com> Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #224 Closes #7823 |