The LBA weighting makes sense on rotational media where the outer tracks
have twice the bandwidth of the inner tracks. However, it is detrimental
on nonrotational media such as solid state disks, where the only effect
is to ensure that metaslabs enter the best-fit allocation behavior
sooner, which is detrimental to performance. It also makes no sense on
files where the underlying filesystem can arrange things however it
wants.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3712
Under Linux filesystem threads responsible for handling I/O are
normally created with the maximum priority. Non-I/O filesystem
processes run with the default priority. ZFS should adopt the
same priority scheme under Linux to maintain good performance
and so that it will complete fairly when other Linux filesystems
are active. The priorities have been updated to the following:
$ ps -eLo rtprio,cls,pid,pri,nice,cmd | egrep 'z_|spl_|zvol|arc|dbu|meta'
- TS 10743 19 -20 [spl_kmem_cache]
- TS 10744 19 -20 [spl_system_task]
- TS 10745 19 -20 [spl_dynamic_tas]
- TS 10764 19 0 [dbu_evict]
- TS 10765 19 0 [arc_prune]
- TS 10766 19 0 [arc_reclaim]
- TS 10767 19 0 [arc_user_evicts]
- TS 10768 19 0 [l2arc_feed]
- TS 10769 39 0 [z_unmount]
- TS 10770 39 -20 [zvol]
- TS 11011 39 -20 [z_null_iss]
- TS 11012 39 -20 [z_null_int]
- TS 11013 39 -20 [z_rd_iss]
- TS 11014 39 -20 [z_rd_int_0]
- TS 11022 38 -19 [z_wr_iss]
- TS 11023 39 -20 [z_wr_iss_h]
- TS 11024 39 -20 [z_wr_int_0]
- TS 11032 39 -20 [z_wr_int_h]
- TS 11033 39 -20 [z_fr_iss_0]
- TS 11041 39 -20 [z_fr_int]
- TS 11042 39 -20 [z_cl_iss]
- TS 11043 39 -20 [z_cl_int]
- TS 11044 39 -20 [z_ioctl_iss]
- TS 11045 39 -20 [z_ioctl_int]
- TS 11046 39 -20 [metaslab_group_]
- TS 11050 19 0 [z_iput]
- TS 11121 38 -19 [z_wr_iss]
Note that under Linux the meaning of a processes priority is inverted
with respect to illumos. High values on Linux indicate a _low_ priority
while high value on illumos indicate a _high_ priority.
In order to preserve the logical meaning of the minclsyspri and
maxclsyspri macros when they are used by the illumos wrapper functions
their values have been inverted. This way when changes are merged
from upstream illumos we won't need to remember to invert the macro.
It could also lead to confusion.
This patch depends on https://github.com/zfsonlinux/spl/pull/466.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes#3607
Reclaim during metaslab preloading can cause deadlocks involving znode
z_lock and ARC buffer header ht_lock.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3532.
Over the years the default values for the taskqs used on Linux have
differed slightly from illumos. In the vast majority of cases this
was done to avoid creating an obnoxious number of idle threads which
would pollute the process listing.
With the addition of support for dynamic taskqs all multi-threaded
queues should be created as dynamic taskqs. This allows us to get
the best of both worlds.
* The illumos default values for the I/O pipeline can be restored.
These values are known to work well for most workloads. The only
exception is the zio write interrupt taskq which is changed to
ZTI_P(12, 8). At least under Linux more threads has been shown
to improve performance, see commit 7e55f4e.
* Reduces the number of idle threads on the system when it's not
under heavy load. The maximum number of threads will only be
created when they are required.
* Remove the vdev_file_taskq and rely on the system_taskq instead
which is now dynamic and may have up to 64-threads. Again this
brings us back inline with upstream.
* Tasks dispatched with taskq_dispatch_ent() are allowed to use
dynamic taskqs. The Linux taskq implementation supports this.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#3507
This seems generally useful. metaslab_aliquot is the ZFS allocation
granularity, which is roughly equivalent to what is called the stripe
size in traditional RAID arrays. It seems relevant to performance
tuning.
Signed-off-by: Etienne Dechamps <etienne@edechamps.fr>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The metaslab allocator device selection algorithm contains a bias
mechanism whose goal is to achieve roughly equal disk space usage across
all top-level vdevs.
It seems that the initial rationale for this code was to allow newly
added (empty) vdevs to "come up to speed" faster in an attempt to make
the pool quickly converge to a steady state where all vdevs are equally
utilized.
While the code seems to work reasonably well for this use case, there
is another scenario in which this algorithm fails miserably: the case
where top-level vdevs don't have the same sizes (capacities). ZFS
allows this, and it is a good feature to have, so that users who simply
want to build a pool with the disks they happen to have lying around can
do so even if the disks have heteregenous sizes.
Here's a script that simulates a pool with two vdevs, with one 4X larger
than the other:
dd if=/dev/zero of=/tmp/d1 bs=1 count=1 seek=134217728
dd if=/dev/zero of=/tmp/d2 bs=1 count=1 seek=536870912
zpool create testspace /tmp/d1 /tmp/d2
dd if=/dev/zero of=/testspace/foobar bs=1M count=256
zpool iostat -v testspace
Before this commit, the script would output the following:
capacity
pool alloc free
---------- ----- -----
testspace 252M 375M
/tmp/d1 104M 18.5M
/tmp/d2 148M 356M
---------- ----- -----
This demonstrates that the current code handles this situation very
poorly: d1 shows 85% usage despite the pool itself being only 40% full.
d1 is quite saturated at this point, and is slowing down the entire pool
due to saturation, fragmentation and the like.
In contrast, here's the result with the code in this commit:
capacity
pool alloc free
---------- ----- -----
testspace 252M 375M
/tmp/d1 56.7M 66.3M
/tmp/d2 195M 309M
---------- ----- ------
This looks much better. d1 is 46% used, which is close to the overall
pool utilization (40%). The code still doesn't result in perfectly
balanced allocation, probably because of the way mg_bias is applied
which does not guarantee perfect accuracy, but this is still much better
than before.
Signed-off-by: Etienne Dechamps <etienne@edechamps.fr>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3389
Replace taskq_wait() with taskq_wait_oustanding(). This way callers
will only block until previously submitted tasks have been completed.
This was the previous behavior of task_wait() prior to the introduction
of taskq_wait_outstanding() so this isn't really a functionalty change
for these callers.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The metaslab_min_alloc_size option is no longer used in the code.
This functionality was removed by commit f3a7f66 and the module
options should have been dropped at that time.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
When a bad DVA is encountered in metaslab_free_dva() the system
should treat it as fatal. This indicates that somehow a damaged
DVA was written to disk and that should be impossible.
However, we have seen a handful of reports over the years of pools
somehow being damaged in this way. Since this damage can render
otherwise intact pools unimportable, and the consequence of skipping
the bad DVA is only leaked free space, it makes sense to provide
a mechanism to ignore the bad DVA. Setting the zfs_recover=1 module
option will cause the DVA to be ignored which may allow the pool to
be imported.
Since zfs_recover=0 by default any pool attempting to free a bad DVA
will treat it as a fatal error preserving the current behavior.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3099
Issue #3090
Issue #2720
Normally when importing a pool the space maps for all top level
vdevs are read from disk. The space maps will be required latter
when an allocation is performed and free blocks need to be located.
However, if the pool is imported readonly then we are guaranteed
that no allocations can occur. In this case the space maps need
not be loaded.. A similar argument can be made for the DTLs
(dirty time logs).
Because a pool import will fail if the space maps cannot be read.
The ability to safely ignore them makes it more likely that a
damaged pool can be imported readonly to recover its contents.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #2831
By marking DMU transaction processing contexts with PF_FSTRANS
we can revert the KM_PUSHPAGE -> KM_SLEEP changes. This brings
us back in line with upstream. In some cases this means simply
swapping the flags back. For others fnvlist_alloc() was replaced
by nvlist_alloc(..., KM_PUSHPAGE) and must be reverted back to
fnvlist_alloc() which assumes KM_SLEEP.
The one place KM_PUSHPAGE is kept is when allocating ARC buffers
which allows us to dip in to reserved memory. This is again the
same as upstream.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
5164 space_map_max_blksz causes panic, does not work
5165 zdb fails assertion when run on pool with recently-enabled
space map_histogram feature
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5164https://www.illumos.org/issues/5165https://github.com/illumos/illumos-gate/commit/b1be289
Porting Notes:
The metaslab_fragmentation() hunk was dropped from this patch
because it was already resolved by commit 8b0a084.
The comment modified in metaslab.c was updated to use the correct
variable name, space_map_blksz. The upstream commit incorrectly
used space_map_blksize.
Ported by: Turbo Fredriksson <turbo@bayour.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2697
4958 zdb trips assert on pools with ashift >= 0xe
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Max Grossman <max.grossman@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
References:
https://www.illumos.org/issues/4958https://github.com/illumos/illumos-gate/commit/2a104a5
Porting notes:
Keep the ZIO_FLAG_FASTWRITE define. This is for a feature present
in Linux but not yet in *BSD.
Ported by: Turbo Fredriksson <turbo@bayour.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2697
Illumos 4982 added code to metaslab_fragmentation() to proactively update
space maps when the spacemap_histogram feature is enabled. This should
only happen when the pool is writeable.
References:
https://www.illumos.org/issues/4982https://github.com/illumos/illumos-gate/commit/2e4c998
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2595
4976 zfs should only avoid writing to a failing non-redundant top-level vdev
4978 ztest fails in get_metaslab_refcount()
4979 extend free space histogram to device and pool
4980 metaslabs should have a fragmentation metric
4981 remove fragmented ops vector from block allocator
4982 space_map object should proactively upgrade when feature is enabled
4983 need to collect metaslab information via mdb
4984 device selection should use fragmentation metric
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <adam.leventhal@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
References:
https://www.illumos.org/issues/4976https://www.illumos.org/issues/4978https://www.illumos.org/issues/4979https://www.illumos.org/issues/4980https://www.illumos.org/issues/4981https://www.illumos.org/issues/4982https://www.illumos.org/issues/4983https://www.illumos.org/issues/4984https://github.com/illumos/illumos-gate/commit/2e4c998
Notes:
The "zdb -M" option has been re-tasked to display the new metaslab
fragmentation metric and the new "zdb -I" option is used to control
the maximum number of in-flight I/Os.
The new fragmentation metric is derived from the space map histogram
which has been rolled up to the vdev and pool level and is presented
to the user via "zpool list".
Add a number of module parameters related to the new metaslab weighting
logic.
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2595
4757 ZFS embedded-data block pointers ("zero block compression")
4913 zfs release should not be subject to space checks
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Max Grossman <max.grossman@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/4757https://www.illumos.org/issues/4913https://github.com/illumos/illumos-gate/commit/5d7b4d4
Porting notes:
For compatibility with the fastpath code the zio_done() function
needed to be updated. Because embedded-data block pointers do
not require DVAs to be allocated the associated vdevs will not
be marked and therefore should not be unmarked.
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2544
4754 io issued to near-full luns even after setting noalloc threshold
4755 mg_alloc_failures is no longer needed
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/4754https://www.illumos.org/issues/4755https://github.com/illumos/illumos-gate/commit/b6240e8
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2533
4374 dn_free_ranges should use range_tree_t
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Max Grossman <max.grossman@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com
Reviewed by: Garrett D'Amore <garrett@damore.org>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/4374https://github.com/illumos/illumos-gate/commit/bf16b11
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2531
4756 metaslab_group_preload() could deadlock
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Approved by: Garrett D'Amore <garrett@damore.org>
The metaslab_group_preload() function grabs the mg_lock and then later
tries to grab the metaslab lock. This lock ordering may lead to a
deadlock since other consumers of the mg_lock will grab the metaslab
lock first.
References:
https://www.illumos.org/issues/4756https://github.com/illumos/illumos-gate/commit/30beaff
Ported-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2488
4730 metaslab group taskq should be destroyed in metaslab_group_destroy()
Reviewed by: Alex Reece <alex.reece@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed by: Rich Lowe <richlowe@richlowe.net>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/4730https://github.com/illumos/illumos-gate/commit/be08211
Porting notes:
Under ZFSonlinux, one of the effects of not destroying the taskq is that
zdb would never exit (due to the SPL taskq implementation).
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2488
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101https://www.illumos.org/issues/4102https://www.illumos.org/issues/4103https://www.illumos.org/issues/4105https://www.illumos.org/issues/4106https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2488
This changes moves the called to metaslab_group_alloc_update() to the
metaslab_sync_reassess() function. The original placement of the call
within metaslab_sync_done() appears to have been a simple mistake,
introduced by ac72fac3ea.
This aligns us more closely to the upstream illumos code base.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The parameter was added as illumos issue 4081 which was committed to
zfsonlinux in ac72fac3ea. This patch
documents the parameter and allows for it to be set as a module parameter.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2483
A minor style issue was accidentally introduced by aa7d06a.
This change resolves that style problem.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Today the metaslab_debug logic performs two tasks:
- load all metaslabs on import/open
- don't unload metaslabs at the end of spa_sync
This change provides knobs for each of these independently.
References:
https://illumos.org/issues/4101https://github.com/illumos/illumos-gate/commit/0713e23
Notes:
1) This is a small piece of the metaslab improvement patch from
Illumos. It was worth bringing over before the rest, since it's
low risk and it can be useful on fragmented pools (e.g. Lustre
MDTs). metaslab_debug_unload would give the performance benefit
of the old metaslab_debug option without causing unwanted delay
during pool import.
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2227
The vast majority of these changes are in Linux specific code.
They are the result of not having an automated style checker to
validate the code when it was originally written. Others were
caused when the common code was slightly adjusted for Linux.
This patch contains no functional changes. It only refreshes
the code to conform to style guide.
Everyone submitting patches for inclusion upstream should now
run 'make checkstyle' and resolve any warning prior to opening
a pull request. The automated builders have been updated to
fail a build if when 'make checkstyle' detects an issue.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1821
4168 ztest assertion failure in dbuf_undirty
4169 verbatim import causes zdb to segfault
4170 zhack leaves pool in ACTIVE state
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Dan McDonald <danmcd@nexenta.com>
References:
https://www.illumos.org/issues/4168https://www.illumos.org/issues/4169https://www.illumos.org/issues/4170illumos/illumos-gate@7fdd916c47
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1775
3598 want to dtrace when errors are generated in zfs
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
References:
https://www.illumos.org/issues/3598illumos/illumos-gate@be6fd75a69
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1775
Porting notes:
1. include/sys/zfs_context.h has been modified to render some new
macros inert until dtrace is available on Linux.
2. Linux-specific changes have been adapted to use SET_ERROR().
3. I'm NOT happy about this change. It does nothing but ugly
up the code under Linux. Unfortunately we need to take it to
avoid more merge conflicts in the future. -Brian
3578 transferring the freed map to the defer map should be constant time
3579 ztest trips assertion in metaslab_weight()
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Richard Elling <richard.elling@dey-sys.com>
Approved by: Dan McDonald <danmcd@nexenta.com>
References:
https://www.illumos.org/issues/3578https://www.illumos.org/issues/3579illumos/illumos-gate@9eb57f7f3f
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
3552 condensing one space map burns 3 seconds of CPU in spa_sync()
thread (fix race condition)
References:
https://www.illumos.org/issues/3552illumos/illumos-gate@03f8c36688
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Porting notes:
This fixes an upstream regression that was introduced in commit
zfsonlinux/zfs@e51be06697, which
ported the Illumos 3552 changes. This fix was added to upstream
rather quickly, but at the time of the port, no one spotted it and
the race was rare enough that it passed our regression tests. I
discovered this when comparing our metaslab.c to the illumos
metaslab.c.
Without this change it is possible for metaslab_group_alloc() to
consume a large amount of cpu time. Since this occurs under a
mutex in a rcu critical section the kernel will log this to the
console as a self-detected cpu stall as follows:
INFO: rcu_sched self-detected stall on CPU { 0}
(t=60000 jiffies g=11431890 c=11431889 q=18271)
Closes#1687Closes#1720Closes#1731Closes#1747
3552 condensing one space map burns 3 seconds of CPU in spa_sync() thread
3564 spa_sync() spends 5-10% of its time in metaslab_sync() (when not condensing)
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
References:
illumos/illumos-gate@16a4a80742https://www.illumos.org/issues/3552https://www.illumos.org/issues/3564
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1513
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first
argument is zero
Reviewed by Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by George Wilson <george.wilson@delphix.com>
Approved by Eric Schrock <eric.schrock@delphix.com>
References:
illumos/illumos-gate@fb09f5aad4https://illumos.org/issues/3006
Requires:
zfsonlinux/spl@1c6d149feb
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1509
3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()
3330 space_seg_t should have its own kmem_cache
3331 deferred frees should happen after sync_pass 1
3335 make SYNC_PASS_* constants tunable
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Dan McDonald <danmcd@nexenta.com>
Approved by: Eric Schrock <eric.schrock@delphix.com>
References:
illumos/illumos-gate@01f55e48fbhttps://www.illumos.org/issues/3329https://www.illumos.org/issues/3330https://www.illumos.org/issues/3331https://www.illumos.org/issues/3335
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Enabling metaslab debugging will prevent space maps from being
automatically unloaded. This can significantly increase the
memory footprint but being able to dynamically control this is
helpful for debugging and certain performance testing.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Currently, ZIL blocks are spread over vdevs using hint block pointers
managed by the ZIL commit code and passed to metaslab_alloc(). Spreading
log blocks accross vdevs is important for performance: indeed, using
mutliple disks in parallel decreases the ZIL commit latency, which is
the main performance metric for synchronous writes. However, the current
implementation suffers from the following issues:
1) It would be best if the ZIL module was not aware of such low-level
details. They should be handled by the ZIO and metaslab modules;
2) Because the hint block pointer is managed per log, simultaneous
commits from multiple logs might use the same vdevs at the same time,
which is inefficient;
3) Because dmu_write() does not honor the block pointer hint, indirect
writes are not spread.
The naive solution of rotating the metaslab rotor each time a block is
allocated for the ZIL or dmu_sync() doesn't work in practice because the
first ZIL block to be written is actually allocated during the previous
commit. Consequently, when metaslab_alloc() decides the vdev for this
block, it will do so while a bunch of other allocations are happening at
the same time (from dmu_sync() and other ZILs). This means the vdev for
this block is chosen more or less at random. When the next commit
happens, there is a high chance (especially when the number of blocks
per commit is slightly less than the number of the disks) that one disk
will have to write two blocks (with a potential seek) while other disks
are sitting idle, which defeats spreading and increases the commit
latency.
This commit introduces a new concept in the metaslab allocator:
fastwrites. Basically, each top-level vdev maintains a counter
indicating the number of synchronous writes (from dmu_sync() and the
ZIL) which have been allocated but not yet completed. When the metaslab
is called with the FASTWRITE flag, it will choose the vdev with the
least amount of pending synchronous writes. If there are multiple vdevs
with the same value, the first matching vdev (starting from the rotor)
is used. Once metaslab_alloc() has decided which vdev the block is
allocated to, it updates the fastwrite counter for this vdev.
The rationale goes like this: when an allocation is done with
FASTWRITE, it "reserves" the vdev until the data is written. Until then,
all future allocations will naturally avoid this vdev, even after a full
rotation of the rotor. As a result, pending synchronous writes at a
given point in time will be nicely spread over all vdevs. This contrasts
with the previous algorithm, which is based on the implicit assumption
that blocks are written instantaneously after they're allocated.
metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to
manually increase or decrease fastwrite counters, respectively. They
should be used with caution, as there is no per-BP tracking of fastwrite
information, so leaks and "double-unmarks" are possible. There is,
however, an assert in the vdev teardown code which will fire if the
fastwrite counters are not zero when the pool is exported or the vdev
removed. Note that as stated above, marking is also done implictly by
metaslab_alloc().
ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to
the metaslab when allocating (assuming ZIO does the allocation, which is
only true in the case of dmu_sync). This flag will also trigger an
unmark when zio_done() fires.
A side-effect of the new algorithm is that when a ZIL stops being used,
its last block can stay in the pending state (allocated but not yet
written) for a long time, polluting the fastwrite counters. To avoid
that, I've implemented a somewhat crude but working solution which
unmarks these pending blocks in zil_sync(), thus guaranteeing that
linguering fastwrites will get pruned at each sync event.
The best performance improvements are observed with pools using a large
number of top-level vdevs and heavy synchronous write workflows
(especially indirect writes and concurrent writes from multiple ZILs).
Real-life testing shows a 200% to 300% performance increase with
indirect writes and various commit sizes.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1013
Differences between how paging is done on Solaris and Linux can cause
deadlocks if KM_SLEEP is used in any the following contexts.
* The txg_sync thread
* The zvol write/discard threads
* The zpl_putpage() VFS callback
This is because KM_SLEEP will allow for direct reclaim which may result
in the VM calling back in to the filesystem or block layer to write out
pages. If a lock is held over this operation the potential exists to
deadlock the system. To ensure forward progress all memory allocations
in these contexts must us KM_PUSHPAGE which disables performing any I/O
to accomplish the memory allocation.
Previously, this behavior was acheived by setting PF_MEMALLOC on the
thread. However, that resulted in unexpected side effects such as the
exhaustion of pages in ZONE_DMA. This approach touchs more of the zfs
code, but it is more consistent with the right way to handle these cases
under Linux.
This is patch lays the ground work for being able to safely revert the
following commits which used PF_MEMALLOC:
21ade34 Disable direct reclaim for z_wr_* threads
cfc9a5c Fix zpl_writepage() deadlock
eec8164 Fix ASSERTION(!dsl_pool_sync_context(tx->tx_pool))
Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #726
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Bill Pijewski <wdp@joyent.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Reviewed by: Steve Gonczi <gonczi@comcast.net>
Reviewed by: Garrett D'Amore <garrett.damore@gmail.com>
Reviewed by: Dan McDonald <danmcd@nexenta.com>
Reviewed by: Albert Lee <trisk@nexenta.com>
Approved by: Eric Schrock <eric.schrock@delphix.com>
Refererces to Illumos issue:
https://www.illumos.org/issues/1909
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#680
Today zfs tries to allocate blocks evenly across all devices.
This means when devices are imbalanced zfs will use lots of
CPU searching for space on devices which tend to be pretty
full. It should instead fail quickly on the full LUNs and
move onto devices which have more availability.
Reviewed by: Eric Schrock <Eric.Schrock@delphix.com>
Reviewed by: Matt Ahrens <Matt.Ahrens@delphix.com>
Reviewed by: Adam Leventhal <Adam.Leventhal@delphix.com>
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Gordon Ross <gwr@nexenta.com>
Approved by: Garrett D'Amore <garrett@nexenta.com>
References to Illumos issue and patch:
- https://www.illumos.org/issues/510
- https://github.com/illumos/illumos-gate/commit/5ead3ed965
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #340
If your only going to allow one allocator to be used and it is defined
at compile time there is no point including the others in the build.
This patch could/should be refined for Linux to make the metaslab
configurable at run time. That might be a bit tricky however since
you would need to quiese all IO. Short of that making it configurable
as a module load option would be a reasonable compromise.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Fix non-c90 compliant code, for the most part these changes
simply deal with where a particular variable is declared.
Under c90 it must alway be done at the very start of a block.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>