mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-15 20:50:30 +03:00
a9856574cf
67 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
наб
|
18168da727
|
module/*.ko: prune .data, global .rodata
Evaluated every variable that lives in .data (and globals in .rodata) in the kernel modules, and constified/eliminated/localised them appropriately. This means that all read-only data is now actually read-only data, and, if possible, at file scope. A lot of previously- global-symbols became inlinable (and inlined!) constants. Probably not in a big Wowee Performance Moment, but hey. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #12899 |
||
Allan Jude
|
2a673e76a9
|
Vdev Properties Feature
Add properties, similar to pool properties, to each vdev. This makes use of the existing per-vdev ZAP that was added as part of device evacuation/removal. A large number of read-only properties are exposed, many of the members of struct vdev_t, that provide useful statistics. Adds support for read-only "removing" vdev property. Adds the "allocating" property that defaults to "on" and can be set to "off" to prevent future allocations from that top-level vdev. Supports user-defined vdev properties. Includes support for properties.vdev in SYSFS. Co-authored-by: Allan Jude <allan@klarasystems.com> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Signed-off-by: Allan Jude <allan@klarasystems.com> Closes #11711 |
||
Ryan Moeller
|
e778b0485b
|
Ratelimit deadman zevents as with delay zevents
Just as delay zevents can flood the zevent pipe when a vdev becomes unresponsive, so do the deadman zevents. Ratelimit deadman zevents according to the same tunable as for delay zevents. Enable deadman tests on FreeBSD and add a test for deadman event ratelimiting. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Don Brady <don.brady@delphix.com> Signed-off-by: Ryan Moeller <ryan@iXsystems.com> Closes #11786 |
||
Andrea Gelmini
|
bf169e9f15 |
Fix various typos
Correct an assortment of typos throughout the code base. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net> Closes #11774 |
||
Alan Somers
|
cf0977ad72 |
Parallelize vdev_validate
The runtime of vdev_validate is dominated by the disk accesses in vdev_label_read_config. Speed it up by validating all vdevs in parallel using a taskq. Sponsored by: Axcient Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Alan Somers <asomers@gmail.com> Closes #11470 |
||
Alan Somers
|
a0e01997ec |
Parallelize vdev_load
metaslab_init is the slowest part of importing a mature pool, and it must be repeated hundreds of times for each top-level vdev. But its speed is dominated by a few serialized disk accesses. That can lead to import times of > 1 hour for pools with many top-level vdevs on spinny disks. Speed up the import by using a taskqueue to parallelize vdev_load across all top-level vdevs. This also requires adding mutex protection to metaslab_class_t.mc_historgram. The mc_histogram fields were unprotected when that code was first written in "Illumos 4976-4984 - metaslab improvements" (OpenZFS |
||
Matthew Ahrens
|
aa755b3549
|
Set aside a metaslab for ZIL blocks
Mixing ZIL and normal allocations has several problems: 1. The ZIL allocations are allocated, written to disk, and then a few seconds later freed. This leaves behind holes (free segments) where the ZIL blocks used to be, which increases fragmentation, which negatively impacts performance. 2. When under moderate load, ZIL allocations are of 128KB. If the pool is fairly fragmented, there may not be many free chunks of that size. This causes ZFS to load more metaslabs to locate free segments of 128KB or more. The loading happens synchronously (from zil_commit()), and can take around a second even if the metaslab's spacemap is cached in the ARC. All concurrent synchronous operations on this filesystem must wait while the metaslab is loading. This can cause a significant performance impact. 3. If the pool is very fragmented, there may be zero free chunks of 128KB or more. In this case, the ZIL falls back to txg_wait_synced(), which has an enormous performance impact. These problems can be eliminated by using a dedicated log device ("slog"), even one with the same performance characteristics as the normal devices. This change sets aside one metaslab from each top-level vdev that is preferentially used for ZIL allocations (vdev_log_mg, spa_embedded_log_class). From an allocation perspective, this is similar to having a dedicated log device, and it eliminates the above-mentioned performance problems. Log (ZIL) blocks can be allocated from the following locations. Each one is tried in order until the allocation succeeds: 1. dedicated log vdevs, aka "slog" (spa_log_class) 2. embedded slog metaslabs (spa_embedded_log_class) 3. other metaslabs in normal vdevs (spa_normal_class) The space required for the embedded slog metaslabs is usually between 0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop" space that is not available for user data. On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity, and recordsize=8k, testing shows a ~50% performance increase on random 8k sync writes. On even more fragmented systems (which hit problem #3 above and call txg_wait_synced()), the performance improvement can be arbitrarily large (>100x). Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Don Brady <don.brady@delphix.com> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #11389 |
||
Alexander Motin
|
6f5aac3ca0
|
Reduce latency effects of non-interactive I/O
Investigating influence of scrub (especially sequential) on random read latency I've noticed that on some HDDs single 4KB read may take up to 4 seconds! Deeper investigation shown that many HDDs heavily prioritize sequential reads even when those are submitted with queue depth of 1. This patch addresses the latency from two sides: - by using _min_active queue depths for non-interactive requests while the interactive request(s) are active and few requests after; - by throttling it further if no interactive requests has completed while configured amount of non-interactive did. While there, I've also modified vdev_queue_class_to_issue() to give more chances to schedule at least _min_active requests to the lowest priorities. It should reduce starvation if several non-interactive processes are running same time with some interactive and I think should make possible setting of zfs_vdev_max_active to as low as 1. I've benchmarked this change with 4KB random reads from ZVOL with 16KB block size on newly written non-fragmented pool. On fragmented pool I also saw improvements, but not so dramatic. Below are log2 histograms of the random read latency in milliseconds for different devices: 4 2x mirror vdevs of SATA HDD WDC WD20EFRX-68EUZN0 before: 0, 0, 2, 1, 12, 21, 19, 18, 10, 15, 17, 21 after: 0, 0, 0, 24, 101, 195, 419, 250, 47, 4, 0, 0 , that means maximum latency reduction from 2s to 500ms. 4 2x mirror vdevs of SATA HDD WDC WD80EFZX-68UW8N0 before: 0, 0, 2, 31, 38, 28, 18, 12, 17, 20, 24, 10, 3 after: 0, 0, 55, 247, 455, 470, 412, 181, 36, 0, 0, 0, 0 , i.e. from 4s to 250ms. 1 SAS HDD SEAGATE ST14000NM0048 before: 0, 0, 29, 70, 107, 45, 27, 1, 0, 0, 1, 4, 19 after: 1, 29, 681, 1261, 676, 1633, 67, 1, 0, 0, 0, 0, 0 , i.e. from 4s to 125ms. 1 SAS SSD SEAGATE XS3840TE70014 before (microseconds): 0, 0, 0, 0, 0, 0, 0, 0, 70, 18343, 82548, 618 after: 0, 0, 0, 0, 0, 0, 0, 0, 283, 92351, 34844, 90 I've also measured scrub time during the test and on idle pools. On idle fragmented pool I've measured scrub getting few percent faster due to use of QD3 instead of QD2 before. On idle non-fragmented pool I've measured no difference. On busy non-fragmented pool I've measured scrub time increase about 1.5-1.7x, while IOPS increase reached 5-9x. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Signed-off-by: Alexander Motin <mav@FreeBSD.org> Sponsored-By: iXsystems, Inc. Closes #11166 |
||
Brian Behlendorf
|
b2255edcc0
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102 |
||
Toomas Soome
|
1db9e6e4e4
|
zfs label bootenv should store data as nvlist
nvlist does allow us to support different data types and systems. To encapsulate user data to/from nvlist, the libzfsbootenv library is provided. Reviewed-by: Arvind Sankar <nivedita@alum.mit.edu> Reviewed-by: Allan Jude <allan@klarasystems.com> Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Igor Kozhukhov <igor@dilos.org> Signed-off-by: Toomas Soome <tsoome@me.com> Closes #10774 |
||
Ryan Moeller
|
6fe3498ca3
|
Import vdev ashift optimization from FreeBSD
Many modern devices use physical allocation units that are much larger than the minimum logical allocation size accessible by external commands. Two prevalent examples of this are 512e disk drives (512b logical sector, 4K physical sector) and flash devices (512b logical sector, 4K or larger allocation block size, and 128k or larger erase block size). Operations that modify less than the physical sector size result in a costly read-modify-write or garbage collection sequence on these devices. Simply exporting the true physical sector of the device to ZFS would yield optimal performance, but has two serious drawbacks: 1. Existing pools created with devices that have different logical and physical block sizes, but were configured to use the logical block size (e.g. because the OS version used for pool construction reported the logical block size instead of the physical block size) will suddenly find that the vdev allocation size has increased. This can be easily tolerated for active members of the array, but ZFS would prevent replacement of a vdev with another identical device because it now appears that the smaller allocation size required by the pool is not supported by the new device. 2. The device's physical block size may be too large to be supported by ZFS. The optimal allocation size for the vdev may be quite large. For example, a RAID controller may export a vdev that requires read-modify-write cycles unless accessed using 64k aligned/sized requests. ZFS currently has an 8k minimum block size limit. Reporting both the logical and physical allocation sizes for vdevs solves these problems. A device may be used so long as the logical block size is compatible with the configuration. By comparing the logical and physical block sizes, new configurations can be optimized and administrators can be notified of any existing pools that are sub-optimal. Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Co-authored-by: Matthew Macy <mmacy@freebsd.org> Signed-off-by: Matt Macy <mmacy@FreeBSD.org> Closes #10619 |
||
Brian Behlendorf
|
9a49d3f3d3
|
Add device rebuild feature
The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349 |
||
George Amanakis
|
b7654bd794
|
Trim L2ARC
The l2arc_evict() function is responsible for evicting buffers which reference the next bytes of the L2ARC device to be overwritten. Teach this function to additionally TRIM that vdev space before it is overwritten if the device has been filled with data. This is done by vdev_trim_simple() which trims by issuing a new type of TRIM, TRIM_TYPE_SIMPLE. We also implement a "Trim Ahead" feature. It is a zfs module parameter, expressed in % of the current write size. This trims ahead of the current write size. A minimum of 64MB will be trimmed. The default is 0 which disables TRIM on L2ARC as it can put significant stress to underlying storage devices. To enable TRIM on L2ARC we set l2arc_trim_ahead > 0. We also implement TRIM of the whole cache device upon addition to a pool, pool creation or when the header of the device is invalid upon importing a pool or onlining a cache device. This is dependent on l2arc_trim_ahead > 0. TRIM of the whole device is done with TRIM_TYPE_MANUAL so that its status can be monitored by zpool status -t. We save the TRIM state for the whole device and the time of completion on-disk in the header, and restore these upon L2ARC rebuild so that zpool status -t can correctly report them. Whole device TRIM is done asynchronously so that the user can export of the pool or remove the cache device while it is trimming (ie if it is too slow). We do not TRIM the whole device if persistent L2ARC has been disabled by l2arc_rebuild_enabled = 0 because we may not want to lose all cached buffers (eg we may want to import the pool with l2arc_rebuild_enabled = 0 only once because of memory pressure). If persistent L2ARC has been disabled by setting the module parameter l2arc_rebuild_blocks_min_l2size to a value greater than the size of the cache device then the whole device is trimmed upon creation or import of a pool if l2arc_trim_ahead > 0. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Adam D. Moss <c@yotes.com> Signed-off-by: George Amanakis <gamanakis@gmail.com> Closes #9713 Closes #9789 Closes #10224 |
||
Paul Dagnelie
|
108a454a46
|
Add support for boot environment data to be stored in the label
Modern bootloaders leverage data stored in the root filesystem to enable some of their powerful features. GRUB specifically has a grubenv file which can store large amounts of configuration data that can be read and written at boot time and during normal operation. This allows sysadmins to configure useful features like automated failover after failed boot attempts. Unfortunately, due to the Copy-on-Write nature of ZFS, the standard behavior of these tools cannot handle writing to ZFS files safely at boot time. We need an alternative way to store data that allows the bootloader to make changes to the data. This work is very similar to work that was done on Illumos to enable similar functionality in the FreeBSD bootloader. This patch is different in that the data being stored is a raw grubenv file; this file can store arbitrary variables and values, and the scripting provided by grub is powerful enough that special structures are not required to implement advanced behavior. We repurpose the second padding area in each label to store the grubenv file, protected by an embedded checksum. We add two ioctls to get and set this data, and libzfs_core and libzfs functions to access them more easily. There are no direct command line interfaces to these functions; these will be added directly to the bootloader utilities. Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #10009 |
||
Brian Behlendorf
|
2c3a83701d |
Linux 5.6 compat: time_t
As part of the Linux kernel's y2038 changes the time_t type has been fully retired. Callers are now required to use the time64_t type. Rather than move to the new type, I've removed the few remaining places where a time_t is used in the kernel code. They've been replaced with a uint64_t which is already how ZFS internally handled these values. Going forward we should work towards updating the remaining user space time_t consumers to the 64-bit interfaces. Reviewed-by: Matthew Macy <mmacy@freebsd.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10052 Closes #10064 |
||
Matthew Macy
|
da92d5cbb3 |
Add zfs_file_* interface, remove vnodes
Provide a common zfs_file_* interface which can be implemented on all platforms to perform normal file access from either the kernel module or the libzpool library. This allows all non-portable vnode_t usage in the common code to be replaced by the new portable zfs_file_t. The associated vnode and kobj compatibility functions, types, and macros have been removed from the SPL. Moving forward, vnodes should only be used in platform specific code when provided by the native operating system. Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Matt Macy <mmacy@FreeBSD.org> Closes #9556 |
||
Paul Dagnelie
|
ca5777793e |
Reduce loaded range tree memory usage
This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181 |
||
Serapheim Dimitropoulos
|
93e28d661e |
Log Spacemap Project
= Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent |
||
Brian Behlendorf
|
1b939560be
|
Add TRIM support
UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598 |
||
Olaf Faaland
|
3d31aad83e |
MMP writes rotate over leaves
Instead of choosing a leaf vdev quasi-randomly, by starting at the root vdev and randomly choosing children, rotate over leaves to issue MMP writes. This fixes an issue in a pool whose top-level vdevs have different numbers of leaves. The issue is that the frequency at which individual leaves are chosen for MMP writes is based not on the total number of leaves but based on how many siblings the leaves have. For example, in a pool like this: root-vdev +------+---------------+ vdev1 vdev2 | | | +------+-----+-----+----+ disk1 disk2 disk3 disk4 disk5 disk6 vdev1 and vdev2 will each be chosen 50% of the time. Every time vdev1 is chosen, disk1 will be chosen. However, every time vdev2 is chosen, disk2 is chosen 20% of the time. As a result, disk1 will be sent 5x as many MMP writes as disk2. This may create wear issues in the case of SSDs. It also reduces the effectiveness of MMP as it depends on the writes being evenly distributed for the case where some devices fail or are partitioned. The new code maintains a list of leaf vdevs in the pool. MMP records the last leaf used for an MMP write in mmp->mmp_last_leaf. To choose the next leaf, MMP starts at mmp->mmp_last_leaf and traverses the list, continuing from the head if the tail is reached. It stops when a suitable leaf is found or all leaves have been examined. Added a test to verify MMP write distribution is even. Reviewed-by: Tom Caputi <tcaputi@datto.com> Reviewed-by: Kash Pande <kash@tripleback.net> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7953 |
||
Serapheim Dimitropoulos
|
75058f3303 |
Remove unused vdev_t fields
The following fields from the vdev_t struct are not used anywhere. Reviewed-by: George Melikov <mail@gmelikov.ru> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8285 |
||
George Wilson
|
c10d37dd9f |
zfs initialize performance enhancements
PROBLEM ======== When invoking "zpool initialize" on a pool the command will create a thread to initialize each disk. Unfortunately, it does this serially across many transaction groups which can result in commands taking a long time to return to the user and may appear hung. The same thing is true when trying to suspend/cancel the operation. SOLUTION ========= This change refactors the way we invoke the initialize interface to ensure we can start or stop the intialization in just a few transaction groups. When stopping or cancelling a vdev initialization perform it in two phases. First signal each vdev initialization thread that it should exit, then after all threads have been signaled wait for them to exit. On a pool with 40 leaf vdevs this reduces the vdev initialize stop/cancel time from ~10 minutes to under a second. The reason for this is spa_vdev_initialize() no longer needs to wait on multiple full TXGs per leaf vdev being stopped. This commit additionally adds some missing checks for the passed "initialize_vdevs" input nvlist. The contents of the user provided input "initialize_vdevs" nvlist must be validated to ensure all values are uint64s. This is done in zfs_ioc_pool_initialize() in order to keep all of these checks in a single location. Updated the innvl and outnvl comments to match the formatting used for all other new sytle ioctls. Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: George Wilson <george.wilson@delphix.com> Closes #8230 |
||
George Wilson
|
619f097693 |
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230 |
||
loli10K
|
d48091de81 |
zed: detect and offline physically removed devices
This commit adds a new test case to the ZFS Test Suite to verify ZED can detect when a device is physically removed from a running system: the device will be offlined if a spare is not available in the pool. We implement this by using the existing libudev functionality and without relying solely on the FM kernel module capabilities which have been observed to be unreliable with some kernels. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Don Brady <don.brady@delphix.com> Signed-off-by: loli10K <ezomori.nozomu@gmail.com> Closes #1537 Closes #7926 |
||
Tom Caputi
|
80a91e7469 |
Defer new resilvers until the current one ends
Currently, if a resilver is triggered for any reason while an existing one is running, zfs will immediately restart the existing resilver from the beginning to include the new drive. This causes problems for system administrators when a drive fails while another is already resilvering. In this case, the optimal thing to do to reduce risk of data loss is to wait for the current resilver to end before immediately replacing the second failed drive, which allows the system to operate with two incomplete drives for the minimum amount of time. This patch introduces the resilver_defer feature that essentially does this for the admin without forcing them to wait and monitor the resilver manually. The change requires an on-disk feature since we must mark drives that are part of a deferred resilver in the vdev config to ensure that we do not assume they are done resilvering when an existing resilver completes. Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: @mmaybee Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #7732 |
||
Allan Jude
|
9f438c5f94 |
OpenZFS 9862 - fix typo in comment in vdev_impl.h
Authored by: Allan Jude <allanjude@freebsd.org> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Tony Hutter <hutter2@llnl.gov> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: George Melikov <mail@gmelikov.ru> OpenZFS-issue: https://www.illumos.org/issues/9862 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/84927f52 Closes #8036 |
||
Brian Behlendorf
|
27f80e85c2 |
Improved error handling for extreme rewinds
The vdev_checkpoint_sm_object(), vdev_obsolete_sm_object(), and vdev_obsolete_counts_are_precise() functions assume that the only way a zap_lookup() can fail is if the requested entry is missing. While this is the most common cause, it's not the only cause. Attemping to access a damaged ZAP will result in other errors. The most likely scenario for accessing a damaged ZAP is during an extreme rewind pool import. Under these conditions the pool is expected to contain damaged objects and the import code was updated to handle this gracefully. Getting an ECKSUM error from these ZAPs after the pool in import a far less likely, therefore the behavior for call paths was not modified. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #7809 Closes #7921 |
||
Don Brady
|
cc99f275a2 |
Pool allocation classes
Allocation Classes add the ability to have allocation classes in a pool that are dedicated to serving specific block categories, such as DDT data, metadata, and small file blocks. A pool can opt-in to this feature by adding a 'special' or 'dedup' top-level VDEV. Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed-by: Richard Laager <rlaager@wiktel.com> Reviewed-by: Alek Pinchuk <apinchuk@datto.com> Reviewed-by: Håkan Johansson <f96hajo@chalmers.se> Reviewed-by: Andreas Dilger <andreas.dilger@chamcloud.com> Reviewed-by: DHE <git@dehacked.net> Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com> Reviewed-by: Gregor Kopka <gregor@kopka.net> Reviewed-by: Kash Pande <kash@tripleback.net> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Don Brady <don.brady@delphix.com> Closes #5182 |
||
Paul Dagnelie
|
492f64e941 |
OpenZFS 9112 - Improve allocation performance on high-end systems
Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682 |
||
Serapheim Dimitropoulos
|
d2734cce68 |
OpenZFS 9166 - zfs storage pool checkpoint
Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570 |
||
Pavel Zakharov
|
6cb8e5306d |
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459 |
||
Matthew Ahrens
|
a1d477c24c |
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900 |
||
Tony Hutter
|
80d52c3919 |
Change checksum & IO delay ratelimit values
Change checksum & IO delay ratelimit thresholds from 5/sec to 20/sec. This allows zed to actually trigger if a bunch of these events arrive in a short period of time (zed has a threshold of 10 events in 10 sec). Previously, if you had, say, 100 checksum errors in 1 sec, it would get ratelimited to 5/sec which wouldn't trigger zed to fault the drive. Also, convert the checksum and IO delay thresholds to module params for easy testing. Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Tony Hutter <hutter2@llnl.gov> Closes #7252 |
||
Olaf Faaland
|
7088545d01 |
Report duration and error in mmp_history entries
After an MMP write completes, update the relevant mmp_history entry with the time between submission and completion, and the error status of the write. [faaland1@toss3a zfs]$ cat /proc/spl/kstat/zfs/pool/multihost 39 0 0x01 100 8800 69147946270893 72723903122926 id txg timestamp error duration mmp_delay vdev_guid 10607 1166 1518985089 0 138301 637785455 4882... 10608 1166 1518985089 0 136154 635407747 1151... 10609 1166 1518985089 0 803618560 633048078 9740... 10610 1166 1518985090 0 144826 633048078 4882... 10611 1166 1518985090 0 164527 666187671 1151... Where duration = gethrtime_in_done_fn - gethrtime_at_submission, and error = zio->io_error. Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7190 |
||
Tom Caputi
|
d4a72f2386 |
Sequential scrub and resilvers
Currently, scrubs and resilvers can take an extremely long time to complete. This is largely due to the fact that zfs scans process pools in logical order, as determined by each block's bookmark. This makes sense from a simplicity perspective, but blocks in zfs are often scattered randomly across disks, particularly due to zfs's copy-on-write mechanisms. This patch improves performance by splitting scrubs and resilvers into a metadata scanning phase and an IO issuing phase. The metadata scan reads through the structure of the pool and gathers an in-memory queue of I/Os, sorted by size and offset on disk. The issuing phase will then issue the scrub I/Os as sequentially as possible, greatly improving performance. This patch also updates and cleans up some of the scan code which has not been updated in several years. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Authored-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Authored-by: Alek Pinchuk <apinchuk@datto.com> Authored-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #3625 Closes #6256 |
||
Gvozden Neskovic
|
d6c6590c5d |
vdev_mirror: load balancing fixes
vdev_queue: - Track the last position of each vdev, including the io size, in order to detect linear access of the following zio. - Remove duplicate `vq_lastoffset` vdev_mirror: - Correctly calculate the zio offset (signedness issue) - Deprecate `vdev_queue_register_lastoffset()` - Add `VDEV_LABEL_START_SIZE` to zio offset of leaf vdevs Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Gvozden Neskovic <neskovic@gmail.com> Closes #6461 |
||
Olaf Faaland
|
379ca9cf2b |
Multi-modifier protection (MMP)
Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279 |
||
Isaac Huang
|
3d6da72d18 |
Skip spurious resilver IO on raidz vdev
On a raidz vdev, a block that does not span all child vdevs, excluding its skip sectors if any, may not be affected by a child vdev outage or failure. In such cases, the block does not need to be resilvered. However, current resilver algorithm simply resilvers all blocks on a degraded raidz vdev. Such spurious IO is not only wasteful, but also adds the risk of overwriting good data. This patch eliminates such spurious IOs. Reviewed-by: Gvozden Neskovic <neskovic@gmail.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Isaac Huang <he.huang@intel.com> Closes #5316 |
||
Olaf Faaland
|
9d3f7b8791 |
Write label 2,3 uberblocks when vdev expands
When vdev_psize increases, the location of labels 2 and 3 changes because their location is relative to the end of the device. The configs for labels 2 and 3 are written during the next spa_sync() because the vdev is added to the dirty config list. However, the uberblock rings are not re-written in their new location, leaving the device vulnerable to the beginning of the device being overwritten or damaged. This patch copies the uberblock ring from label 0 to labels 2 and 3, in their new locations, at the next sync after vdev_psize increases. Also, add a test zpool_expand_004_pos.ksh to confirm the uberblocks are copied. Reviewed-by: BearBabyLiu <liu.huang@zte.com.cn> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #5108 |
||
David Quigley
|
a6255b7fce | DLPX-44812 integrate EP-220 large memory scalability | ||
Tony Hutter
|
1bbd877049 |
Turn on/off enclosure slot fault LED even when disk isn't present
Previously when a drive faulted, the statechange-led.sh script would lookup the drive's LED sysfs entry in /sys/block/sd*/device/enclosure_device, and turn it on. During testing we noticed that if you pulled out a drive, or if the drive was so badly broken that it no longer appeared to Linux, that the /sys/block/sd* path would be removed, and the script could not lookup the LED entry. To fix this, this patch looks up the disks's more persistent "/sys/class/enclosure/X:X:X:X/Slot N" LED sysfs path at pool import. It then passes that path to the statechange-led script to use, rather than having the script look it up on the fly. This allows the script to turn on/off the slot LEDs even when the drive is missing. Closes #5309 Closes #2375 |
||
Tony Hutter
|
6078881aa1 |
Multipath autoreplace, control enclosure LEDs, event rate limiting
1. Enable multipath autoreplace support for FMA. This extends FMA autoreplace to work with multipath disks. This requires libdevmapper to be installed at build time. 2. Turn on/off fault LEDs when VDEVs become degraded/faulted/online Set ZED_USE_ENCLOSURE_LEDS=1 in zed.rc to have ZED turn on/off the enclosure LED for a drive when a drive becomes FAULTED/DEGRADED. Your enclosure must be supported by the Linux SES driver for this to work. The enclosure LED scripts work for multipath devices as well. The scripts will clear the LED when the fault is cleared. 3. Rate limit ZIO delay and checksum events so as not to flood ZED ZIO delay and checksum events are rate limited to 5/sec in the zfs module. Reviewed-by: Richard Laager <rlaager@wiktel.com> Reviewed by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tony Hutter <hutter2@llnl.gov> Closes #2449 Closes #3017 Closes #5159 |
||
Don Brady
|
3dfb57a35e |
OpenZFS 7090 - zfs should throttle allocations
OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros |
||
Tony Hutter
|
193a37cb24 |
Add -lhHpw options to "zpool iostat" for avg latency, histograms, & queues
Update the zfs module to collect statistics on average latencies, queue sizes, and keep an internal histogram of all IO latencies. Along with this, update "zpool iostat" with some new options to print out the stats: -l: Include average IO latencies stats: total_wait disk_wait syncq_wait asyncq_wait scrub read write read write read write read write wait ----- ----- ----- ----- ----- ----- ----- ----- ----- - 41ms - 2ms - 46ms - 4ms - - 5ms - 1ms - 1us - 4ms - - 5ms - 1ms - 1us - 4ms - - - - - - - - - - - 49ms - 2ms - 47ms - - - - - - - - - - - - - 2ms - 1ms - - - 1ms - ----- ----- ----- ----- ----- ----- ----- ----- ----- 1ms 1ms 1ms 413us 16us 25us - 5ms - 1ms 1ms 1ms 413us 16us 25us - 5ms - 2ms 1ms 2ms 412us 26us 25us - 5ms - - 1ms - 413us - 25us - 5ms - - 1ms - 460us - 29us - 5ms - 196us 1ms 196us 370us 7us 23us - 5ms - ----- ----- ----- ----- ----- ----- ----- ----- ----- -w: Print out latency histograms: sdb total disk sync_queue async_queue latency read write read write read write read write scrub ------- ------ ------ ------ ------ ------ ------ ------ ------ ------ 1ns 0 0 0 0 0 0 0 0 0 ... 33us 0 0 0 0 0 0 0 0 0 66us 0 0 107 2486 2 788 12 12 0 131us 2 797 359 4499 10 558 184 184 6 262us 22 801 264 1563 10 286 287 287 24 524us 87 575 71 52086 15 1063 136 136 92 1ms 152 1190 5 41292 4 1693 252 252 141 2ms 245 2018 0 50007 0 2322 371 371 220 4ms 189 7455 22 162957 0 3912 6726 6726 199 8ms 108 9461 0 102320 0 5775 2526 2526 86 17ms 23 11287 0 37142 0 8043 1813 1813 19 34ms 0 14725 0 24015 0 11732 3071 3071 0 67ms 0 23597 0 7914 0 18113 5025 5025 0 134ms 0 33798 0 254 0 25755 7326 7326 0 268ms 0 51780 0 12 0 41593 10002 10002 0 537ms 0 77808 0 0 0 64255 13120 13120 0 1s 0 105281 0 0 0 83805 20841 20841 0 2s 0 88248 0 0 0 73772 14006 14006 0 4s 0 47266 0 0 0 29783 17176 17176 0 9s 0 10460 0 0 0 4130 6295 6295 0 17s 0 0 0 0 0 0 0 0 0 34s 0 0 0 0 0 0 0 0 0 69s 0 0 0 0 0 0 0 0 0 137s 0 0 0 0 0 0 0 0 0 ------------------------------------------------------------------------------- -h: Help -H: Scripted mode. Do not display headers, and separate fields by a single tab instead of arbitrary space. -q: Include current number of entries in sync & async read/write queues, and scrub queue: syncq_read syncq_write asyncq_read asyncq_write scrubq_read pend activ pend activ pend activ pend activ pend activ ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- 0 0 0 0 78 29 0 0 0 0 0 0 0 0 78 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- 0 0 227 394 0 19 0 0 0 0 0 0 227 394 0 19 0 0 0 0 0 0 108 98 0 19 0 0 0 0 0 0 19 98 0 0 0 0 0 0 0 0 78 98 0 0 0 0 0 0 0 0 19 88 0 0 0 0 0 0 ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- -p: Display numbers in parseable (exact) values. Also, update iostat syntax to allow the user to specify specific vdevs to show statistics for. The three options for choosing pools/vdevs are: Display a list of pools: zpool iostat ... [pool ...] Display a list of vdevs from a specific pool: zpool iostat ... [pool vdev ...] Display a list of vdevs from any pools: zpool iostat ... [vdev ...] Lastly, allow zpool command "interval" value to be floating point: zpool iostat -v 0.5 Signed-off-by: Tony Hutter <hutter2@llnl.gov Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4433 |
||
Joe Stein
|
e0ab3ab553 |
OpenZFS 6736 - ZFS per-vdev ZAPs
6736 ZFS per-vdev ZAPs Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Don Brady <don.brady@intel.com> Reviewed by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/6736 https://github.com/openzfs/openzfs/commit/215198a Ported-by: Don Brady <don.brady@intel.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4515 |
||
smh
|
9f500936c8 |
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information.
The existing algorithm selects a preferred leaf vdev based on offset of the zio
request modulo the number of members in the mirror. It assumes the devices are
of equal performance and that spreading the requests randomly over both drives
will be sufficient to saturate them. In practice this results in the leaf vdevs
being under utilized.
The new algorithm takes into the following additional factors:
* Load of the vdevs (number outstanding I/O requests)
* The locality of last queued I/O vs the new I/O request.
Within the locality calculation additional knowledge about the underlying vdev
is considered such as; is the device backing the vdev a rotating media device.
This results in performance increases across the board as well as significant
increases for predominantly streaming loads and for configurations which don't
have evenly performing devices.
The following are results from a setup with 3 Way Mirror with 2 x HD's and
1 x SSD from a basic test running multiple parrallel dd's.
With pre-fetch disabled (vfs.zfs.prefetch_disable=1):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s
With pre-fetch enabled (vfs.zfs.prefetch_disable=0):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s
In addition to the performance changes the code was also restructured, with
the help of Justin Gibbs, to provide a more logical flow which also ensures
vdevs loads are only calculated from the set of valid candidates.
The following additional sysctls where added to allow the administrator
to tune the behaviour of the load algorithm:
* vfs.zfs.vdev.mirror.rotating_inc
* vfs.zfs.vdev.mirror.rotating_seek_inc
* vfs.zfs.vdev.mirror.rotating_seek_offset
* vfs.zfs.vdev.mirror.non_rotating_inc
* vfs.zfs.vdev.mirror.non_rotating_seek_inc
These changes where based on work started by the zfsonlinux developers:
https://github.com/zfsonlinux/zfs/pull/1487
Reviewed by: gibbs, mav, will
MFC after: 2 weeks
Sponsored by: Multiplay
References:
https://github.com/freebsd/freebsd@5c7a6f5d
https://github.com/freebsd/freebsd@31b7f68d
https://github.com/freebsd/freebsd@e186f564
Performance Testing:
https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141
Porting notes:
- The tunables were adjusted to have ZoL-style names.
- The code was modified to use ZoL's vd_nonrot.
- Fixes were done to make cstyle.pl happy
- Merge conflicts were handled manually
- freebsd/freebsd@e186f564bc by my
collegue Andriy Gapon has been included. It applied perfectly, but
added a cstyle regression.
- This replaces
|
||
Richard Yao
|
fb40095f5f |
Disable LBA weighting on files and SSDs
The LBA weighting makes sense on rotational media where the outer tracks have twice the bandwidth of the inner tracks. However, it is detrimental on nonrotational media such as solid state disks, where the only effect is to ensure that metaslabs enter the best-fit allocation behavior sooner, which is detrimental to performance. It also makes no sense on files where the underlying filesystem can arrange things however it wants. Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3712 |
||
Matthew Ahrens
|
c3520e7f1f |
Illumos 5818 - zfs {ref}compressratio is incorrect with 4k sector size
5818 zfs {ref}compressratio is incorrect with 4k sector size Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: George Wilson <george@delphix.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Steven Hartland <killing@multiplay.co.uk> Approved by: Albert Lee <trisk@omniti.com> References: https://www.illumos.org/issues/5818 https://github.com/illumos/illumos-gate/commit/81cd5c5 Ported-by: Don Brady <don.brady@intel.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3432 |
||
George Wilson
|
98b254188a |
Illumos #5244 - zio pipeline callers should explicitly invoke next stage
5244 zio pipeline callers should explicitly invoke next stage Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Alex Reece <alex.reece@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Richard Elling <richard.elling@gmail.com> Reviewed by: Dan McDonald <danmcd@omniti.com> Reviewed by: Steven Hartland <killing@multiplay.co.uk> Approved by: Gordon Ross <gwr@nexenta.com> References: https://www.illumos.org/issues/5244 https://github.com/illumos/illumos-gate/commit/738f37b Porting Notes: 1. The unported "2932 support crash dumps to raidz, etc. pools" caused a merge conflict due to a copyright difference in module/zfs/vdev_raidz.c. 2. The unported "4128 disks in zpools never go away when pulled" and additional Linux-specific changes caused merge conflicts in module/zfs/vdev_disk.c. Ported-by: Richard Yao <richard.yao@clusterhq.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2828 |
||
Justin T. Gibbs
|
ec8501ee12 |
5313 Allow I/Os to be aggregated across ZIO priority classes
Reviewed by: Andriy Gapon <avg@FreeBSD.org> Reviewed by: Will Andrews <willa@SpectraLogic.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> References: https://www.illumos.org/issues/5313 https://github.com/illumos/illumos-gate/commit/fe319232 Ported-by: DHE <git@dehacked.net> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3280 |