Refactor the code by making splat_test_{init,fini}, splat_subsystem_{init,fini}
into functions. They don't have reason to be macro and it would be too bloated
to inline every call.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
The misc_deregister() function was changed to a void return type.
Rather than add compatibility code to detect this change simply
ignore the return code on all kernels. It was only used to log
an informational error message of no real value.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
In the original implementation of the SPL wrappers were provided
for module initialization and cleanup. This was done to abstract
away any compatibility code which might be needed for the SPL.
As it turned out the only significant compatibility issue was that
the default pwd during module load differed under Illumos and Linux.
Since this is such as minor thing and the wrappers complicate the
code they are being retired.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue zfsonlinux/zfs#2985
Don't include the compatibility code in linux/*_compat.h in the public
header sys/types.h. This causes problems when an external code base
includes the ZFS headers and has its own conflicting compatibility code.
Lustre, in particular, defined SHRINK_STOP for compatibility with
pre-3.12 kernels in a way that conflicted with the SPL's definition.
Because Lustre ZFS OSD includes ZFS headers it fails to build due to a
'"SHRINK_STOP" redefined' compiler warning. To avoid such conflicts
only include the compat headers from .c files or private headers.
Also, for consistency, include sys/*.h before linux/*.h then sort by
header name.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#411
When the SPL was originally written it was designed to use the
device_create() and device_destroy() functions. Unfortunately,
these functions changed considerably over the years making them
difficult to rely on.
As it turns out a better choice would have been to use the
misc_register()/misc_deregister() functions. This interface
for registering character devices has remained stable, is simple,
and provides everything we need.
Therefore the code has been reworked to use this interface. The
higher level ZFS code has always depended on these same interfaces
so this is also as a step towards minimizing our kernel dependencies.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
For consistency throughout the code update the SPLAT infrastructure
to use the wrapped mutex interfaces.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Apply the license specified in the META file to ensure the
compatibility checks are all performed consistently.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Use the standard Linux MODULE_VERSION macro to expose the installed
spl and splat module versions. This will also automatically add a
checksum of the .c files and headers in "srcversion". See:
/sys/module/spl/version
/sys/module/spl/srcversion
/sys/module/splat/version
/sys/module/splat/srcversion
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closeszfsonlinux/zfs#1923
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Update links to refer to the official ZFS on Linux website instead of
@behlendorf's personal fork on github.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The Fedora 3.6 debug kernel identified the following issue where
we call copy_to_user() under a spin lock(). This used to be safe
in older kernels but no longer appears to be true so the spin
lock was changed to a mutex. None of this code is performance
critical so allowing the process to sleep is harmless.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Restructure the the SPLAT headers such that each test only
includes the minimal set of headers it requires.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Include the ZFS_META_RELEASE in the module load/unload messages
to more clearly indicate exactly what version of the SPL has
been loaded.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
While the splat tests were originally designed to stress test
the Solaris primatives. I am extending them to include some kernel
compatibility tests. Certain linux APIs have changed frequently.
These tests ensure that added compatibility is working properly
and no unnoticed regression have slipped in.
Test 1 and 2 add basic regression tests for shrink_icache_memory
and shrink_dcache_memory. These are simply functional tests to
ensure we can call these functions safely. Checking for correct
behavior is more difficult since other running processes will
influence the behavior. However, these functions are provided
by the kernel so if we can successfully call them we assume they
are working correctly.
Test 3 checks that shrinker functions are being registered and
called correctly. As of Linux 3.0 the shrinker API has changed
four different times so I felt the need to add a trivial test
case to ensure each variant works as expected.
Change the SPL kernel messages for module loading and module
unloading so that they are similar to the ZFS kernel messages.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
A zlib regression test has been added to verify the correct behavior
of z_compress_level() and z_uncompress. The test case simply takes
a 128k buffer, it compresses the buffer, it them uncompresses the
buffer, and finally it compares the buffers after the transform.
If the buffers match then everything is fine and no data was lost.
It performs this test for all 9 zlib compression levels.
As of linux-2.6.36 the last in-tree consumer of fops->ioctl() has
been removed and thus fops()->ioctl() has also been removed. The
replacement hook is fops->unlocked_ioctl() which has existed in
kernel since 2.6.12. Since the SPL only contains support back
to 2.6.18 vintage kernels, I'm not adding an autoconf check for
this and simply moving everything to use fops->unlocked_ioctl().
On open() and initialize the buffer with the SPL version string. The
user space splat utility expects to find the SPL version string when
it opens and reads from /dev/splatctl.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Updated AUTHORS, COPYING, DISCLAIMER, and INSTALL files. Added
standardized headers to all source file to clearly indicate the
copyright, license, and to give credit where credit is due.
As of 2.6.25 kobj->k_name was replaced with kobj->name. Some distros
such as RHEL5 (2.6.18) add a patch to prevent this from being a problem
but other older distros such as SLES10 (2.6.16) have not. To avoid
the whole issue I'm updating the code to use kobject_set_name() which
does what I want and has existed all the way back to 2.6.11.
Ricardo has pointed out that under Solaris the cwd is set to '/'
during module load, while under Linux it is set to the callers cwd.
To handle this cleanly I've reworked the module *_init()/_exit()
macros so they call a *_setup()/_cleanup() function when any SPL
dependent module is loaded or unloaded. This gives us a chance to
perform any needed modification of the process, in this case changing
the cwd. It also handily provides a way to avoid creating wrapper
init()/exit() functions because the Solaris and Linux prototypes
differ slightly. All dependent modules should now call the spl
helper macros spl_module_{init,exit}() instead of the native linux
versions.
Unfortunately, it appears that under Linux there has been no consistent
API in the kernel to set the cwd in a module. Because of this I have
had to add more autoconf magic than I'd like. However, what I have
done is correct and has been tested on RHEL5, SLES11, FC11, and CHAOS
kernels.
In addition, I have change the rootdir type from a 'void *' to the
correct 'vnode_t *' type. And I've set rootdir to a non-NULL value.
The previous credential implementation simply provided the needed types and
a couple of dummy functions needed. This update correctly ties the basic
Solaris credential API in to one of two Linux kernel APIs.
Prior to 2.6.29 the linux kernel embeded all credentials in the task
structure. For these kernels, we pass around the entire task struct as if
it were the credential, then we use the helper functions to extract the
credential related bits.
As of 2.6.29 a new credential type was added which we can and do fairly
cleanly layer on top of. Once again the helper functions nicely hide
the implementation details from all callers.
Three tests were added to the splat test framework to verify basic
correctness. They should be extended as needed when need credential
functions are added.
- Proper ioctl() 32/64-bit binary compatibility. We need to ensure the
ioctl data itself is always packed the same for 32/64-bit binaries.
Additionally, the correct thing to do is encode this size in bytes
as part of the command using _IOC_SIZE().
- Minor formatting changes to respect the 80 character limit.
- Move all SPLAT_SUBSYSTEM_* defines in to splat-ctl.h.
- Increase SPLAT_SUBSYSTEM_UNKNOWN because we were getting close
to accidentally using it for a real registered subsystem.
- Add compat_ioctl() handler, by default 64-bit SLES systems build 32-bit
ELF binaries. For the 32-bit binaries to pass ioctl information to a
64-bit kernel a compatibility handler needs to be registered. In our
case no additional conversions are needed to convert 32-bit ioctl()
commands to 64-bit commands so we can just call the default handler.
We need dependent packages to be able to include spl_config.h so they
can leverage the configure checks the SPL has done. This is important
because several of the spl headers need the results of these checks to
work properly. Unfortunately, the autoheader build product is always
private to a particular build and defined certain common things.
(PACKAGE, VERSION, etc). This prevents other packages which also use
autoheader from being include because the definitions conflict. To
avoid this problem the SPL build system leverage AH_BOTTOM to include
a spl_unconfig.h at the botton of the autoheader build product. This
custom include undefs all known shared symbols to prevent the confict.
This does however mean that those definition are also not availble
to the SPL package either. The SPL package therefore uses the
equivilant SPL_META_* definitions.