ZIL log record structs (lr_XX_t) are frequently allocated with extra
space after the struct to carry variable-sized "payload" items.
Linux 6.10+ compiled with CONFIG_FORTIFY_SOURCE has been doing runtime
bounds checking on memcpy() calls. Because these types had no indicator
that they might use more space than their simple definition,
__fortify_memcpy_chk will frequently complain about overruns eg:
memcpy: detected field-spanning write (size 7) of single field
"lr + 1" at zfs_log.c:425 (size 0)
memcpy: detected field-spanning write (size 9) of single field
"(char *)(lr + 1)" at zfs_log.c:593 (size 0)
memcpy: detected field-spanning write (size 4) of single field
"(char *)(lr + 1) + snamesize" at zfs_log.c:594 (size 0)
memcpy: detected field-spanning write (size 7) of single field
"lr + 1" at zfs_log.c:425 (size 0)
memcpy: detected field-spanning write (size 9) of single field
"(char *)(lr + 1)" at zfs_log.c:593 (size 0)
memcpy: detected field-spanning write (size 4) of single field
"(char *)(lr + 1) + snamesize" at zfs_log.c:594 (size 0)
memcpy: detected field-spanning write (size 7) of single field
"lr + 1" at zfs_log.c:425 (size 0)
memcpy: detected field-spanning write (size 9) of single field
"(char *)(lr + 1)" at zfs_log.c:593 (size 0)
memcpy: detected field-spanning write (size 4) of single field
"(char *)(lr + 1) + snamesize" at zfs_log.c:594 (size 0)
To fix this, this commit adds flex array fields to all lr_XX_t structs
that require them, and then uses those fields to access that
end-of-struct area rather than more complicated casts and pointer
addition.
Sponsored-by: https://despairlabs.com/sponsor/
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Closes#16501Closes#16539
There's no good way to tell when a ZIL commit fails and falls back to a
transaction sync, other than perhaps a throughput drop. This adds
counters so we can see when it happens and why.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
In addition to a number of actual log bytes written, account also a
total written bytes including padding and total allocated bytes (bytes
<= write <= alloc). It should allow to monitor zil traffic and space
efficiency.
Add dtrace probe for zil block size selection.
Make zilstat report more information and fit it into less width.
Reviewed-by: Ameer Hamza <ahamza@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#14863
Block Cloning allows to manually clone a file (or a subset of its
blocks) into another (or the same) file by just creating additional
references to the data blocks without copying the data itself.
Those references are kept in the Block Reference Tables (BRTs).
The whole design of block cloning is documented in module/zfs/brt.c.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Christian Schwarz <christian.schwarz@nutanix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rich Ercolani <rincebrain@gmail.com>
Signed-off-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Closes#13392
If there were no zil entries to replay, skip zil_close. zil_close waits
for a transaction to sync. That can take several seconds, for example
during pool import of a resilvering pool. Skipping zil_close can cut
the time for "zpool import" from 2 hours to 45 seconds on a resilvering
pool with a thousand zvols.
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Sponsored-by: Axcient
Closes#13999Closes#14015
Implement support for Linux's RENAME_* flags (for renameat2). Aside from
being quite useful for userspace (providing race-free ways to exchange
paths and implement mv --no-clobber), they are used by overlayfs and are
thus required in order to use overlayfs-on-ZFS.
In order for us to represent the new renameat2(2) flags in the ZIL, we
create two new transaction types for the two flags which need
transactional-level support (RENAME_EXCHANGE and RENAME_WHITEOUT).
RENAME_NOREPLACE does not need any ZIL support because we know that if
the operation succeeded before creating the ZIL entry, there was no file
to be clobbered and thus it can be treated as a regular TX_RENAME.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Pavel Snajdr <snajpa@snajpa.net>
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Closes#12209Closes#14070
ZIL kstats are reported in an inclusive way, i.e., same counters are
shared to capture all the activities happening in zil. Added support
to report zil stats for every datset individually by combining them
with already exposed dataset kstats.
Wmsum uses per cpu counters and provide less overhead as compared
to atomic operations. Updated zil kstats to replace wmsum counters
to avoid atomic operations.
Reviewed-by: Christian Schwarz <christian.schwarz@nutanix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes#13636
Restructure the code in zfs_log_xvattr() to use a lr_attr_end
structure when accessing lr_attr_t elements located after the
variable sized array. This makes the code more understandable
and resolves the accessing beyond the end of the field warnings.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#13528Closes#13575
As such, there are no specific synchronous semantics defined for
the xattrs. But for xattr=on, it does log to ZIL and zil_commit() is
done, if sync=always is set on dataset. This provides sync semantics
for xattr=on with sync=always set on dataset.
For the xattr=sa implementation, it doesn't log to ZIL, so, even with
sync=always, xattrs are not guaranteed to be synced before xattr call
returns to caller. So, xattr can be lost if system crash happens, before
txg carrying xattr transaction is synced.
This change adds xattr=sa logging to ZIL on xattr create/remove/update
and xattrs are synced to ZIL (zil_commit() done) for sync=always.
This makes xattr=sa behavior similar to xattr=on.
Implementation notes:
The actual logging is fairly straight-forward and does not warrant
additional explanation.
However, it has been 14 years since we last added new TX types
to the ZIL [1], hence this is the first time we do it after the
introduction of zpool features. Therefore, here is an overview of the
feature activation and deactivation workflow:
1. The feature must be enabled. Otherwise, we don't log the new
record type. This ensures compatibility with older software.
2. The feature is activated per-dataset, since the ZIL is per-dataset.
3. If the feature is enabled and dataset is not for zvol, any append to
the ZIL chain will activate the feature for the dataset. Likewise
for starting a new ZIL chain.
4. A dataset that doesn't have a ZIL chain has the feature deactivated.
We ensure (3) by activating on the first zil_commit() after the feature
was enabled. Since activating the features requires waiting for txg
sync, the first zil_commit() after enabling the feature will be slower
than usual. The downside is that this is really a conservative
approximation: even if we never append a 'TX_SETSAXATTR' to the ZIL
chain, we pay the penalty for feature activation. The upside is that the
user is in control of when we pay the penalty, i.e., upon enabling the
feature.
We ensure (4) by hooking into zil_sync(), where ZIL destroy actually
happens.
One more piece on feature activation, since it's spread across
multiple functions:
zil_commit()
zil_process_commit_list()
if lwb == NULL // first zil_commit since zil_open
zil_create()
if no log block pointer in ZIL header:
if feature enabled and not active:
// CASE 1
enable, COALESCE txg wait with dmu_tx that allocated the
log block
else // log block was allocated earlier than this zil_open
if feature enabled and not active:
// CASE 2
enable, EXPLICIT txg wait
else // already have an in-DRAM LWB
if feature enabled and not active:
// this happens when we enable the feature after zil_create
// CASE 3
enable, EXPLICIT txg wait
[1] da6c28aaf6
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Christian Schwarz <christian.schwarz@nutanix.com>
Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Reviewed-by: Ryan Moeller <freqlabs@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jitendra Patidar <jitendra.patidar@nutanix.com>
Closes#8768Closes#9078
Evaluated every variable that lives in .data (and globals in .rodata)
in the kernel modules, and constified/eliminated/localised them
appropriately. This means that all read-only data is now actually
read-only data, and, if possible, at file scope. A lot of previously-
global-symbols became inlinable (and inlined!) constants. Probably
not in a big Wowee Performance Moment, but hey.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes#12899
If TX_WRITE is create on a file, and the file is later deleted and a new
directory is created on the same object id, it is possible that when
zil_commit happens, zfs_get_data will be called on the new directory.
This may result in panic as it tries to do range lock.
This patch fixes this issue by record the generation number during
zfs_log_write, so zfs_get_data can check if the object is valid.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <david.chen@nutanix.com>
Closes#10593Closes#11682
Code cleanup, a follow up commit to 4d55ea81.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Co-authored-by: Ryan Moeller <ryan@freqlabs.com>
Signed-off-by: Christian Schwarz <me@cschwarz.com>
Closes#11020
Provide a common zfs_file_* interface which can be implemented on all
platforms to perform normal file access from either the kernel module
or the libzpool library.
This allows all non-portable vnode_t usage in the common code to be
replaced by the new portable zfs_file_t. The associated vnode and
kobj compatibility functions, types, and macros have been removed
from the SPL. Moving forward, vnodes should only be used in platform
specific code when provided by the native operating system.
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9556
FreeBSD's zvol platform code requires access to the
zil_async_to_sync() function.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9440
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes#9238
We've observed that on some highly fragmented pools, most metaslab
allocations are small (~2-8KB), but there are some large, 128K
allocations. The large allocations are for ZIL blocks. If there is a
lot of fragmentation, the large allocations can be hard to satisfy.
The most common impact of this is that we need to check (and thus load)
lots of metaslabs from the ZIL allocation code path, causing sync writes
to wait for metaslabs to load, which can take a second or more. In the
worst case, we may not be able to satisfy the allocation, in which case
the ZIL will resort to txg_wait_synced() to ensure the change is on
disk.
To provide a workaround for this, this change adds a tunable that can
reduce the size of ZIL blocks.
External-issue: DLPX-61719
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#8865
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1ebCloses#6900
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: John Kennedy <jwk404@gmail.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Igor Kozhukhov <igor@dilos.org>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: Prakash Surya <prakash.surya@delphix.com>
PROBLEM
=======
There's a race condition that exists if `zil_free_lwb` races with either
`zil_commit_waiter_timeout` and/or `zil_lwb_flush_vdevs_done`.
Here's an example panic due to this bug:
> ::status
debugging crash dump vmcore.0 (64-bit) from ip-10-110-205-40
operating system: 5.11 dlpx-5.2.2.0_2017-12-04-17-28-32b6ba51fb (i86pc)
image uuid: 4af0edfb-e58e-6ed8-cafc-d3e9167c7513
panic message:
BAD TRAP: type=e (#pf Page fault) rp=ffffff0010555970 addr=60 occurred in module "zfs" due to a NULL pointer dereference
dump content: kernel pages only
> $c
zio_shrink+0x12()
zil_lwb_write_issue+0x30d(ffffff03dcd15cc0, ffffff03e0730e20)
zil_commit_waiter_timeout+0xa2(ffffff03dcd15cc0, ffffff03d97ffcf8)
zil_commit_waiter+0xf3(ffffff03dcd15cc0, ffffff03d97ffcf8)
zil_commit+0x80(ffffff03dcd15cc0, 9a9)
zfs_write+0xc34(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0)
fop_write+0x5b(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0)
write+0x250(42, fffffd7ff4832000, 2000)
sys_syscall+0x177()
If there's an outstanding lwb that's in `zil_commit_waiter_timeout`
waiting to timeout, waiting on it's waiter's CV, we must be sure not to
call `zil_free_lwb`. If we end up calling `zil_free_lwb`, then that LWB
may be freed and can result in a use-after-free situation where the
stale lwb pointer stored in the `zil_commit_waiter_t` structure of the
thread waiting on the waiter's CV is used.
A similar situation can occur if an lwb is issued to disk, and thus in
the `LWB_STATE_ISSUED` state, and `zil_free_lwb` is called while the
disk is servicing that lwb. In this situation, the lwb will be freed by
`zil_free_lwb`, which will result in a use-after-free situation when the
lwb's zio completes, and `zil_lwb_flush_vdevs_done` is called.
This race condition is prevented in `zil_close` by calling `zil_commit`
before `zil_free_lwb` is called, which will ensure all outstanding (i.e.
all lwb's in the `LWB_STATE_OPEN` and/or `LWB_STATE_ISSUED` states)
reach the `LWB_STATE_DONE` state before the lwb's are freed
(`zil_commit` will not return untill all the lwb's are
`LWB_STATE_DONE`).
Further, this race condition is prevented in `zil_sync` by only calling
`zil_free_lwb` for lwb's that do not have their `lwb_buf` pointer set.
All lwb's not in the `LWB_STATE_DONE` state will have a non-null value
for this pointer; the pointer is only cleared in
`zil_lwb_flush_vdevs_done`, at which point the lwb's state will be
changed to `LWB_STATE_DONE`.
This race *is* present in `zil_suspend`, leading to this bug.
At first glance, it would appear as though this would not be true
because `zil_suspend` will call `zil_commit`, just like `zil_close`, but
the problem is that `zil_suspend` will set the zilog's `zl_suspend`
field prior to calling `zil_commit`. Further, in `zil_commit`, if
`zl_suspend` is set, `zil_commit` will take a special branch of logic
and use `txg_wait_synced` instead of performing the normal `zil_commit`
logic.
This call to `txg_wait_synced` might be good enough for the data to
reach disk safely before it returns, but it does not ensure that all
outstanding lwb's reach the `LWB_STATE_DONE` state before it returns.
This is because, if there's an lwb "stuck" in
`zil_commit_waiter_timeout`, waiting for it's lwb to timeout, it will
maintain a non-null value for it's `lwb_buf` field and thus `zil_sync`
will not free that lwb. Thus, even though the lwb's data is already on
disk, the lwb will be left lingering, waiting on the CV, and will
eventually timeout and be issued to disk even though the write is
unnecessary.
So, after `zil_commit` is called from `zil_suspend`, we incorrectly
assume that there are not outstanding lwb's, and proceed to free all
lwb's found on the zilog's lwb list. As a result, we free the lwb that
will later be used `zil_commit_waiter_timeout`.
SOLUTION
========
The solution to this, is to ensure all outstanding lwb's complete before
calling `zil_free_lwb` via `zil_destroy` in `zil_suspend`. This patch
accomplishes this goal by forcing the normal `zil_commit` logic when
called from `zil_sync`.
Now, `zil_suspend` will call `zil_commit_impl` which will always use the
normal logic of waiting/issuing lwb's to disk before it returns. As a
result, any lwb's outstanding when `zil_commit_impl` is called will be
guaranteed to reach the `LWB_STATE_DONE` state by the time it returns.
Further, no new lwb's will be created via `zil_commit` since the zilog's
`zl_suspend` flag will be set. This will force all new callers of
`zil_commit` to use `txg_wait_synced` instead of creating and issuing
new lwb's.
Thus, all lwb's left on the zilog's lwb list when `zil_destroy` is
called will be in the `LWB_STATE_DONE` state, and we'll avoid this race
condition.
OpenZFS-issue: https://www.illumos.org/issues/8909
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ece62b6f8dCloses#6940
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Prakash Surya <prakash.surya@delphix.com>
Problem
=======
The current implementation of zil_commit() can introduce significant
latency, beyond what is inherent due to the latency of the underlying
storage. The additional latency comes from two main problems:
1. When there's outstanding ZIL blocks being written (i.e. there's
already a "writer thread" in progress), then any new calls to
zil_commit() will block waiting for the currently oustanding ZIL
blocks to complete. The blocks written for each "writer thread" is
coined a "batch", and there can only ever be a single "batch" being
written at a time. When a batch is being written, any new ZIL
transactions will have to wait for the next batch to be written,
which won't occur until the current batch finishes.
As a result, the underlying storage may not be used as efficiently
as possible. While "new" threads enter zil_commit() and are blocked
waiting for the next batch, it's possible that the underlying
storage isn't fully utilized by the current batch of ZIL blocks. In
that case, it'd be better to allow these new threads to generate
(and issue) a new ZIL block, such that it could be serviced by the
underlying storage concurrently with the other ZIL blocks that are
being serviced.
2. Any call to zil_commit() must wait for all ZIL blocks in its "batch"
to complete, prior to zil_commit() returning. The size of any given
batch is proportional to the number of ZIL transaction in the queue
at the time that the batch starts processing the queue; which
doesn't occur until the previous batch completes. Thus, if there's a
lot of transactions in the queue, the batch could be composed of
many ZIL blocks, and each call to zil_commit() will have to wait for
all of these writes to complete (even if the thread calling
zil_commit() only cared about one of the transactions in the batch).
To further complicate the situation, these two issues result in the
following side effect:
3. If a given batch takes longer to complete than normal, this results
in larger batch sizes, which then take longer to complete and
further drive up the latency of zil_commit(). This can occur for a
number of reasons, including (but not limited to): transient changes
in the workload, and storage latency irregularites.
Solution
========
The solution attempted by this change has the following goals:
1. no on-disk changes; maintain current on-disk format.
2. modify the "batch size" to be equal to the "ZIL block size".
3. allow new batches to be generated and issued to disk, while there's
already batches being serviced by the disk.
4. allow zil_commit() to wait for as few ZIL blocks as possible.
5. use as few ZIL blocks as possible, for the same amount of ZIL
transactions, without introducing significant latency to any
individual ZIL transaction. i.e. use fewer, but larger, ZIL blocks.
In theory, with these goals met, the new allgorithm will allow the
following improvements:
1. new ZIL blocks can be generated and issued, while there's already
oustanding ZIL blocks being serviced by the storage.
2. the latency of zil_commit() should be proportional to the underlying
storage latency, rather than the incoming synchronous workload.
Porting Notes
=============
Due to the changes made in commit 119a394ab0, the lifetime of an itx
structure differs than in OpenZFS. Specifically, the itx structure is
kept around until the data associated with the itx is considered to be
safe on disk; this is so that the itx's callback can be called after the
data is committed to stable storage. Since OpenZFS doesn't have this itx
callback mechanism, it's able to destroy the itx structure immediately
after the itx is committed to an lwb (before the lwb is written to
disk).
To support this difference, and to ensure the itx's callbacks can still
be called after the itx's data is on disk, a few changes had to be made:
* A list of itxs was added to the lwb structure. This list contains
all of the itxs that have been committed to the lwb, such that the
callbacks for these itxs can be called from zil_lwb_flush_vdevs_done(),
after the data for the itxs is committed to disk.
* A list of itxs was added on the stack of the zil_process_commit_list()
function; the "nolwb_itxs" list. In some circumstances, an itx may
not be committed to an lwb (e.g. if allocating the "next" ZIL block
on disk fails), so this list is used to keep track of which itxs
fall into this state, such that their callbacks can be called after
the ZIL's writer pipeline is "stalled".
* The logic to actually call the itx's callback was moved into the
zil_itx_destroy() function. Since all consumers of zil_itx_destroy()
were effectively performing the same logic (i.e. if callback is
non-null, call the callback), it seemed like useful code cleanup to
consolidate this logic into a single function.
Additionally, the existing Linux tracepoint infrastructure dealing with
the ZIL's probes and structures had to be updated to reflect these code
changes. Specifically:
* The "zil__cw1" and "zil__cw2" probes were removed, so they had to be
removed from "trace_zil.h" as well.
* Some of the zilog structure's fields were removed, which affected
the tracepoint definitions of the structure.
* New tracepoints had to be added for the following 3 new probes:
* zil__process__commit__itx
* zil__process__normal__itx
* zil__commit__io__error
OpenZFS-issue: https://www.illumos.org/issues/8585
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/5d95a3aCloses#6566
Using zio_data_buf_alloc() to allocate the itx's may be unsafe
because the itx->itx_lr.lrc_reclen field is not constant from
allocation to free. Using a different itx->itx_lr.lrc_reclen
size in zio_data_buf_free() can result in the allocation being
returned to the wrong kmem cache.
This issue can be avoided entirely by storing the allocation size
in itx->itx_size and using that for zio_data_buf_free().
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#6912
Fix compiler warnings in zdb. With these changes, FreeBSD can compile
zdb with all compiler warnings enabled save -Wunused-parameter.
usr/src/cmd/zdb/zdb.c
usr/src/cmd/zdb/zdb_il.c
usr/src/uts/common/fs/zfs/sys/sa.h
usr/src/uts/common/fs/zfs/sys/spa.h
Fix numerous warnings, including:
* const-correctness
* shadowing global definitions
* signed vs unsigned comparisons
* missing prototypes, or missing static declarations
* unused variables and functions
* Unreadable array initializations
* Missing struct initializers
usr/src/cmd/zdb/zdb.h
Add a header file to declare common symbols
usr/src/lib/libzpool/common/sys/zfs_context.h
usr/src/uts/common/fs/zfs/arc.c
usr/src/uts/common/fs/zfs/dbuf.c
usr/src/uts/common/fs/zfs/spa.c
usr/src/uts/common/fs/zfs/txg.c
Add a function prototype for zk_thread_create, and ensure that every
callback supplied to this function actually matches the prototype.
usr/src/cmd/ztest/ztest.c
usr/src/uts/common/fs/zfs/sys/zil.h
usr/src/uts/common/fs/zfs/zfs_replay.c
usr/src/uts/common/fs/zfs/zvol.c
Add a function prototype for zil_replay_func_t, and ensure that
every function of this type actually matches the prototype.
usr/src/uts/common/fs/zfs/sys/refcount.h
Change FTAG so it discards any constness of __func__, necessary
since existing APIs expect it passed as void *.
Porting Notes:
- Many of these fixes have already been applied to Linux. For
consistency the OpenZFS version of a change was applied if the
warning was addressed in an equivalent but different fashion.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Authored by: Alan Somers <asomers@gmail.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/8081
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/843abe1b8aCloses#6787
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#494Closes#5769
- After some ZIL changes 6 years ago zil_slog_limit got partially broken
due to zl_itx_list_sz not updated when async itx'es upgraded to sync.
Actually because of other changes about that time zl_itx_list_sz is not
really required to implement the functionality, so this patch removes
some unneeded broken code and variables.
- Original idea of zil_slog_limit was to reduce chance of SLOG abuse by
single heavy logger, that increased latency for other (more latency critical)
loggers, by pushing heavy log out into the main pool instead of SLOG. Beside
huge latency increase for heavy writers, this implementation caused double
write of all data, since the log records were explicitly prepared for SLOG.
Since we now have I/O scheduler, I've found it can be much more efficient
to reduce priority of heavy logger SLOG writes from ZIO_PRIORITY_SYNC_WRITE
to ZIO_PRIORITY_ASYNC_WRITE, while still leave them on SLOG.
- Existing ZIL implementation had problem with space efficiency when it
has to write large chunks of data into log blocks of limited size. In some
cases efficiency stopped to almost as low as 50%. In case of ZIL stored on
spinning rust, that also reduced log write speed in half, since head had to
uselessly fly over allocated but not written areas. This change improves
the situation by offloading problematic operations from z*_log_write() to
zil_lwb_commit(), which knows real situation of log blocks allocation and
can split large requests into pieces much more efficiently. Also as side
effect it removes one of two data copy operations done by ZIL code WR_COPIED
case.
- While there, untangle and unify code of z*_log_write() functions.
Also zfs_log_write() alike to zvol_log_write() can now handle writes crossing
block boundary, that may also improve efficiency if ZPL is made to do that.
Sponsored by: iXsystems, Inc.
Authored by: Alexander Motin <mav@FreeBSD.org>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Steven Hartland <steven.hartland@multiplay.co.uk>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Yao <ryao@gentoo.org>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/7578
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/aeb13acCloses#6191
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: George Melikov <mail@gmelikov.ru>
A standard practice in ZFS is to keep track of "per-txg" state. Any of
the 3 active TXG's (open, quiescing, syncing) can have different values
for this state. We should assert that we do not attempt to modify other
(inactive) TXG's.
Porting Notes:
- ASSERTV added to txg_sync_waiting() for unused variable.
OpenZFS-issue: https://www.illumos.org/issues/8063
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/01acb46Closes#6109
The following comment in zil.h
* WR_COPIED:
* If we know we'll immediately be committing the
* transaction (FSYNC or FDSYNC), then we allocate a larger
* log record here for the data and copy the data in.
The word "the" should be "then".
Signed-off-by: luozhengzheng <luo.zhengzheng@zte.com.cn>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4961
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3542
5269 zpool import slow
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5269https://github.com/illumos/illumos-gate/commit/12380e1e
Ported-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3396
5027 zfs large block support
Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5027https://github.com/illumos/illumos-gate/commit/b515258
Porting Notes:
* Included in this patch is a tiny ISP2() cleanup in zio_init() from
Illumos 5255.
* Unlike the upstream Illumos commit this patch does not impose an
arbitrary 128K block size limit on volumes. Volumes, like filesystems,
are limited by the zfs_max_recordsize=1M module option.
* By default the maximum record size is limited to 1M by the module
option zfs_max_recordsize. This value may be safely increased up to
16M which is the largest block size supported by the on-disk format.
At the moment, 1M blocks clearly offer a significant performance
improvement but the benefits of going beyond this for the majority
of workloads are less clear.
* The illumos version of this patch increased DMU_MAX_ACCESS to 32M.
This was determined not to be large enough when using 16M blocks
because the zfs_make_xattrdir() function will fail (EFBIG) when
assigning a TX. This was immediately observed under Linux because
all newly created files must have a security xattr created and
that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M.
* On 32-bit platforms a hard limit of 1M is set for blocks due
to the limited virtual address space. We should be able to relax
this one the ABD patches are merged.
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#354
These symbols are needed by consumers (i.e. Lustre) who wish to
integrate with the ZIL. In addition the zil_rollback_destroy()
prototype was removed because the implementation of this function
was removed long ago.
Signed-off-by: Alex Zhuravlev <alexey.zhuravlev@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2892
The vast majority of these changes are in Linux specific code.
They are the result of not having an automated style checker to
validate the code when it was originally written. Others were
caused when the common code was slightly adjusted for Linux.
This patch contains no functional changes. It only refreshes
the code to conform to style guide.
Everyone submitting patches for inclusion upstream should now
run 'make checkstyle' and resolve any warning prior to opening
a pull request. The automated builders have been updated to
fail a build if when 'make checkstyle' detects an issue.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1821
Currently, using msync() results in the following code path:
sys_msync -> zpl_fsync -> filemap_write_and_wait_range -> zpl_writepages -> write_cache_pages -> zpl_putpage
In such a code path, zil_commit() is called as part of zpl_putpage().
This means that for each page, the write is handed to the DMU, the ZIL
is committed, and only then do we move on to the next page. As one might
imagine, this results in atrocious performance where there is a large
number of pages to write: instead of committing a batch of N writes,
we do N commits containing one page each. In some extreme cases this
can result in msync() being ~700 times slower than it should be, as well
as very inefficient use of ZIL resources.
This patch fixes this issue by making sure that the requested writes
are batched and then committed only once. Unfortunately, the
implementation is somewhat non-trivial because there is no way to run
write_cache_pages in SYNC mode (so that we get all pages) without
making it wait on the writeback tag for each page.
The solution implemented here is composed of two parts:
- I added a new callback system to the ZIL, which allows the caller to
be notified when its ITX gets written to stable storage. One nice
thing is that the callback is called not only in zil_commit() but
in zil_sync() as well, which means that the caller doesn't have to
care whether the write ended up in the ZIL or the DMU: it will get
notified as soon as it's safe, period. This is an improvement over
dmu_tx_callback_register() that was used previously, which only
supports DMU writes. The rationale for this change is to allow
zpl_putpage() to be notified when a ZIL commit is completed without
having to block on zil_commit() itself.
- zpl_writepages() now calls write_cache_pages in non-SYNC mode, which
will prevent (1) write_cache_pages from blocking, and (2) zpl_putpage
from issuing ZIL commits. zpl_writepages() will issue the commit
itself instead of relying on zpl_putpage() to do it, thus nicely
batching the writes. Note, however, that we still have to call
write_cache_pages() again in SYNC mode because there is an edge case
documented in the implementation of write_cache_pages() whereas it
will not give us all dirty pages when running in non-SYNC mode. Thus
we need to run it at least once in SYNC mode to make sure we honor
persistency guarantees. This only happens when the pages are
modified at the same time msync() is running, which should be rare.
In most cases there won't be any additional pages and this second
call will do nothing.
Note that this change also fixes a bug related to #907 whereas calling
msync() on pages that were already handed over to the DMU in a previous
writepages() call would make msync() block until the next TXG sync
instead of returning as soon as the ZIL commit is complete. The new
callback system fixes that problem.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1849Closes#907
3742 zfs comments need cleaner, more consistent style
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Approved by: Christopher Siden <christopher.siden@delphix.com>
References:
https://www.illumos.org/issues/3742illumos/illumos-gate@f717074149
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1775
Porting notes:
1. The change to zfs_vfsops.c was dropped because it involves
zfs_mount_label_policy, which does not exist in the Linux port.
The PaX team modified the kernel's modpost to report writeable function
pointers as section mismatches because they are potential exploit
targets. We could ignore the warnings, but their presence can obscure
actual issues. Proper const correctness can also catch programming
mistakes.
Building the kernel modules against a PaX/GrSecurity patched Linux 3.4.2
kernel reports 133 section mismatches prior to this patch. This patch
eliminates 130 of them. The quantity of writeable function pointers
eliminated by constifying each structure is as follows:
vdev_opts_t 52
zil_replay_func_t 24
zio_compress_info_t 24
zio_checksum_info_t 9
space_map_ops_t 7
arc_byteswap_func_t 5
The remaining 3 writeable function pointers cannot be addressed by this
patch. 2 of them are in zpl_fs_type. The kernel's sget function requires
that this be non-const. The final writeable function pointer is created
by SPL_SHRINKER_DECLARE. The kernel's set_shrinker() and
remove_shrinker() functions also require that this be non-const.
Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1300
The performance of the ZIL is usually the main bottleneck when dealing with
synchronous, write-heavy workloads (e.g. databases). Understanding the
behavior of the ZIL is required to diagnose performance issues for these
workloads, and to tune ZIL parameters (like zil_slog_limit) accordingly.
This commit adds a new kstat page dedicated to the ZIL with some counters
which, hopefully, scheds some light into what the ZIL is doing, and how it is
doing it.
Currently, these statistics are available in /proc/spl/kstat/zfs/zil.
A description of the fields can be found in zil.h.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#786
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory. The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.
For example, this project is designed to work on various different
Linux distributions each of which work slightly differently. This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.
Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution. When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.
wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz
tar -xzf zfs-x.y.z.tar.gz
cd zfs-x-y-z
------------------------- run concurrently ----------------------
<ubuntu system> <fedora system> <debian system> <rhel6 system>
mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6
cd ubuntu cd fedora cd debian cd rhel6
../configure ../configure ../configure ../configure
make make make make
make check make check make check make check
This change also moves many of the include headers from individual
incude/sys directories under the modules directory in to a single
top level include directory. This has the advantage of making
the build rules cleaner and logically it makes a bit more sense.