Various module parameters such as `zfs_arc_max` were originally
`uint64_t` on OpenSolaris/Illumos, but were changed to `unsigned long`
for Linux compatibility because Linux's kernel default module parameter
implementation did not support 64-bit types on 32-bit platforms. This
caused problems when porting OpenZFS to Windows because its LLP64 memory
model made `unsigned long` a 32-bit type on 64-bit, which created the
undesireable situation that parameters that should accept 64-bit values
could not on 64-bit Windows.
Upon inspection, it turns out that the Linux kernel module parameter
interface is extensible, such that we are allowed to define our own
types. Rather than maintaining the original type change via hacks to to
continue shrinking module parameters on 32-bit Linux, we implement
support for 64-bit module parameters on Linux.
After doing a review of all 64-bit kernel parameters (found via the man
page and also proposed changes by Andrew Innes), the kernel module
parameters fell into a few groups:
Parameters that were originally 64-bit on Illumos:
* dbuf_cache_max_bytes
* dbuf_metadata_cache_max_bytes
* l2arc_feed_min_ms
* l2arc_feed_secs
* l2arc_headroom
* l2arc_headroom_boost
* l2arc_write_boost
* l2arc_write_max
* metaslab_aliquot
* metaslab_force_ganging
* zfetch_array_rd_sz
* zfs_arc_max
* zfs_arc_meta_limit
* zfs_arc_meta_min
* zfs_arc_min
* zfs_async_block_max_blocks
* zfs_condense_max_obsolete_bytes
* zfs_condense_min_mapping_bytes
* zfs_deadman_checktime_ms
* zfs_deadman_synctime_ms
* zfs_initialize_chunk_size
* zfs_initialize_value
* zfs_lua_max_instrlimit
* zfs_lua_max_memlimit
* zil_slog_bulk
Parameters that were originally 32-bit on Illumos:
* zfs_per_txg_dirty_frees_percent
Parameters that were originally `ssize_t` on Illumos:
* zfs_immediate_write_sz
Note that `ssize_t` is `int32_t` on 32-bit and `int64_t` on 64-bit. It
has been upgraded to 64-bit.
Parameters that were `long`/`unsigned long` because of Linux/FreeBSD
influence:
* l2arc_rebuild_blocks_min_l2size
* zfs_key_max_salt_uses
* zfs_max_log_walking
* zfs_max_logsm_summary_length
* zfs_metaslab_max_size_cache_sec
* zfs_min_metaslabs_to_flush
* zfs_multihost_interval
* zfs_unflushed_log_block_max
* zfs_unflushed_log_block_min
* zfs_unflushed_log_block_pct
* zfs_unflushed_max_mem_amt
* zfs_unflushed_max_mem_ppm
New parameters that do not exist in Illumos:
* l2arc_trim_ahead
* vdev_file_logical_ashift
* vdev_file_physical_ashift
* zfs_arc_dnode_limit
* zfs_arc_dnode_limit_percent
* zfs_arc_dnode_reduce_percent
* zfs_arc_meta_limit_percent
* zfs_arc_sys_free
* zfs_deadman_ziotime_ms
* zfs_delete_blocks
* zfs_history_output_max
* zfs_livelist_max_entries
* zfs_max_async_dedup_frees
* zfs_max_nvlist_src_size
* zfs_rebuild_max_segment
* zfs_rebuild_vdev_limit
* zfs_unflushed_log_txg_max
* zfs_vdev_max_auto_ashift
* zfs_vdev_min_auto_ashift
* zfs_vnops_read_chunk_size
* zvol_max_discard_blocks
Rather than clutter the lists with commentary, the module parameters
that need comments are repeated below.
A few parameters were defined in Linux/FreeBSD specific code, where the
use of ulong/long is not an issue for portability, so we leave them
alone:
* zfs_delete_blocks
* zfs_key_max_salt_uses
* zvol_max_discard_blocks
The documentation for a few parameters was found to be incorrect:
* zfs_deadman_checktime_ms - incorrectly documented as int
* zfs_delete_blocks - not documented as Linux only
* zfs_history_output_max - incorrectly documented as int
* zfs_vnops_read_chunk_size - incorrectly documented as long
* zvol_max_discard_blocks - incorrectly documented as ulong
The documentation for these has been fixed, alongside the changes to
document the switch to fixed width types.
In addition, several kernel module parameters were percentages or held
ashift values, so being 64-bit never made sense for them. They have been
downgraded to 32-bit:
* vdev_file_logical_ashift
* vdev_file_physical_ashift
* zfs_arc_dnode_limit_percent
* zfs_arc_dnode_reduce_percent
* zfs_arc_meta_limit_percent
* zfs_per_txg_dirty_frees_percent
* zfs_unflushed_log_block_pct
* zfs_vdev_max_auto_ashift
* zfs_vdev_min_auto_ashift
Of special note are `zfs_vdev_max_auto_ashift` and
`zfs_vdev_min_auto_ashift`, which were already defined as `uint64_t`,
and passed to the kernel as `ulong`. This is inherently buggy on big
endian 32-bit Linux, since the values would not be written to the
correct locations. 32-bit FreeBSD was unaffected because its sysctl code
correctly treated this as a `uint64_t`.
Lastly, a code comment suggests that `zfs_arc_sys_free` is
Linux-specific, but there is nothing to indicate to me that it is
Linux-specific. Nothing was done about that.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Original-patch-by: Andrew Innes <andrew.c12@gmail.com>
Original-patch-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#13984Closes#14004
Apply similar options to BLAKE3 as it is done for zfs_fletcher_4_impl.
The zfs module parameter on Linux changes from icp_blake3_impl to
zfs_blake3_impl.
You can check and set it on Linux via sysfs like this:
```
[bash]# cat /sys/module/zfs/parameters/zfs_blake3_impl
cycle [fastest] generic sse2 sse41 avx2
[bash]# echo sse2 > /sys/module/zfs/parameters/zfs_blake3_impl
[bash]# cat /sys/module/zfs/parameters/zfs_blake3_impl
cycle fastest generic [sse2] sse41 avx2
```
The modprobe module parameters may also be used now:
```
[bash]# modprobe zfs zfs_blake3_impl=sse41
[bash]# cat /sys/module/zfs/parameters/zfs_blake3_impl
cycle fastest generic sse2 [sse41] avx2
```
On FreeBSD the BLAKE3 implementation can be set via sysctl like this:
```
[bsd]# sysctl vfs.zfs.blake3_impl
vfs.zfs.blake3_impl: cycle [fastest] generic sse2 sse41 avx2
[bsd]# sysctl vfs.zfs.blake3_impl=sse2
vfs.zfs.blake3_impl: cycle [fastest] generic sse2 sse41 avx2 \
-> cycle fastest generic [sse2] sse41 avx2
```
This commit changes also some Blake3 internals like these:
- blake3_impl_ops_t was renamed to blake3_ops_t
- all functions are named blake3_impl_NAME() now
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Co-authored-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Closes#13725
FreeBSD had a few platform-specific ARC tunables in the wrong place:
- Move FreeBSD-specifc ARC tunables into the same vfs.zfs.arc node as
the rest of the ARC tunables.
- Move the handlers from arc_os.c to sysctl_os.c and add compat sysctls
for the legacy names.
While here, some additional clean up:
- Most handlers are specific to a particular variable and don't need a
pointer passed through the args.
- Group blocks of related variables, handlers, and sysctl declarations
into logical sections.
- Match variable types for temporaries in handlers with the type of the
global variable.
- Remove leftover comments.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#13756
ZFS_MODULE_PARAM_CALL handlers implement their own locking if needed
and do not require Giant.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#13756
Originally it was thought it would be useful to split up the kmods
by functionality. This would allow external consumers to only load
what was needed. However, in practice we've never had a case where
this functionality would be needed, and conversely managing multiple
kmods can be awkward. Therefore, this change merges all but the
spl.ko kmod in to a single zfs.ko kmod.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes#13274
69 CSTYLED BEGINs remain, appx. 30 of which can be removed if cstyle(1)
had a useful policy regarding
CALL(ARG1,
ARG2,
ARG3);
above 2 lines. As it stands, it spits out *both*
sysctl_os.c: 385: continuation line should be indented by 4 spaces
sysctl_os.c: 385: indent by spaces instead of tabs
which is very cool
Another >10 could be fixed by removing "ulong" &al. handling.
I don't foresee anyone actually using it intentionally
(does it even exist in modern headers? why did it in the first place?).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes#12993
Before OpenZFS 2.0, trying to set the FreeBSD sysctl vfs.zfs.arc_max
to a disallowed value would return an error.
Since the switch, it instead only generates WARN_IF_TUNING_IGNORED
Keep the ability to set the sysctl's specifically to 0, even though
that is less than the minimum, because some tests depend on this.
Also lost, was the ability to set vfs.zfs.arc_max to a value less
than the default vfs.zfs.arc_min at boot time. Restore this as well.
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Closes#12161
There is a tunable to select the fletcher 4 checksum implementation on
Linux but it was not present in FreeBSD.
Implement the sysctl handler for FreeBSD and use ZFS_MODULE_PARAM_CALL
to provide the tunable on both platforms.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11270
There has been a panic affecting some system configurations where the
thread FPU context is disturbed during the fletcher 4 benchmarks,
leading to a panic at boot.
module_init() registers zcommon_init to run in the last subsystem
(SI_SUB_LAST). Running it as soon as interrupts have been configured
(SI_SUB_INT_CONFIG_HOOKS) makes sure we have finished the benchmarks
before we start doing other things.
While it's not clear *how* the FPU context was being disturbed, this
does seem to avoid it.
Add a module_init_early() macro to run zcommon_init() at this earlier
point on FreeBSD. On Linux this is defined as module_init().
Authored by: Konstantin Belousov <kib@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11302
Many modern devices use physical allocation units that are much
larger than the minimum logical allocation size accessible by
external commands. Two prevalent examples of this are 512e disk
drives (512b logical sector, 4K physical sector) and flash devices
(512b logical sector, 4K or larger allocation block size, and 128k
or larger erase block size). Operations that modify less than the
physical sector size result in a costly read-modify-write or garbage
collection sequence on these devices.
Simply exporting the true physical sector of the device to ZFS would
yield optimal performance, but has two serious drawbacks:
1. Existing pools created with devices that have different logical
and physical block sizes, but were configured to use the logical
block size (e.g. because the OS version used for pool construction
reported the logical block size instead of the physical block
size) will suddenly find that the vdev allocation size has
increased. This can be easily tolerated for active members of
the array, but ZFS would prevent replacement of a vdev with
another identical device because it now appears that the smaller
allocation size required by the pool is not supported by the new
device.
2. The device's physical block size may be too large to be supported
by ZFS. The optimal allocation size for the vdev may be quite
large. For example, a RAID controller may export a vdev that
requires read-modify-write cycles unless accessed using 64k
aligned/sized requests. ZFS currently has an 8k minimum block
size limit.
Reporting both the logical and physical allocation sizes for vdevs
solves these problems. A device may be used so long as the logical
block size is compatible with the configuration. By comparing the
logical and physical block sizes, new configurations can be optimized
and administrators can be notified of any existing pools that are
sub-optimal.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Matthew Macy <mmacy@freebsd.org>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10619
This tunable required a handler to be implemented for
ZFS_MODULE_PARAM_CALL.
Add the handler so the tunable can be declared in common code.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10490
Add the FreeBSD platform code to the OpenZFS repository. As of this
commit the source can be compiled and tested on FreeBSD 11 and 12.
Subsequent commits are now required to compile on FreeBSD and Linux.
Additionally, they must pass the ZFS Test Suite on FreeBSD which is
being run by the CI. As of this commit 1230 tests pass on FreeBSD
and there are no unexpected failures.
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#898Closes#8987