Commit Graph

57 Commits

Author SHA1 Message Date
Matthew Ahrens
050d720c43 Remove dedupditto functionality
If dedup is in use, the `dedupditto` property can be set, causing ZFS to
keep an extra copy of data that is referenced many times (>100x).  The
idea was that this data is more important than other data and thus we
want to be really sure that it is not lost if the disk experiences a
small amount of random corruption.

ZFS (and system administrators) rely on the pool-level redundancy to
protect their data (e.g. mirroring or RAIDZ).  Since the user/sysadmin
doesn't have control over what data will be offered extra redundancy by
dedupditto, this extra redundancy is not very useful.  The bulk of the
data is still vulnerable to loss based on the pool-level redundancy.
For example, if particle strikes corrupt 0.1% of blocks, you will either
be saved by mirror/raidz, or you will be sad.  This is true even if
dedupditto saved another 0.01% of blocks from being corrupted.

Therefore, the dedupditto functionality is rarely enabled (i.e. the
property is rarely set), and it fulfills its promise of increased
redundancy even more rarely.

Additionally, this feature does not work as advertised (on existing
releases), because scrub/resilver did not repair the extra (dedupditto)
copy (see https://github.com/zfsonlinux/zfs/pull/8270).

In summary, this seldom-used feature doesn't work, and even if it did it
wouldn't provide useful data protection.  It has a non-trivial
maintenance burden (again see https://github.com/zfsonlinux/zfs/pull/8270).

We should remove the dedupditto functionality.  For backwards
compatibility with the existing CLI, "zpool set dedupditto" will still
"succeed" (exit code zero), but won't have any effect.  For backwards
compatibility with existing pools that had dedupditto enabled at some
point, the code will still be able to understand dedupditto blocks and
free them when appropriate.  However, ZFS won't write any new dedupditto
blocks.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Issue #8270 
Closes #8310
2019-06-19 14:54:02 -07:00
Brian Behlendorf
1b939560be
Add TRIM support
UNMAP/TRIM support is a frequently-requested feature to help
prevent performance from degrading on SSDs and on various other
SAN-like storage back-ends.  By issuing UNMAP/TRIM commands for
sectors which are no longer allocated the underlying device can
often more efficiently manage itself.

This TRIM implementation is modeled on the `zpool initialize`
feature which writes a pattern to all unallocated space in the
pool.  The new `zpool trim` command uses the same vdev_xlate()
code to calculate what sectors are unallocated, the same per-
vdev TRIM thread model and locking, and the same basic CLI for
a consistent user experience.  The core difference is that
instead of writing a pattern it will issue UNMAP/TRIM commands
for those extents.

The zio pipeline was updated to accommodate this by adding a new
ZIO_TYPE_TRIM type and associated spa taskq.  This new type makes
is straight forward to add the platform specific TRIM/UNMAP calls
to vdev_disk.c and vdev_file.c.  These new ZIO_TYPE_TRIM zios are
handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs.
This makes it possible to largely avoid changing the pipieline,
one exception is that TRIM zio's may exceed the 16M block size
limit since they contain no data.

In addition to the manual `zpool trim` command, a background
automatic TRIM was added and is controlled by the 'autotrim'
property.  It relies on the exact same infrastructure as the
manual TRIM.  However, instead of relying on the extents in a
metaslab's ms_allocatable range tree, a ms_trim tree is kept
per metaslab.  When 'autotrim=on', ranges added back to the
ms_allocatable tree are also added to the ms_free tree.  The
ms_free tree is then periodically consumed by an autotrim
thread which systematically walks a top level vdev's metaslabs.

Since the automatic TRIM will skip ranges it considers too small
there is value in occasionally running a full `zpool trim`.  This
may occur when the freed blocks are small and not enough time
was allowed to aggregate them.  An automatic TRIM and a manual
`zpool trim` may be run concurrently, in which case the automatic
TRIM will yield to the manual TRIM.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Contributions-by: Tim Chase <tim@chase2k.com>
Contributions-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8419 
Closes #598
2019-03-29 09:13:20 -07:00
Tony Hutter
ad796b8a3b Add zpool status -s (slow I/Os) and -p (parseable)
This patch adds a new slow I/Os (-s) column to zpool status to show the
number of VDEV slow I/Os. This is the number of I/Os that didn't
complete in zio_slow_io_ms milliseconds. It also adds a new parsable
(-p) flag to display exact values.

 	NAME         STATE     READ WRITE CKSUM  SLOW
 	testpool     ONLINE       0     0     0     -
	  mirror-0   ONLINE       0     0     0     -
 	    loop0    ONLINE       0     0     0    20
 	    loop1    ONLINE       0     0     0     0

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes #7756
Closes #6885
2018-11-08 16:47:24 -08:00
Don Brady
cc99f275a2 Pool allocation classes
Allocation Classes add the ability to have allocation classes in a
pool that are dedicated to serving specific block categories, such
as DDT data, metadata, and small file blocks. A pool can opt-in to
this feature by adding a 'special' or 'dedup' top-level VDEV.

Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Reviewed-by: Andreas Dilger <andreas.dilger@chamcloud.com>
Reviewed-by: DHE <git@dehacked.net>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Gregor Kopka <gregor@kopka.net>
Reviewed-by: Kash Pande <kash@tripleback.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes #5182
2018-09-05 18:33:36 -07:00
Matthew Ahrens
62840030a7 Reduce taskq and context-switch cost of zio pipe
When doing a read from disk, ZFS creates 3 ZIO's: a zio_null(), the
logical zio_read(), and then a physical zio. Currently, each of these
results in a separate taskq_dispatch(zio_execute).

On high-read-iops workloads, this causes a significant performance
impact. By processing all 3 ZIO's in a single taskq entry, we reduce the
overhead on taskq locking and context switching.  We accomplish this by
allowing zio_done() to return a "next zio to execute" to zio_execute().

This results in a ~12% performance increase for random reads, from
96,000 iops to 108,000 iops (with recordsize=8k, on SSD's).

Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-59292
Closes #7736
2018-08-02 15:51:45 -07:00
Paul Dagnelie
492f64e941 OpenZFS 9112 - Improve allocation performance on high-end systems
Overview
========

We parallelize the allocation process by creating the concept of
"allocators". There are a certain number of allocators per metaslab
group, defined by the value of a tunable at pool open time.  Each
allocator for a given metaslab group has up to 2 active metaslabs; one
"primary", and one "secondary". The primary and secondary weight mean
the same thing they did in in the pre-allocator world; primary metaslabs
are used for most allocations, secondary metaslabs are used for ditto
blocks being allocated in the same metaslab group.  There is also the
CLAIM weight, which has been separated out from the other weights, but
that is less important to understanding the patch.  The active metaslabs
for each allocator are moved from their normal place in the metaslab
tree for the group to the back of the tree. This way, they will not be
selected for use by other allocators searching for new metaslabs unless
all the passive metaslabs are unsuitable for allocations.  If that does
happen, the allocators will "steal" from each other to ensure that IOs
don't fail until there is truly no space left to perform allocations.

In addition, the alloc queue for each metaslab group has been broken
into a separate queue for each allocator. We don't want to dramatically
increase the number of inflight IOs on low-end systems, because it can
significantly increase txg times. On the other hand, we want to ensure
that there are enough IOs for each allocator to allow for good
coalescing before sending the IOs to the disk.  As a result, we take a
compromise path; each allocator's alloc queue max depth starts at a
certain value for every txg. Every time an IO completes, we increase the
max depth. This should hopefully provide a good balance between the two
failure modes, while not dramatically increasing complexity.

We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause
very similar contention when selecting IOs to allocate. This
parallelization uses the same allocator scheme as metaslab selection.

Performance Results
===================

Performance improvements from this change can vary significantly based
on the number of CPUs in the system, whether or not the system has a
NUMA architecture, the speed of the drives, the values for the various
tunables, and the workload being performed. For an fio async sequential
write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB
SSDs, there is a roughly 25% performance improvement.

Future Work
===========

Analysis of the performance of the system with this patch applied shows
that a significant new bottleneck is the vdev disk queues, which also
need to be parallelized.  Prototyping of this change has occurred, and
there was a performance improvement, but more work needs to be done
before its stability has been verified and it is ready to be upstreamed.

Authored by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Alexander Motin <mav@FreeBSD.org>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Gordon Ross <gwr@nexenta.com>
Ported-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>

Porting Notes:
* Fix reservation test failures by increasing tolerance.

OpenZFS-issue: https://illumos.org/issues/9112
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3
Closes #7682
2018-07-31 10:52:33 -07:00
Serapheim Dimitropoulos
d2734cce68 OpenZFS 9166 - zfs storage pool checkpoint
Details about the motivation of this feature and its usage can
be found in this blogpost:

    https://sdimitro.github.io/post/zpool-checkpoint/

A lightning talk of this feature can be found here:
https://www.youtube.com/watch?v=fPQA8K40jAM

Implementation details can be found in big block comment of
spa_checkpoint.c

Side-changes that are relevant to this commit but not explained
elsewhere:

* renames members of "struct metaslab trees to be shorter without
  losing meaning

* space_map_{alloc,truncate}() accept a block size as a
  parameter. The reason is that in the current state all space
  maps that we allocate through the DMU use a global tunable
  (space_map_blksz) which defauls to 4KB. This is ok for metaslab
  space maps in terms of bandwirdth since they are scattered all
  over the disk. But for other space maps this default is probably
  not what we want. Examples are device removal's vdev_obsolete_sm
  or vdev_chedkpoint_sm from this review. Both of these have a
  1:1 relationship with each vdev and could benefit from a bigger
  block size.

Porting notes:

* The part of dsl_scan_sync() which handles async destroys has
  been moved into the new dsl_process_async_destroys() function.

* Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write
  to block device backed pools.

* ZTS:
  * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg".

  * Don't use large dd block sizes on /dev/urandom under Linux in
    checkpoint_capacity.

  * Adopt Delphix-OS's setting of 4 (spa_asize_inflation =
    SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed
    its attempts to fill the pool

  * Create the base and nested pools with sync=disabled to speed up
    the "setup" phase.

  * Clear labels in test pool between checkpoint tests to avoid
    duplicate pool issues.

  * The import_rewind_device_replaced test has been marked as "known
    to fail" for the reasons listed in its DISCLAIMER.

  * New module parameters:

      zfs_spa_discard_memory_limit,
      zfs_remove_max_bytes_pause (not documented - debugging only)
      vdev_max_ms_count (formerly metaslabs_per_vdev)
      vdev_min_ms_count

Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>

OpenZFS-issue: https://illumos.org/issues/9166
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8
Closes #7570
2018-06-26 10:07:42 -07:00
Tom Caputi
be9a5c355c Add support for decryption faults in zinject
This patch adds the ability for zinject to trigger decryption
and authentication faults in the ZIO and ARC layers. This
functionality is exposed via the new "decrypt" error type, which
may be provided for "data" object types.

This patch also refactors some of the core encryption / decryption
functions so that they have consistent prototypes, handle errors
consistently, and do not have unused arguments.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #7474
2018-05-02 15:36:20 -07:00
Matthew Ahrens
9e052db462 OpenZFS 9290 - device removal reduces redundancy of mirrors
Mirrors are supposed to provide redundancy in the face of whole-disk
failure and silent damage (e.g. some data on disk is not right, but ZFS
hasn't detected the whole device as being broken). However, the current
device removal implementation bypasses some of the mirror's redundancy.
Note that in no case is incorrect data returned, but we might get a
checksum error when we should have been able to find the right data.

There are two underlying problems:

1. When we remove a mirror device, we only read one side of the mirror.
Since we can't verify the checksum, this side may be silently bad, but
the good data is on the other side of the mirror (which we didn't read).
This can cause the removal to "bake in" the busted data – all copies of
the data in the new location are the same, busted version, while we left
the good version behind.

The fix for this is to read and copy both sides of the mirror. If the
old and new vdevs are mirrors, we will read both sides of the old
mirror, and write each copy to the corresponding side of the new mirror.
(If the old and new vdevs have a different number of children, we will
do this as best as possible.) Even though we aren't verifying checksums,
this ensures that as long as there's a good copy of the data, we'll have
a good copy after the removal, even if there's silent damage to one side
of the mirror. If we're removing a mirror that has some silent damage,
we'll have exactly the same damage in the new location (assuming that
the new location is also a mirror).

2. When we read from an indirect vdev that points to a mirror vdev, we
only consider one copy of the data. This can lead to reduced effective
redundancy, because we might read a bad copy of the data from one side
of the mirror, and not retry the other, good side of the mirror.

Note that the problem is not with the removal process, but rather after
the removal has completed (having copied correct data to both sides of
the mirror), if one side of the new mirror is silently damaged, we
encounter the problem when reading the relocated data via the indirect
vdev. Also note that the problem doesn't occur when ZFS knows that one
side of the mirror is bad, e.g. when a disk entirely fails or is
offlined.

The impact is that reads (from indirect vdevs that point to mirrors) may
return a checksum error even though the good data exists on one side of
the mirror, and scrub doesn't repair all data on the mirror (if some of
it is pointed to via an indirect vdev).

The fix for this is complicated by "split blocks" - one logical block
may be split into two (or more) pieces with each piece moved to a
different new location. In this case we need to read all versions of
each split (one from each side of the mirror), and figure out which
combination of versions results in the correct checksum, and then repair
the incorrect versions.

This ensures that we supply the same redundancy whether you use device
removal or not. For example, if a mirror has small silent errors on all
of its children, we can still reconstruct the correct data, as long as
those errors are at sufficiently-separated offsets (specifically,
separated by the largest block size - default of 128KB, but up to 16MB).

Porting notes:

* A new indirect vdev check was moved from dsl_scan_needs_resilver_cb()
  to dsl_scan_needs_resilver(), which was added to ZoL as part of the
  sequential scrub work.

* Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t
  parameter.  The extra parameter is unique to ZoL.

* When posting indirect checksum errors the ABD can be passed directly,
  zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS.

Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Tim Chase <tim@chase2k.com>

OpenZFS-issue: https://illumos.org/issues/9290
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591
Closes #6900
2018-04-14 12:21:39 -07:00
Matthew Ahrens
a1d477c24c OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete

This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk.  The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.

The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool.  An entry becomes obsolete when all the blocks that use
it are freed.  An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones).  Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible.  This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.

Note that when a device is removed, we do not verify the checksum of
the data that is copied.  This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.

At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.

Porting Notes:

* Avoid zero-sized kmem_alloc() in vdev_compact_children().

    The device evacuation code adds a dependency that
    vdev_compact_children() be able to properly empty the vdev_child
    array by setting it to NULL and zeroing vdev_children.  Under Linux,
    kmem_alloc() and related functions return a sentinel pointer rather
    than NULL for zero-sized allocations.

* Remove comment regarding "mpt" driver where zfs_remove_max_segment
  is initialized to SPA_MAXBLOCKSIZE.

  Change zfs_condense_indirect_commit_entry_delay_ticks to
  zfs_condense_indirect_commit_entry_delay_ms for consistency with
  most other tunables in which delays are specified in ms.

* ZTS changes:

    Use set_tunable rather than mdb
    Use zpool sync as appropriate
    Use sync_pool instead of sync
    Kill jobs during test_removal_with_operation to allow unmount/export
    Don't add non-disk names such as "mirror" or "raidz" to $DISKS
    Use $TEST_BASE_DIR instead of /tmp
    Increase HZ from 100 to 1000 which is more common on Linux

    removal_multiple_indirection.ksh
        Reduce iterations in order to not time out on the code
        coverage builders.

    removal_resume_export:
        Functionally, the test case is correct but there exists a race
        where the kernel thread hasn't been fully started yet and is
        not visible.  Wait for up to 1 second for the removal thread
        to be started before giving up on it.  Also, increase the
        amount of data copied in order that the removal not finish
        before the export has a chance to fail.

* MMP compatibility, the concept of concrete versus non-concrete devices
  has slightly changed the semantics of vdev_writeable().  Update
  mmp_random_leaf_impl() accordingly.

* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
  feature which is not supported by OpenZFS.

* Added support for new vdev removal tracepoints.

* Test cases removal_with_zdb and removal_condense_export have been
  intentionally disabled.  When run manually they pass as intended,
  but when running in the automated test environment they produce
  unreliable results on the latest Fedora release.

  They may work better once the upstream pool import refectoring is
  merged into ZoL at which point they will be re-enabled.

Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>

OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2018-04-14 12:16:17 -07:00
Tom Caputi
a2c2ed1bd4 Decryption error handling improvements
Currently, the decryption and block authentication code in
the ZIO / ARC layers is a bit inconsistent with regards to
the ereports that are produces and the error codes that are
passed to calling functions. This patch ensures that all of
these errors (which begin as ECKSUM) are converted to EIO
before they leave the ZIO or ARC layer and that ereports
are correctly generated on each decryption / authentication
failure.

In addition, this patch fixes a bug in zio_decrypt() where
ECKSUM never gets written to zio->io_error.

Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #7372
2018-03-31 11:12:51 -07:00
Olaf Faaland
cec3a0a1bb Report pool suspended due to MMP
When the pool is suspended, record whether it was due to an I/O error or
due to MMP writes failing to succeed within the required time.

Change spa_suspended from uint8_t to zio_suspend_reason_t to store the
reason.

When userspace queries pool status via spa_tryimport(), report the
reason the pool was suspended in a new key,
ZPOOL_CONFIG_SUSPENDED_REASON.

In libzfs, when interpreting the returned config nvlist, report
suspension due to MMP with a new pool status enum value,
ZPOOL_STATUS_IO_FAILURE_MMP.

In status_callback(), which generates and emits the message when 'zpool
status' is executed, add a case to print an appropriate message for the
new pool status enum value.

Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes #7296
2018-03-15 10:56:55 -07:00
George Wilson
ddc751d56b OpenZFS 8857 - zio_remove_child() panic due to already destroyed parent zio
PROBLEM
=======
It's possible for a parent zio to complete even though it has children
which have not completed. This can result in the following panic:
    > $C
    ffffff01809128c0 vpanic()
    ffffff01809128e0 mutex_panic+0x58(fffffffffb94c904, ffffff597dde7f80)
    ffffff0180912950 mutex_vector_enter+0x347(ffffff597dde7f80)
    ffffff01809129b0 zio_remove_child+0x50(ffffff597dde7c58, ffffff32bd901ac0,
    ffffff3373370908)
    ffffff0180912a40 zio_done+0x390(ffffff32bd901ac0)
    ffffff0180912a70 zio_execute+0x78(ffffff32bd901ac0)
    ffffff0180912b30 taskq_thread+0x2d0(ffffff33bae44140)
    ffffff0180912b40 thread_start+8()
    > ::status
    debugging crash dump vmcore.2 (64-bit) from batfs0390
    operating system: 5.11 joyent_20170911T171900Z (i86pc)
    image uuid: (not set)
    panic message: mutex_enter: bad mutex, lp=ffffff597dde7f80
    owner=ffffff3c59b39480 thread=ffffff0180912c40
    dump content: kernel pages only
The problem is that dbuf_prefetch along with l2arc can create a zio tree
which confuses the parent zio and allows it to complete with while children
still exist. Here's the scenario:
    zio tree:
        pio
         |--- lio
The parent zio, pio, has entered the zio_done stage and begins to check its
children to see there are still some that have not completed. In zio_done(),
the children are checked in the following order:
    zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)
    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)
    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE)
    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)
If pio, finds any child which has not completed then it stops executing and
goes to sleep. Each call to zio_wait_for_children() will grab the io_lock
while checking the particular child.
In this scenario, the pio has completed the first call to
zio_wait_for_children() to check for any ZIO_CHILD_VDEV children. Since
the only zio in the zio tree right now is the logical zio, lio, then it
completes that call and prepares to check the next child type.
In the meantime, the lio completes and in its callback creates a child vdev
zio, cio. The zio tree looks like this:
    zio tree:
        pio
         |--- lio
         |--- cio
The lio then grabs the parent's io_lock and removes itself.
    zio tree:
        pio
         |--- cio
The pio continues to run but has already completed its check for ZIO_CHILD_VDEV
and will erroneously complete. When the child zio, cio, completes it will panic
the system trying to reference the parent zio which has been destroyed.
SOLUTION
========
The fix is to rework the zio_wait_for_children() logic to accept a bitfield
for all the children types that it's interested in checking. The
io_lock will is held the entire time we check all the children types. Since
the function now accepts a bitfield, a simple ZIO_CHILD_BIT() macro is provided
to allow for the conversion between a ZIO_CHILD type and the bitfield used by
the zio_wiat_for_children logic.

Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Youzhong Yang <youzhong@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@omniti.com>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>

OpenZFS-issue: https://www.illumos.org/issues/8857
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/862ff6d99c
Issue #5918
Closes #7168
2018-02-14 15:30:09 -08:00
Brian Behlendorf
8fb1ede146 Extend deadman logic
The intent of this patch is extend the existing deadman code
such that it's flexible enough to be used by both ztest and
on production systems.  The proposed changes include:

* Added a new `zfs_deadman_failmode` module option which is
  used to dynamically control the behavior of the deadman.  It's
  loosely modeled after, but independant from, the pool failmode
  property.  It can be set to wait, continue, or panic.

    * wait     - Wait for the "hung" I/O (default)
    * continue - Attempt to recover from a "hung" I/O
    * panic    - Panic the system

* Added a new `zfs_deadman_ziotime_ms` module option which is
  analogous to `zfs_deadman_synctime_ms` except instead of
  applying to a pool TXG sync it applies to zio_wait().  A
  default value of 300s is used to define a "hung" zio.

* The ztest deadman thread has been re-enabled by default,
  aligned with the upstream OpenZFS code, and then extended
  to terminate the process when it takes significantly longer
  to complete than expected.

* The -G option was added to ztest to print the internal debug
  log when a fatal error is encountered.  This same option was
  previously added to zdb in commit fa603f82.  Update zloop.sh
  to unconditionally pass -G to obtain additional debugging.

* The FM_EREPORT_ZFS_DELAY event which was previously posted
  when the deadman detect a "hung" pool has been replaced by
  a new dedicated FM_EREPORT_ZFS_DEADMAN event.

* The proposed recovery logic attempts to restart a "hung"
  zio by calling zio_interrupt() on any outstanding leaf zios.
  We may want to further restrict this to zios in either the
  ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages.
  Calling zio_interrupt() is expected to only be useful for
  cases when an IO has been submitted to the physical device
  but for some reasonable the completion callback hasn't been
  called by the lower layers.  This shouldn't be possible but
  has been observed and may be caused by kernel/driver bugs.

* The 'zfs_deadman_synctime_ms' default value was reduced from
  1000s to 600s.

* Depending on how ztest fails there may be no cache file to
  move.  This should not be considered fatal, collect the logs
  which are available and carry on.

* Add deadman test cases for spa_deadman() and zio_wait().

* Increase default zfs_deadman_checktime_ms to 60s.

Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed by: Thomas Caputi <tcaputi@datto.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #6999
2018-01-25 13:40:38 -08:00
Prakash Surya
2fe61a7ecc OpenZFS 8909 - 8585 can cause a use-after-free kernel panic
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: John Kennedy <jwk404@gmail.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Igor Kozhukhov <igor@dilos.org>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: Prakash Surya <prakash.surya@delphix.com>

PROBLEM
=======

There's a race condition that exists if `zil_free_lwb` races with either
`zil_commit_waiter_timeout` and/or `zil_lwb_flush_vdevs_done`.

Here's an example panic due to this bug:

    > ::status
    debugging crash dump vmcore.0 (64-bit) from ip-10-110-205-40
    operating system: 5.11 dlpx-5.2.2.0_2017-12-04-17-28-32b6ba51fb (i86pc)
    image uuid: 4af0edfb-e58e-6ed8-cafc-d3e9167c7513
    panic message:
    BAD TRAP: type=e (#pf Page fault) rp=ffffff0010555970 addr=60 occurred in module "zfs" due to a NULL pointer dereference
    dump content: kernel pages only

    > $c
    zio_shrink+0x12()
    zil_lwb_write_issue+0x30d(ffffff03dcd15cc0, ffffff03e0730e20)
    zil_commit_waiter_timeout+0xa2(ffffff03dcd15cc0, ffffff03d97ffcf8)
    zil_commit_waiter+0xf3(ffffff03dcd15cc0, ffffff03d97ffcf8)
    zil_commit+0x80(ffffff03dcd15cc0, 9a9)
    zfs_write+0xc34(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0)
    fop_write+0x5b(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0)
    write+0x250(42, fffffd7ff4832000, 2000)
    sys_syscall+0x177()

If there's an outstanding lwb that's in `zil_commit_waiter_timeout`
waiting to timeout, waiting on it's waiter's CV, we must be sure not to
call `zil_free_lwb`. If we end up calling `zil_free_lwb`, then that LWB
may be freed and can result in a use-after-free situation where the
stale lwb pointer stored in the `zil_commit_waiter_t` structure of the
thread waiting on the waiter's CV is used.

A similar situation can occur if an lwb is issued to disk, and thus in
the `LWB_STATE_ISSUED` state, and `zil_free_lwb` is called while the
disk is servicing that lwb. In this situation, the lwb will be freed by
`zil_free_lwb`, which will result in a use-after-free situation when the
lwb's zio completes, and `zil_lwb_flush_vdevs_done` is called.

This race condition is prevented in `zil_close` by calling `zil_commit`
before `zil_free_lwb` is called, which will ensure all outstanding (i.e.
all lwb's in the `LWB_STATE_OPEN` and/or `LWB_STATE_ISSUED` states)
reach the `LWB_STATE_DONE` state before the lwb's are freed
(`zil_commit` will not return untill all the lwb's are
`LWB_STATE_DONE`).

Further, this race condition is prevented in `zil_sync` by only calling
`zil_free_lwb` for lwb's that do not have their `lwb_buf` pointer set.
All lwb's not in the `LWB_STATE_DONE` state will have a non-null value
for this pointer; the pointer is only cleared in
`zil_lwb_flush_vdevs_done`, at which point the lwb's state will be
changed to `LWB_STATE_DONE`.

This race *is* present in `zil_suspend`, leading to this bug.

At first glance, it would appear as though this would not be true
because `zil_suspend` will call `zil_commit`, just like `zil_close`, but
the problem is that `zil_suspend` will set the zilog's `zl_suspend`
field prior to calling `zil_commit`. Further, in `zil_commit`, if
`zl_suspend` is set, `zil_commit` will take a special branch of logic
and use `txg_wait_synced` instead of performing the normal `zil_commit`
logic.

This call to `txg_wait_synced` might be good enough for the data to
reach disk safely before it returns, but it does not ensure that all
outstanding lwb's reach the `LWB_STATE_DONE` state before it returns.
This is because, if there's an lwb "stuck" in
`zil_commit_waiter_timeout`, waiting for it's lwb to timeout, it will
maintain a non-null value for it's `lwb_buf` field and thus `zil_sync`
will not free that lwb. Thus, even though the lwb's data is already on
disk, the lwb will be left lingering, waiting on the CV, and will
eventually timeout and be issued to disk even though the write is
unnecessary.

So, after `zil_commit` is called from `zil_suspend`, we incorrectly
assume that there are not outstanding lwb's, and proceed to free all
lwb's found on the zilog's lwb list. As a result, we free the lwb that
will later be used `zil_commit_waiter_timeout`.

SOLUTION
========

The solution to this, is to ensure all outstanding lwb's complete before
calling `zil_free_lwb` via `zil_destroy` in `zil_suspend`. This patch
accomplishes this goal by forcing the normal `zil_commit` logic when
called from `zil_sync`.

Now, `zil_suspend` will call `zil_commit_impl` which will always use the
normal logic of waiting/issuing lwb's to disk before it returns. As a
result, any lwb's outstanding when `zil_commit_impl` is called will be
guaranteed to reach the `LWB_STATE_DONE` state by the time it returns.

Further, no new lwb's will be created via `zil_commit` since the zilog's
`zl_suspend` flag will be set. This will force all new callers of
`zil_commit` to use `txg_wait_synced` instead of creating and issuing
new lwb's.

Thus, all lwb's left on the zilog's lwb list when `zil_destroy` is
called will be in the `LWB_STATE_DONE` state, and we'll avoid this race
condition.

OpenZFS-issue: https://www.illumos.org/issues/8909
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ece62b6f8d
Closes #6940
2017-12-28 10:18:04 -08:00
Tom Caputi
a8b2e30685 Support re-prioritizing asynchronous prefetches
When sequential scrubs were merged, all calls to arc_read()
(including prefetch IOs) were given ZIO_PRIORITY_ASYNC_READ.
Unfortunately, this behaves badly with an existing issue where
prefetch IOs cannot be re-prioritized after the issue. The
result is that synchronous reads end up in the same vdev_queue
as the scrub IOs and can have (in some workloads) multiple
seconds of latency.

This patch incorporates 2 changes. The first ensures that all
scrub IOs are given ZIO_PRIORITY_SCRUB to allow the vdev_queue
code to differentiate between these I/Os and user prefetches.
Second, this patch introduces zio_change_priority() to provide
the missing capability to upgrade a zio's priority.

Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #6921 
Closes #6926
2017-12-21 09:13:06 -08:00
Prakash Surya
1ce23dcaff OpenZFS 8585 - improve batching done in zil_commit()
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Prakash Surya <prakash.surya@delphix.com>

Problem
=======

The current implementation of zil_commit() can introduce significant
latency, beyond what is inherent due to the latency of the underlying
storage. The additional latency comes from two main problems:

 1. When there's outstanding ZIL blocks being written (i.e. there's
    already a "writer thread" in progress), then any new calls to
    zil_commit() will block waiting for the currently oustanding ZIL
    blocks to complete. The blocks written for each "writer thread" is
    coined a "batch", and there can only ever be a single "batch" being
    written at a time. When a batch is being written, any new ZIL
    transactions will have to wait for the next batch to be written,
    which won't occur until the current batch finishes.

    As a result, the underlying storage may not be used as efficiently
    as possible. While "new" threads enter zil_commit() and are blocked
    waiting for the next batch, it's possible that the underlying
    storage isn't fully utilized by the current batch of ZIL blocks. In
    that case, it'd be better to allow these new threads to generate
    (and issue) a new ZIL block, such that it could be serviced by the
    underlying storage concurrently with the other ZIL blocks that are
    being serviced.

 2. Any call to zil_commit() must wait for all ZIL blocks in its "batch"
    to complete, prior to zil_commit() returning. The size of any given
    batch is proportional to the number of ZIL transaction in the queue
    at the time that the batch starts processing the queue; which
    doesn't occur until the previous batch completes. Thus, if there's a
    lot of transactions in the queue, the batch could be composed of
    many ZIL blocks, and each call to zil_commit() will have to wait for
    all of these writes to complete (even if the thread calling
    zil_commit() only cared about one of the transactions in the batch).

To further complicate the situation, these two issues result in the
following side effect:

 3. If a given batch takes longer to complete than normal, this results
    in larger batch sizes, which then take longer to complete and
    further drive up the latency of zil_commit(). This can occur for a
    number of reasons, including (but not limited to): transient changes
    in the workload, and storage latency irregularites.

Solution
========

The solution attempted by this change has the following goals:

 1. no on-disk changes; maintain current on-disk format.
 2. modify the "batch size" to be equal to the "ZIL block size".
 3. allow new batches to be generated and issued to disk, while there's
    already batches being serviced by the disk.
 4. allow zil_commit() to wait for as few ZIL blocks as possible.
 5. use as few ZIL blocks as possible, for the same amount of ZIL
    transactions, without introducing significant latency to any
    individual ZIL transaction. i.e. use fewer, but larger, ZIL blocks.

In theory, with these goals met, the new allgorithm will allow the
following improvements:

 1. new ZIL blocks can be generated and issued, while there's already
    oustanding ZIL blocks being serviced by the storage.
 2. the latency of zil_commit() should be proportional to the underlying
    storage latency, rather than the incoming synchronous workload.

Porting Notes
=============

Due to the changes made in commit 119a394ab0, the lifetime of an itx
structure differs than in OpenZFS. Specifically, the itx structure is
kept around until the data associated with the itx is considered to be
safe on disk; this is so that the itx's callback can be called after the
data is committed to stable storage. Since OpenZFS doesn't have this itx
callback mechanism, it's able to destroy the itx structure immediately
after the itx is committed to an lwb (before the lwb is written to
disk).

To support this difference, and to ensure the itx's callbacks can still
be called after the itx's data is on disk, a few changes had to be made:

  * A list of itxs was added to the lwb structure. This list contains
    all of the itxs that have been committed to the lwb, such that the
    callbacks for these itxs can be called from zil_lwb_flush_vdevs_done(),
    after the data for the itxs is committed to disk.

  * A list of itxs was added on the stack of the zil_process_commit_list()
    function; the "nolwb_itxs" list. In some circumstances, an itx may
    not be committed to an lwb (e.g. if allocating the "next" ZIL block
    on disk fails), so this list is used to keep track of which itxs
    fall into this state, such that their callbacks can be called after
    the ZIL's writer pipeline is "stalled".

  * The logic to actually call the itx's callback was moved into the
    zil_itx_destroy() function. Since all consumers of zil_itx_destroy()
    were effectively performing the same logic (i.e. if callback is
    non-null, call the callback), it seemed like useful code cleanup to
    consolidate this logic into a single function.

Additionally, the existing Linux tracepoint infrastructure dealing with
the ZIL's probes and structures had to be updated to reflect these code
changes. Specifically:

  * The "zil__cw1" and "zil__cw2" probes were removed, so they had to be
    removed from "trace_zil.h" as well.

  * Some of the zilog structure's fields were removed, which affected
    the tracepoint definitions of the structure.

  * New tracepoints had to be added for the following 3 new probes:
      * zil__process__commit__itx
      * zil__process__normal__itx
      * zil__commit__io__error

OpenZFS-issue: https://www.illumos.org/issues/8585
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/5d95a3a
Closes #6566
2017-12-05 09:39:16 -08:00
Don Brady
d977122da9 Add corruption failure option to zinject(8)
Added a 'corrupt' error option that will flip a bit in the data
after a read operation.  This is useful for generating checksum
errors at the device layer (in a mirror config for example). It
is also used to validate the diagnosis of checksum errors from
the zfs diagnosis engine.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@intel.com>
Closes #6345
2017-08-14 15:17:15 -07:00
Tom Caputi
b525630342 Native Encryption for ZFS on Linux
This change incorporates three major pieces:

The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.

The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.

The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.

Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494 
Closes #5769
2017-08-14 10:36:48 -07:00
Giuseppe Di Natale
1b7c1e5ce9 OpenZFS 7578 - Fix/improve some aspects of ZIL writing
- After some ZIL changes 6 years ago zil_slog_limit got partially broken
due to zl_itx_list_sz not updated when async itx'es upgraded to sync.
Actually because of other changes about that time zl_itx_list_sz is not
really required to implement the functionality, so this patch removes
some unneeded broken code and variables.

 - Original idea of zil_slog_limit was to reduce chance of SLOG abuse by
single heavy logger, that increased latency for other (more latency critical)
loggers, by pushing heavy log out into the main pool instead of SLOG.  Beside
huge latency increase for heavy writers, this implementation caused double
write of all data, since the log records were explicitly prepared for SLOG.
Since we now have I/O scheduler, I've found it can be much more efficient
to reduce priority of heavy logger SLOG writes from ZIO_PRIORITY_SYNC_WRITE
to ZIO_PRIORITY_ASYNC_WRITE, while still leave them on SLOG.

 - Existing ZIL implementation had problem with space efficiency when it
has to write large chunks of data into log blocks of limited size.  In some
cases efficiency stopped to almost as low as 50%.  In case of ZIL stored on
spinning rust, that also reduced log write speed in half, since head had to
uselessly fly over allocated but not written areas.  This change improves
the situation by offloading problematic operations from z*_log_write() to
zil_lwb_commit(), which knows real situation of log blocks allocation and
can split large requests into pieces much more efficiently.  Also as side
effect it removes one of two data copy operations done by ZIL code WR_COPIED
case.

 - While there, untangle and unify code of z*_log_write() functions.
Also zfs_log_write() alike to zvol_log_write() can now handle writes crossing
block boundary, that may also improve efficiency if ZPL is made to do that.

Sponsored by:   iXsystems, Inc.

Authored by: Alexander Motin <mav@FreeBSD.org>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Steven Hartland <steven.hartland@multiplay.co.uk>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Yao <ryao@gentoo.org>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>

OpenZFS-issue: https://www.illumos.org/issues/7578
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/aeb13ac
Closes #6191
2017-06-09 09:15:37 -07:00
Brian Behlendorf
e550644f0c OpenZFS 5120 - zfs should allow large block/gzip/raidz boot pool (loader project)
Authored by: Toomas Soome <tsoome@me.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Don Brady <don.brady@intel.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>

Porting Notes:
- grub-2.02-beta2-422-gcad5cc0 includes support for large blocks.
- Commit 8aab121 allowed GZIP[1-9].
- Grub allows pools with multiple top-level vdevs.

OpenZFS-issue: https://www.illumos.org/issues/5120
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c8811bd
Closes #6007
2017-04-13 09:40:00 -07:00
Toomas Soome
8aab121821 OpenZFS 7404 - rootpool_007_neg, bootfs_006_pos and bootfs_008_neg tests fail with the loader project bits
Authored by: Toomas Soome <tsoome@me.com>
Reviewed by: Igor Kozhukhov <igor@dilos.org>
Reviewed by: Marcel Telka <marcel@telka.sk>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>

Porting Notes:
- Removed gzip and zle compression restriction on bootfs
  datasets.  Grub added support for these long ago.  Ay
  version of grub which understands lz4 also supports this.
- Enabled rootpool tests in runfile but skipped by default
  in setup on Linux since they modify the rootpool.
- bootfs_006_pos.ksh, striped pools are allowed as bootfs.

OpenZFS-issue: https://www.illumos.org/issues/7404
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/55a424c
Closes #5982
2017-04-07 14:18:19 -07:00
Gvozden Neskovic
84c07adadb Remove dependency on linear ABD
Wherever possible it's best to avoid depending on a linear ABD.
Update the code accordingly in the following areas.

- vdev_raidz
- zio, zio_checksum
- zfs_fm
- change abd_alloc_for_io() to use abd_alloc()

Reviewed-by: David Quigley <david.quigley@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Closes #5668
2017-03-29 12:24:51 -07:00
Matthew Ahrens
64fc776208 OpenZFS 7968 - multi-threaded spa_sync()
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Matthew Ahrens <mahrens@delphix.com>

spa_sync() iterates over all the dirty dnodes and processes each of them
by calling dnode_sync(). If there are many dirty dnodes (e.g. because we
created or removed a lot of files), the single thread of spa_sync()
calling dnode_sync() can become a bottleneck. Additionally, if many
dnodes are dirtied concurrently in open context (e.g. due to concurrent
file creation), the os_lock will experience lock contention via
dnode_setdirty().

The solution is to track dirty dnodes on a multilist_t, and for
spa_sync() to use separate threads to process each of the sublists in
the multilist.

OpenZFS-issue: https://www.illumos.org/issues/7968
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4a2a54c
Closes #5752
2017-03-20 18:36:00 -07:00
Don Brady
4e21fd060a OpenZFS 7303 - dynamic metaslab selection
This change introduces a new weighting algorithm to improve
metaslab selection. The new weighting algorithm relies on the
SPACEMAP_HISTOGRAM feature. As a result, the metaslab weight
now encodes the type of weighting algorithm used (size-based
vs segment-based).

Porting Notes: The metaslab allocation tracing code is conditionally
removed on linux (dependent on mdb debugger).

Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Alex Reece <alex@delphix.com>
Reviewed by: Chris Siden <christopher.siden@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com>
Reviewed by: Pavel Zakharov pavel.zakharov@delphix.com
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Don Brady <don.brady@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Don Brady <don.brady@intel.com>

OpenZFS-issue: https://www.illumos.org/issues/7303
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/d5190931bd
Closes #5404
2017-01-12 11:52:56 -08:00
David Quigley
a6255b7fce DLPX-44812 integrate EP-220 large memory scalability 2016-11-29 14:34:27 -08:00
Don Brady
3dfb57a35e OpenZFS 7090 - zfs should throttle allocations
OpenZFS 7090 - zfs should throttle allocations

Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Alex Reece <alex@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Sebastien Roy <sebastien.roy@delphix.com>
Approved by: Matthew Ahrens <mahrens@delphix.com>
Ported-by: Don Brady <don.brady@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>

When write I/Os are issued, they are issued in block order but the ZIO
pipeline will drive them asynchronously through the allocation stage
which can result in blocks being allocated out-of-order. It would be
nice to preserve as much of the logical order as possible.

In addition, the allocations are equally scattered across all top-level
VDEVs but not all top-level VDEVs are created equally. The pipeline
should be able to detect devices that are more capable of handling
allocations and should allocate more blocks to those devices. This
allows for dynamic allocation distribution when devices are imbalanced
as fuller devices will tend to be slower than empty devices.

The change includes a new pool-wide allocation queue which would
throttle and order allocations in the ZIO pipeline. The queue would be
ordered by issued time and offset and would provide an initial amount of
allocation of work to each top-level vdev. The allocation logic utilizes
a reservation system to reserve allocations that will be performed by
the allocator. Once an allocation is successfully completed it's
scheduled on a given top-level vdev. Each top-level vdev maintains a
maximum number of allocations that it can handle (mg_alloc_queue_depth).
The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth)
are distributed across the top-level vdevs metaslab groups and round
robin across all eligible metaslab groups to distribute the work. As
top-levels complete their work, they receive additional work from the
pool-wide allocation queue until the allocation queue is emptied.

OpenZFS-issue: https://www.illumos.org/issues/7090
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7
Closes #5258 

Porting Notes:
- Maintained minimal stack in zio_done
- Preserve linux-specific io sizes in zio_write_compress
- Added module params and documentation
- Updated to use optimize AVL cmp macros
2016-10-13 17:59:18 -07:00
Tony Hutter
3c67d83a8a OpenZFS 4185 - add new cryptographic checksums to ZFS: SHA-512, Skein, Edon-R
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported by: Tony Hutter <hutter2@llnl.gov>

OpenZFS-issue: https://www.illumos.org/issues/4185
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45818ee

Porting Notes:
This code is ported on top of the Illumos Crypto Framework code:

    b5e030c8db

The list of porting changes includes:

- Copied module/icp/include/sha2/sha2.h directly from illumos

- Removed from module/icp/algs/sha2/sha2.c:
	#pragma inline(SHA256Init, SHA384Init, SHA512Init)

- Added 'ctx' to lib/libzfs/libzfs_sendrecv.c:zio_checksum_SHA256() since
  it now takes in an extra parameter.

- Added CTASSERT() to assert.h from for module/zfs/edonr_zfs.c

- Added skein & edonr to libicp/Makefile.am

- Added sha512.S.  It was generated from sha512-x86_64.pl in Illumos.

- Updated ztest.c with new fletcher_4_*() args; used NULL for new CTX argument.

- In icp/algs/edonr/edonr_byteorder.h, Removed the #if defined(__linux) section
  to not #include the non-existant endian.h.

- In skein_test.c, renane NULL to 0 in "no test vector" array entries to get
  around a compiler warning.

- Fixup test files:
	- Rename <sys/varargs.h> -> <varargs.h>, <strings.h> -> <string.h>,
	- Remove <note.h> and define NOTE() as NOP.
	- Define u_longlong_t
	- Rename "#!/usr/bin/ksh" -> "#!/bin/ksh -p"
	- Rename NULL to 0 in "no test vector" array entries to get around a
	  compiler warning.
	- Remove "for isa in $($ISAINFO); do" stuff
	- Add/update Makefiles
	- Add some userspace headers like stdio.h/stdlib.h in places of
	  sys/types.h.

- EXPORT_SYMBOL *_Init/*_Update/*_Final... routines in ICP modules.

- Update scripts/zfs2zol-patch.sed

- include <sys/sha2.h> in sha2_impl.h

- Add sha2.h to include/sys/Makefile.am

- Add skein and edonr dirs to icp Makefile

- Add new checksums to zpool_get.cfg

- Move checksum switch block from zfs_secpolicy_setprop() to
  zfs_check_settable()

- Fix -Wuninitialized error in edonr_byteorder.h on PPC

- Fix stack frame size errors on ARM32
  	- Don't unroll loops in Skein on 32-bit to save stack space
  	- Add memory barriers in sha2.c on 32-bit to save stack space

- Add filetest_001_pos.ksh checksum sanity test

- Add option to write psudorandom data in file_write utility
2016-10-03 14:51:15 -07:00
Dan Kimmel
2aa34383b9 DLPX-40252 integrate EP-476 compressed zfs send/receive
Authored by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: David Quigley <david.quigley@intel.com>
Issue #5078
2016-09-13 09:58:58 -07:00
George Wilson
d3c2ae1c08 OpenZFS 6950 - ARC should cache compressed data
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: David Quigley <david.quigley@intel.com>

This review covers the reading and writing of compressed arc headers, sharing
data between the arc_hdr_t and the arc_buf_t, and the implementation of a new
dbuf cache to keep frequently access data uncompressed.

I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs
off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block
for that DVA. The physical block may or may not be compressed. If compressed
arc is enabled and the block on-disk is compressed, then the b_pdata will match
the block on-disk and remain compressed in memory. If the block on disk is not
compressed, then neither will the b_pdata. Lastly, if compressed arc is
disabled, then b_pdata will always be an uncompressed version of the on-disk
block.

Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict
any arc_buf_t's that are no longer referenced. This means that the arc will
primarily have compressed blocks as the arc_buf_t's are considered overhead and
are always uncompressed. When a consumer reads a block we first look to see if
the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new
arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If
the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t
and bcopy the uncompressed contents from the first arc_buf_t to the new one.

Writing to the compressed arc requires that we first discard the b_pdata since
the physical block is about to be rewritten. The new data contents will be
passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we
will copy the physical block contents to a newly allocated b_pdata.

When an l2arc is inuse it will also take advantage of the b_pdata. Now the
l2arc will always write the contents of b_pdata to the l2arc. This means that
when compressed arc is enabled that the l2arc blocks are identical to those
stored in the main data pool. This provides a significant advantage since we
can leverage the bp's checksum when reading from the l2arc to determine if the
contents are valid. If the compressed arc is disabled, then we must first
transform the read block to look like the physical block in the main data pool
before comparing the checksum and determining it's valid.

OpenZFS-issue: https://www.illumos.org/issues/6950
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0
Issue #5078
2016-09-13 09:58:33 -07:00
luozhengzheng
0b284702b7 Delete unreferenced function zfs_ereport_send_interim_checksum
Signed-off-by: luozhengzheng <luo.zhengzheng@zte.com.cn>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #5055
2016-09-01 11:39:45 -07:00
Paul Dagnelie
bc77ba73fe OpenZFS 6513 - partially filled holes lose birth time
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Boris Protopopov <bprotopopov@hotmail.com>
Approved by: Richard Lowe <richlowe@richlowe.net>a
Ported by: Boris Protopopov <bprotopopov@actifio.com>
Signed-off-by: Boris Protopopov <bprotopopov@actifio.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>

OpenZFS-issue: https://www.illumos.org/issues/6513
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/8df0bcf0

If a ZFS object contains a hole at level one, and then a data block is
created at level 0 underneath that l1 block, l0 holes will be created.
However, these l0 holes do not have the birth time property set; as a
result, incremental sends will not send those holes.

Fix is to modify the dbuf_read code to fill in birth time data.
2016-06-21 10:55:13 -07:00
Tony Hutter
26ef0cc7db OpenZFS 6531 - Provide mechanism to artificially limit disk performance
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Dan McDonald <danmcd@omniti.com>
Ported by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>

OpenZFS-issue: https://www.illumos.org/issues/6531
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/97e8130

Porting notes:
- Added new IO delay tracepoints, and moved common ZIO tracepoint macros
  to a new trace_common.h file.
- Used zio_delay_taskq() in place of OpenZFS's timeout_generic() function.
- Updated zinject man page
- Updated zpool_scrub test files
2016-05-26 10:11:51 -07:00
Tony Hutter
193a37cb24 Add -lhHpw options to "zpool iostat" for avg latency, histograms, & queues
Update the zfs module to collect statistics on average latencies, queue sizes,
and keep an internal histogram of all IO latencies.  Along with this, update
"zpool iostat" with some new options to print out the stats:

-l: Include average IO latencies stats:

 total_wait     disk_wait    syncq_wait    asyncq_wait  scrub
 read  write   read  write   read  write   read  write   wait
-----  -----  -----  -----  -----  -----  -----  -----  -----
    -   41ms      -    2ms      -   46ms      -    4ms      -
    -    5ms      -    1ms      -    1us      -    4ms      -
    -    5ms      -    1ms      -    1us      -    4ms      -
    -      -      -      -      -      -      -      -      -
    -   49ms      -    2ms      -   47ms      -      -      -
    -      -      -      -      -      -      -      -      -
    -    2ms      -    1ms      -      -      -    1ms      -
-----  -----  -----  -----  -----  -----  -----  -----  -----
  1ms    1ms    1ms  413us   16us   25us      -    5ms      -
  1ms    1ms    1ms  413us   16us   25us      -    5ms      -
  2ms    1ms    2ms  412us   26us   25us      -    5ms      -
    -    1ms      -  413us      -   25us      -    5ms      -
    -    1ms      -  460us      -   29us      -    5ms      -
196us    1ms  196us  370us    7us   23us      -    5ms      -
-----  -----  -----  -----  -----  -----  -----  -----  -----

-w: Print out latency histograms:

sdb           total           disk         sync_queue      async_queue
latency    read   write    read   write    read   write    read   write   scrub
-------  ------  ------  ------  ------  ------  ------  ------  ------  ------
1ns           0       0       0       0       0       0       0       0       0
...
33us          0       0       0       0       0       0       0       0       0
66us          0       0     107    2486       2     788      12      12       0
131us         2     797     359    4499      10     558     184     184       6
262us        22     801     264    1563      10     286     287     287      24
524us        87     575      71   52086      15    1063     136     136      92
1ms         152    1190       5   41292       4    1693     252     252     141
2ms         245    2018       0   50007       0    2322     371     371     220
4ms         189    7455      22  162957       0    3912    6726    6726     199
8ms         108    9461       0  102320       0    5775    2526    2526      86
17ms         23   11287       0   37142       0    8043    1813    1813      19
34ms          0   14725       0   24015       0   11732    3071    3071       0
67ms          0   23597       0    7914       0   18113    5025    5025       0
134ms         0   33798       0     254       0   25755    7326    7326       0
268ms         0   51780       0      12       0   41593   10002   10002       0
537ms         0   77808       0       0       0   64255   13120   13120       0
1s            0  105281       0       0       0   83805   20841   20841       0
2s            0   88248       0       0       0   73772   14006   14006       0
4s            0   47266       0       0       0   29783   17176   17176       0
9s            0   10460       0       0       0    4130    6295    6295       0
17s           0       0       0       0       0       0       0       0       0
34s           0       0       0       0       0       0       0       0       0
69s           0       0       0       0       0       0       0       0       0
137s          0       0       0       0       0       0       0       0       0
-------------------------------------------------------------------------------

-h: Help

-H: Scripted mode. Do not display headers, and separate fields by a single
    tab instead of arbitrary space.

-q: Include current number of entries in sync & async read/write queues,
    and scrub queue:

 syncq_read    syncq_write   asyncq_read  asyncq_write   scrubq_read
 pend  activ   pend  activ   pend  activ   pend  activ   pend  activ
-----  -----  -----  -----  -----  -----  -----  -----  -----  -----
    0      0      0      0     78     29      0      0      0      0
    0      0      0      0     78     29      0      0      0      0
    0      0      0      0      0      0      0      0      0      0
    -      -      -      -      -      -      -      -      -      -
    0      0      0      0      0      0      0      0      0      0
    -      -      -      -      -      -      -      -      -      -
    0      0      0      0      0      0      0      0      0      0
-----  -----  -----  -----  -----  -----  -----  -----  -----  -----
    0      0    227    394      0     19      0      0      0      0
    0      0    227    394      0     19      0      0      0      0
    0      0    108     98      0     19      0      0      0      0
    0      0     19     98      0      0      0      0      0      0
    0      0     78     98      0      0      0      0      0      0
    0      0     19     88      0      0      0      0      0      0
-----  -----  -----  -----  -----  -----  -----  -----  -----  -----

-p: Display numbers in parseable (exact) values.

Also, update iostat syntax to allow the user to specify specific vdevs
to show statistics for.  The three options for choosing pools/vdevs are:

Display a list of pools:
    zpool iostat ... [pool ...]

Display a list of vdevs from a specific pool:
    zpool iostat ... [pool vdev ...]

Display a list of vdevs from any pools:
    zpool iostat ... [vdev ...]

Lastly, allow zpool command "interval" value to be floating point:
    zpool iostat -v 0.5

Signed-off-by: Tony Hutter <hutter2@llnl.gov
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4433
2016-05-12 12:36:32 -07:00
Paul Dagnelie
fcff0f35bd Illumos 5960, 5925
5960 zfs recv should prefetch indirect blocks
5925 zfs receive -o origin=
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>

References:
  https://www.illumos.org/issues/5960
  https://www.illumos.org/issues/5925
  https://github.com/illumos/illumos-gate/commit/a2cdcdd

Porting notes:
- [lib/libzfs/libzfs_sendrecv.c]
  - b8864a2 Fix gcc cast warnings
  - 325f023 Add linux kernel device support
  - 5c3f61e Increase Linux pipe buffer size on 'zfs receive'
- [module/zfs/zfs_vnops.c]
  - 3558fd7 Prototype/structure update for Linux
  - c12e3a5 Restructure zfs_readdir() to fix regressions
- [module/zfs/zvol.c]
  - Function @zvol_map_block() isn't needed in ZoL
  - 9965059 Prefetch start and end of volumes
- [module/zfs/dmu.c]
  - Fixed ISO C90 - mixed declarations and code
  - Function dmu_prefetch() 'int i' is initialized before
    the following code block (c90 vs. c99)
- [module/zfs/dbuf.c]
  - fc5bb51 Fix stack dbuf_hold_impl()
  - 9b67f60 Illumos 4757, 4913
  - 34229a2 Reduce stack usage for recursive traverse_visitbp()
- [module/zfs/dmu_send.c]
  - Fixed ISO C90 - mixed declarations and code
  - b58986e Use large stacks when available
  - 241b541 Illumos 5959 - clean up per-dataset feature count code
  - 77aef6f Use vmem_alloc() for nvlists
  - 00b4602 Add linux kernel memory support

Ported-by: kernelOfTruth kerneloftruth@gmail.com
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2016-01-08 15:08:19 -08:00
Brian Behlendorf
6fe53787f3 Fix vdev_queue_aggregate() deadlock
This deadlock may manifest itself in slightly different ways but
at the core it is caused by a memory allocation blocking on file-
system reclaim in the zio pipeline.  This is normally impossible
because zio_execute() disables filesystem reclaim by setting
PF_FSTRANS on the thread.  However, kmem cache allocations may
still indirectly block on file system reclaim while holding the
critical vq->vq_lock as shown below.

To resolve this issue zio_buf_alloc_flags() is introduced which
allocation flags to be passed.  This can then be used in
vdev_queue_aggregate() with KM_NOSLEEP when allocating the
aggregate IO buffer.  Since aggregating the IO is purely a
performance optimization we want this to either succeed or fail
quickly.  Trying too hard to allocate this memory under the
vq->vq_lock can negatively impact performance and result in
this deadlock.

* z_wr_iss
zio_vdev_io_start
  vdev_queue_io -> Takes vq->vq_lock
    vdev_queue_io_to_issue
      vdev_queue_aggregate
        zio_buf_alloc -> Waiting on spl_kmem_cache process

* z_wr_int
zio_vdev_io_done
  vdev_queue_io_done
    mutex_lock -> Waiting on vq->vq_lock held by z_wr_iss

* txg_sync
spa_sync
  dsl_pool_sync
    zio_wait -> Waiting on zio being handled by z_wr_int

* spl_kmem_cache
spl_cache_grow_work
  kv_alloc
    spl_vmalloc
      ...
      evict
        zpl_evict_inode
          zfs_inactive
            dmu_tx_wait
              txg_wait_open -> Waiting on txg_sync

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes #3808
Closes #3867
2015-12-18 13:27:12 -08:00
Justin T. Gibbs
99197f034e Illumos 5661 - ZFS: "compression = on" should use lz4 if feature is enabled
5661 ZFS: "compression = on" should use lz4 if feature is enabled
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
Reviewed by: Xin LI <delphij@freebsd.org>
Approved by: Robert Mustacchi <rm@joyent.com>

References:
  https://github.com/illumos/illumos-gate/commit/db1741f
  https://www.illumos.org/issues/5661

Ported-by: kernelOfTruth kerneloftruth@gmail.com
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3571
2015-07-10 12:11:45 -07:00
George Wilson
98b254188a Illumos #5244 - zio pipeline callers should explicitly invoke next stage
5244 zio pipeline callers should explicitly invoke next stage
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Alex Reece <alex.reece@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Richard Elling <richard.elling@gmail.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Steven Hartland <killing@multiplay.co.uk>
Approved by: Gordon Ross <gwr@nexenta.com>

References:
  https://www.illumos.org/issues/5244
  https://github.com/illumos/illumos-gate/commit/738f37b

Porting Notes:

1. The unported "2932 support crash dumps to raidz, etc. pools"
   caused a merge conflict due to a copyright difference in
   module/zfs/vdev_raidz.c.
2. The unported "4128 disks in zpools never go away when pulled"
   and additional Linux-specific changes caused merge conflicts in
   module/zfs/vdev_disk.c.

Ported-by: Richard Yao <richard.yao@clusterhq.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2828
2015-04-30 15:07:47 -07:00
Justin T. Gibbs
ec8501ee12 5313 Allow I/Os to be aggregated across ZIO priority classes
Reviewed by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Will Andrews <willa@SpectraLogic.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>

References:
  https://www.illumos.org/issues/5313
  https://github.com/illumos/illumos-gate/commit/fe319232

Ported-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3280
2015-04-24 15:16:56 -07:00
Brian Behlendorf
285b29d959 Revert "Pre-allocate vdev I/O buffers"
Commit 86dd0fd added preallocated I/O buffers.  This is no longer
required after the recent kmem changes designed to make our memory
allocation interfaces behave more like those found on Illumos.  A
deadlock in this situation is no longer possible.

However, these allocations still have the potential to be expensive.
So a potential future optimization might be to perform then KM_NOSLEEP
so that they either succeed of fail quicky.  Either case is acceptable
here because we can safely abort the aggregation.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2015-01-16 14:41:28 -08:00
Alex Reece
b02fe35d37 Illumos 4958 zdb trips assert on pools with ashift >= 0xe
4958 zdb trips assert on pools with ashift >= 0xe
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Max Grossman <max.grossman@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>

References:
  https://www.illumos.org/issues/4958
  https://github.com/illumos/illumos-gate/commit/2a104a5

Porting notes:

Keep the ZIO_FLAG_FASTWRITE define.  This is for a feature present
in Linux but not yet in *BSD.

Ported by: Turbo Fredriksson <turbo@bayour.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2697
2014-10-23 15:30:32 -07:00
Matthew Ahrens
5dbd68a352 Illumos 4914 - zfs on-disk bookmark structure should be named *_phys_t
4914 zfs on-disk bookmark structure should be named *_phys_t

Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Approved by: Robert Mustacchi <rm@joyent.com>

References:
  https://www.illumos.org/issues/4914
  https://github.com/illumos/illumos-gate/commit/7802d7b

Porting notes:

There were a number of zfsonlinux-specific uses of zbookmark_t which
needed to be updated.  This should reduce the likelihood of further
problems like issue #2094 from occurring.

Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2558
2014-08-06 14:48:41 -07:00
Matthew Ahrens
9b67f60560 Illumos 4757, 4913
4757 ZFS embedded-data block pointers ("zero block compression")
4913 zfs release should not be subject to space checks

Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Max Grossman <max.grossman@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Dan McDonald <danmcd@omniti.com>

References:
  https://www.illumos.org/issues/4757
  https://www.illumos.org/issues/4913
  https://github.com/illumos/illumos-gate/commit/5d7b4d4

Porting notes:

For compatibility with the fastpath code the zio_done() function
needed to be updated.  Because embedded-data block pointers do
not require DVAs to be allocated the associated vdevs will not
be marked and therefore should not be unmarked.

Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2544
2014-08-01 14:28:05 -07:00
Richard Yao
ed9e8368d3 Revert changes to zbookmark_t
Commit 1421c89142 added a field to
zbookmark_t that unintentinoally caused a disk format change. This
negatively affected backward compatibility and platform portability.
Therefore, this field is being removed.

The function that field permitted is left unimplemented until a later
patch that will reimplement the field in a way that does not affect the
disk format.

Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #2094
2014-02-21 12:10:39 -08:00
Michael Kjorling
d1d7e2689d cstyle: Resolve C style issues
The vast majority of these changes are in Linux specific code.
They are the result of not having an automated style checker to
validate the code when it was originally written.  Others were
caused when the common code was slightly adjusted for Linux.

This patch contains no functional changes.  It only refreshes
the code to conform to style guide.

Everyone submitting patches for inclusion upstream should now
run 'make checkstyle' and resolve any warning prior to opening
a pull request.  The automated builders have been updated to
fail a build if when 'make checkstyle' detects an issue.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1821
2013-12-18 16:46:35 -08:00
Matthew Ahrens
e8b96c6007 Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work

1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver.  The scheduler
issues a number of concurrent i/os from each class to the device.  Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes).  The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is.  See the block comment in vdev_queue.c (reproduced
below) for more details.

2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load.  The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system.  When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount.  This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens.  One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync().  Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes.  See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.

This diff has several other effects, including:

 * the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.

 * the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently.  There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.

 * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc.  This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).

--matt

APPENDIX: problems with the current i/o scheduler

The current ZFS i/o scheduler (vdev_queue.c) is deadline based.  The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.

For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due".  One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).

If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os.  This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future.  If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due.  Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).

Notes on porting to ZFS on Linux:

- zio_t gained new members io_physdone and io_phys_children.  Because
  object caches in the Linux port call the constructor only once at
  allocation time, objects may contain residual data when retrieved
  from the cache. Therefore zio_create() was updated to zero out the two
  new fields.

- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
  (vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
  This tree has been replaced by vq->vq_active_tree which is now used
  for the same purpose.

- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
  the number of vdev I/O buffers to pre-allocate.  That global no longer
  exists, so we instead use the sum of the *_max_active values for each of
  the five I/O classes described above.

- The Illumos implementation of dmu_tx_delay() delays a transaction by
  sleeping in condition variable embedded in the thread
  (curthread->t_delay_cv).  We do not have an equivalent CV to use in
  Linux, so this change replaced the delay logic with a wrapper called
  zfs_sleep_until(). This wrapper could be adopted upstream and in other
  downstream ports to abstract away operating system-specific delay logic.

- These tunables are added as module parameters, and descriptions added
  to the zfs-module-parameters.5 man page.

  spa_asize_inflation
  zfs_deadman_synctime_ms
  zfs_vdev_max_active
  zfs_vdev_async_write_active_min_dirty_percent
  zfs_vdev_async_write_active_max_dirty_percent
  zfs_vdev_async_read_max_active
  zfs_vdev_async_read_min_active
  zfs_vdev_async_write_max_active
  zfs_vdev_async_write_min_active
  zfs_vdev_scrub_max_active
  zfs_vdev_scrub_min_active
  zfs_vdev_sync_read_max_active
  zfs_vdev_sync_read_min_active
  zfs_vdev_sync_write_max_active
  zfs_vdev_sync_write_min_active
  zfs_dirty_data_max_percent
  zfs_delay_min_dirty_percent
  zfs_dirty_data_max_max_percent
  zfs_dirty_data_max
  zfs_dirty_data_max_max
  zfs_dirty_data_sync
  zfs_delay_scale

  The latter four have type unsigned long, whereas they are uint64_t in
  Illumos.  This accommodates Linux's module_param() supported types, but
  means they may overflow on 32-bit architectures.

  The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
  likely to overflow on 32-bit systems, since they express physical RAM
  sizes in bytes.  In fact, Illumos initializes zfs_dirty_data_max_max to
  2^32 which does overflow. To resolve that, this port instead initializes
  it in arc_init() to 25% of physical RAM, and adds the tunable
  zfs_dirty_data_max_max_percent to override that percentage.  While this
  solution doesn't completely avoid the overflow issue, it should be a
  reasonable default for most systems, and the minority of affected
  systems can work around the issue by overriding the defaults.

- Fixed reversed logic in comment above zfs_delay_scale declaration.

- Clarified comments in vdev_queue.c regarding when per-queue minimums take
  effect.

- Replaced dmu_tx_write_limit in the dmu_tx kstat file
  with dmu_tx_dirty_delay and dmu_tx_dirty_over_max.  The first counts
  how many times a transaction has been delayed because the pool dirty
  data has exceeded zfs_delay_min_dirty_percent.  The latter counts how
  many times the pool dirty data has exceeded zfs_dirty_data_max (which
  we expect to never happen).

- The original patch would have regressed the bug fixed in
  zfsonlinux/zfs@c418410, which prevented users from setting the
  zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
  A similar fix is added to vdev_queue_aggregate().

- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
  heap instead of the stack.  In Linux we can't afford such large
  structures on the stack.

Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>

References:
  http://www.illumos.org/issues/4045
  illumos/illumos-gate@69962b5647

Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-12-06 09:32:43 -08:00
George Wilson
03c6040bee Illumos #3236
3236 zio nop-write
Reviewed by: Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>

References:
  illumos/illumos-gate@80901aea8e
  https://www.illumos.org/issues/3236

Porting Notes

1. This patch is being merged dispite an increased instance of
   https://www.illumos.org/issues/3113 being triggered by ztest.

Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1489
2013-11-05 12:14:21 -08:00
Prakash Surya
1421c89142 Add visibility in to arc_read
This change is an attempt to add visibility into the arc_read calls
occurring on a system, in real time. To do this, a list was added to the
in memory SPA data structure for a pool, with each element on the list
corresponding to a call to arc_read. These entries are then exported
through the kstat interface, which can then be interpreted in userspace.

For each arc_read call, the following information is exported:

 * A unique identifier (uint64_t)
 * The time the entry was added to the list (hrtime_t)
   (*not* wall clock time; relative to the other entries on the list)
 * The objset ID (uint64_t)
 * The object number (uint64_t)
 * The indirection level (uint64_t)
 * The block ID (uint64_t)
 * The name of the function originating the arc_read call (char[24])
 * The arc_flags from the arc_read call (uint32_t)
 * The PID of the reading thread (pid_t)
 * The command or name of thread originating read (char[16])

From this exported information one can see, in real time, exactly what
is being read, what function is generating the read, and whether or not
the read was found to be already cached.

There is still some work to be done, but this should serve as a good
starting point.

Specifically, dbuf_read's are not accounted for in the currently
exported information. Thus, a follow up patch should probably be added
to export these calls that never call into arc_read (they only hit the
dbuf hash table). In addition, it might be nice to create a utility
similar to "arcstat.py" to digest the exported information and display
it in a more readable format. Or perhaps, log the information and allow
for it to be "replayed" at a later time.

Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-10-25 13:57:25 -07:00
Matthew Ahrens
cb682a173a Illumos #3618 ::zio dcmd does not show timestamp data
3618 ::zio dcmd does not show timestamp data
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: George Wilson <gwilson@zfsmail.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Approved by: Dan McDonald <danmcd@nexenta.com>

References:
  http://www.illumos.org/issues/3618
  illumos/illumos-gate@c55e05cb35

Notes on porting to ZFS on Linux:

The original changeset mostly deals with mdb ::zio dcmd.
However, in order to provide the requested functionality
it modifies vdev and zio structures to keep the timing data
in nanoseconds instead of ticks. It is these changes that
are ported over in the commit in hand.

One visible change of this commit is that the default value
of 'zfs_vdev_time_shift' tunable is changed:

    zfs_vdev_time_shift = 6
        to
    zfs_vdev_time_shift = 29

The original value of 6 was inherited from OpenSolaris and
was subotimal - since it shifted the raw tick value - it
didn't compensate for different tick frequencies on Linux and
OpenSolaris. The former has HZ=1000, while the latter HZ=100.

(Which itself led to other interesting performance anomalies
under non-trivial load. The deadline scheduler delays the IO
according to its priority - the lower priority the further
the deadline is set. The delay is measured in units of
"shifted ticks". Since the HZ value was 10 times higher,
the delay units were 10 times shorter. Thus really low
priority IO like resilver (delay is 10 units) and scrub
(delay is 20 units) were scheduled much sooner than intended.
The overall effect is that resilver and scrub IO consumed
more bandwidth at the expense of the other IO.)

Now that the bookkeeping is done is nanoseconds the shift
behaves correctly for any tick frequency (HZ).

Ported-by: Cyril Plisko <cyril.plisko@mountall.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1643
2013-08-12 16:46:50 -07:00
George.Wilson
cc92e9d0c3 3246 ZFS I/O deadman thread
Reviewed by: Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>

NOTES: This patch has been reworked from the original in the
following ways to accomidate Linux ZFS implementation

*) Usage of the cyclic interface was replaced by the delayed taskq
   interface.  This avoids the need to implement new compatibility
   code and allows us to rely on the existing taskq implementation.

*) An extern for zfs_txg_synctime_ms was added to sys/dsl_pool.h
   because declaring externs in source files as was done in the
   original patch is just plain wrong.

*) Instead of panicing the system when the deadman triggers a
   zevent describing the blocked vdev and the first pending I/O
   is posted.  If the panic behavior is desired Linux provides
   other generic methods to panic the system when threads are
   observed to hang.

*) For reference, to delay zios by 30 seconds for testing you can
   use zinject as follows: 'zinject -d <vdev> -D30 <pool>'

References:
  illumos/illumos-gate@283b84606b
  https://www.illumos.org/issues/3246

Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1396
2013-05-01 17:05:52 -07:00