Commit Graph

17 Commits

Author SHA1 Message Date
jxiong
16fa68f07d Do not upgrade userobj accounting for snapshot dataset
'zfs recv' could disown a living objset without calling
dmu_objset_disown(). This will cause the problem that the objset
would be released while the upgrading thread is still running.

This patch avoids the problem by checking if a dataset is a snapshot
before calling dmu_objset_userobjspace_upgrade().  Snapshots
are immutable and therefore it doesn't make sense to update them.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Closes #5295 
Closes #5328
2016-10-25 13:21:05 -07:00
Jinshan Xiong
1de321e626 Add support for user/group dnode accounting & quota
This patch tracks dnode usage for each user/group in the
DMU_USER/GROUPUSED_OBJECT ZAPs. ZAP entries dedicated to dnode
accounting have the key prefixed with "obj-" followed by the UID/GID
in string format (as done for the block accounting).
A new SPA feature has been added for dnode accounting as well as
a new ZPL version. The SPA feature must be enabled in the pool
before upgrading the zfs filesystem. During the zfs version upgrade,
a "quotacheck" will be executed by marking all dnode as dirty.

ZoL-bug-id: https://github.com/zfsonlinux/zfs/issues/3500

Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Signed-off-by: Johann Lombardi <johann.lombardi@intel.com>
2016-10-07 09:45:13 -07:00
cao
884385a0b2 Fix coverity defects
Fix coverity defects:
coverity scan CID:147623, Type: Resource leak.
coverity scan CID:147622, Type: Resource leak.
reason: zpool_open zhp, but not zpool_close zhp. so resource leak.

coverity scan CID:147621, Type: Resource fd leak.
coverity scan CID:147620, Type: Resource fd leak.
reason: do_write do_read open file fd,but exception not close fd.

delete unuse definition DMU_OS_IS_L2COMPRESSIBLE.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: cao.xuewen <cao.xuewen@zte.com.cn>
Closes #5137
2016-09-20 17:45:45 -07:00
Ned Bass
50c957f702 Implement large_dnode pool feature
Justification
-------------

This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks.  Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided.  Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks.  Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.

ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.

Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.

Implementation
--------------

The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.

Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.

The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run

 # zfs set dnodesize=auto tank/fish

The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.

The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.

New DMU interfaces:
  dmu_object_alloc_dnsize()
  dmu_object_claim_dnsize()
  dmu_object_reclaim_dnsize()

New ZAP interfaces:
  zap_create_dnsize()
  zap_create_norm_dnsize()
  zap_create_flags_dnsize()
  zap_create_claim_norm_dnsize()
  zap_create_link_dnsize()

The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.

These are a few noteworthy changes to key functions:

* The prototype for dnode_hold_impl() now takes a "slots" parameter.
  When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
  ensure the hole at the specified object offset is large enough to
  hold the dnode being created. The slots parameter is also used
  to ensure a dnode does not span multiple dnode blocks. In both of
  these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
  these failure cases are only possible when using DNODE_MUST_BE_FREE.

  If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
  dnode_hold_impl() will check if the requested dnode is already
  consumed as an extra dnode slot by an large dnode, in which case
  it returns ENOENT.

* The function dmu_object_alloc() advances to the next dnode block
  if dnode_hold_impl() returns an error for a requested object.
  This is because the beginning of the next dnode block is the only
  location it can safely assume to either be a hole or a valid
  starting point for a dnode.

* dnode_next_offset_level() and other functions that iterate
  through dnode blocks may no longer use a simple array indexing
  scheme. These now use the current dnode's dn_num_slots field to
  advance to the next dnode in the block. This is to ensure we
  properly skip the current dnode's bonus area and don't interpret it
  as a valid dnode.

zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.

For ZIL create log records, zdb will now display the slot count for
the object.

ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.

Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number.  This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.

ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.

Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.

While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.

For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.

ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.

Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.

Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.

Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3542
2016-06-24 13:13:21 -07:00
Ned Bass
68cbd56e18 Backfill metadnode more intelligently
Only attempt to backfill lower metadnode object numbers if at least
4096 objects have been freed since the last rescan, and at most once
per transaction group. This avoids a pathology in dmu_object_alloc()
that caused O(N^2) behavior for create-heavy workloads and
substantially improves object creation rates.  As summarized by
@mahrens in #4636:

"Normally, the object allocator simply checks to see if the next
object is available. The slow calls happened when dmu_object_alloc()
checks to see if it can backfill lower object numbers. This happens
every time we move on to a new L1 indirect block (i.e. every 32 *
128 = 4096 objects).  When re-checking lower object numbers, we use
the on-disk fill count (blkptr_t:blk_fill) to quickly skip over
indirect blocks that don’t have enough free dnodes (defined as an L2
with at least 393,216 of 524,288 dnodes free). Therefore, we may
find that a block of dnodes has a low (or zero) fill count, and yet
we can’t allocate any of its dnodes, because they've been allocated
in memory but not yet written to disk. In this case we have to hold
each of the dnodes and then notice that it has been allocated in
memory.

The end result is that allocating N objects in the same TXG can
require CPU usage proportional to N^2."

Add a tunable dmu_rescan_dnode_threshold to define the number of
objects that must be freed before a rescan is performed. Don't bother
to export this as a module option because testing doesn't show a
compelling reason to change it. The vast majority of the performance
gain comes from limit the rescan to at most once per TXG.

Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2016-06-24 13:13:12 -07:00
Justin T. Gibbs
bc4501f75a Illumos 6267 - dn_bonus evicted too early
6267 dn_bonus evicted too early
Reviewed by: Richard Yao <ryao@gentoo.org>
Reviewed by: Xin LI <delphij@freebsd.org>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Richard Lowe <richlowe@richlowe.net>

References:
  https://www.illumos.org/issues/6267
  https://github.com/illumos/illumos-gate/commit/d205810

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Ned Bass bass6@llnl.gov
Issue #3865
Issue #3443
2015-10-13 14:12:02 -07:00
Arne Jansen
9c43027b3f Illumos 5269 - zpool import slow
5269 zpool import slow
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Dan McDonald <danmcd@omniti.com>

References:
  https://www.illumos.org/issues/5269
  https://github.com/illumos/illumos-gate/commit/12380e1e

Ported-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3396
2015-06-09 13:48:02 -07:00
Matthew Ahrens
f1512ee61e Illumos 5027 - zfs large block support
5027 zfs large block support
Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@omniti.com>

References:
  https://www.illumos.org/issues/5027
  https://github.com/illumos/illumos-gate/commit/b515258

Porting Notes:

* Included in this patch is a tiny ISP2() cleanup in zio_init() from
Illumos 5255.

* Unlike the upstream Illumos commit this patch does not impose an
arbitrary 128K block size limit on volumes.  Volumes, like filesystems,
are limited by the zfs_max_recordsize=1M module option.

* By default the maximum record size is limited to 1M by the module
option zfs_max_recordsize.  This value may be safely increased up to
16M which is the largest block size supported by the on-disk format.
At the moment, 1M blocks clearly offer a significant performance
improvement but the benefits of going beyond this for the majority
of workloads are less clear.

* The illumos version of this patch increased DMU_MAX_ACCESS to 32M.
This was determined not to be large enough when using 16M blocks
because the zfs_make_xattrdir() function will fail (EFBIG) when
assigning a TX.  This was immediately observed under Linux because
all newly created files must have a security xattr created and
that was failing.  Therefore, we've set DMU_MAX_ACCESS to 64M.

* On 32-bit platforms a hard limit of 1M is set for blocks due
to the limited virtual address space.  We should be able to relax
this one the ABD patches are merged.

Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #354
2015-05-11 12:23:16 -07:00
Justin T. Gibbs
0c66c32d1d Illumos 5056 - ZFS deadlock on db_mtx and dn_holds
5056 ZFS deadlock on db_mtx and dn_holds
Author: Justin Gibbs <justing@spectralogic.com>
Reviewed by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Dan McDonald <danmcd@omniti.com>

References:
  https://www.illumos.org/issues/5056
  https://github.com/illumos/illumos-gate/commit/bc9014e

Porting Notes:

sa_handle_get_from_db():
  - the original patch includes an otherwise unmentioned fix for a
    possible usage of an uninitialised variable

dmu_objset_open_impl():
  - Under Illumos list_link_init() is the same as filling a list_node_t
    with NULLs, so they don't notice if they miss doing list_link_init()
    on a zero'd containing structure (e.g. allocated with kmem_zalloc as
    here). Under Linux, not so much: an uninitialised list_node_t goes
    "Boom!" some time later when it's used or destroyed.

dmu_objset_evict_dbufs():
  - reduce stack usage using kmem_alloc()

Ported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2015-04-28 16:25:34 -07:00
Matthew Ahrens
faf0f58c69 Illumos 3835 zfs need not store 2 copies of all metadata
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Richard Lowe <richlowe@richlowe.net>

Description from Matt Ahrens's bug report at Delphix:

    Add a new zfs property, "redundant_metadata" which can have values
    "all" or "most".  The default will be "all", which is the current
    behavior.  Setting to "most" will cause us to only store 1 copy of
    level-1 indirect blocks of user data files.

Additional notes:

    The new man page section for this property states

        "The exact behavior of which metadata blocks
         are stored redundantly may change in future releases."

    and:

        "When set to most, ZFS stores an extra copy of most types of
         metadata. This can improve performance of random writes,
         because less metadata must be written."

    The current implementation is as described above in Matt's blog.
    It is controlled by a new global integer
    "zfs_redundant_metadata_most_ditto_level", currently initialized
    to 2. When "redundant_metadata" is set to "most", only indirect
    blocks of the specified level and higher will have additional ditto
    blocks created.

Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2542
2014-07-31 09:49:34 -07:00
Keith M Wesolowski
831baf06ef Illumos #3875
3875 panic in zfs_root() after failed rollback
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Gordon Ross <gwr@nexenta.com>

References:
  https://www.illumos.org/issues/3875
  illumos/illumos-gate@91948b51b8

Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1775
2013-11-04 11:27:41 -08:00
Matthew Ahrens
13fe019870 Illumos #3464
3464 zfs synctask code needs restructuring
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>

References:
  https://www.illumos.org/issues/3464
  illumos/illumos-gate@3b2aab1880

Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1495
2013-09-04 16:01:24 -07:00
Matthew Ahrens
6f1ffb0665 Illumos #2882, #2883, #2900
2882 implement libzfs_core
2883 changing "canmount" property to "on" should not always remount dataset
2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once

Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Chris Siden <christopher.siden@delphix.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Reviewed by: Bill Pijewski <wdp@joyent.com>
Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com>
Approved by: Eric Schrock <Eric.Schrock@delphix.com>

References:
  https://www.illumos.org/issues/2882
  https://www.illumos.org/issues/2883
  https://www.illumos.org/issues/2900
  illumos/illumos-gate@4445fffbbb

Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1293

Porting notes:

WARNING: This patch changes the user/kernel ABI.  That means that
the zfs/zpool utilities built from master are NOT compatible with
the 0.6.2 kernel modules.  Ensure you load the matching kernel
modules from master after updating the utilities.  Otherwise the
zfs/zpool commands will be unable to interact with your pool and
you will see errors similar to the following:

  $ zpool list
  failed to read pool configuration: bad address
  no pools available

  $ zfs list
  no datasets available

Add zvol minor device creation to the new zfs_snapshot_nvl function.

Remove the logging of the "release" operation in
dsl_dataset_user_release_sync().  The logging caused a null dereference
because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the
logging functions try to get the ds name via the dsl_dataset_name()
function. I've got no idea why this particular code would have worked
in Illumos.  This code has subsequently been completely reworked in
Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring).

Squash some "may be used uninitialized" warning/erorrs.

Fix some printf format warnings for %lld and %llu.

Apply a few spa_writeable() changes that were made to Illumos in
illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and
3115 fixes.

Add a missing call to fnvlist_free(nvl) in log_internal() that was added
in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time
(zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-09-04 15:49:00 -07:00
Saso Kiselkov
4e59f47511 Illumos #3964 L2ARC should always compress metadata buffers
3964 L2ARC should always compress metadata buffers
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>

References:
  https://www.illumos.org/issues/3964

Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1379
2013-08-08 13:37:00 -07:00
Saso Kiselkov
3a17a7a99a Illumos #3137 L2ARC compression
3137 L2ARC compression
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Dan McDonald <danmcd@nexenta.com>

References:
  illumos/illumos-gate@aad02571bc
  https://www.illumos.org/issues/3137
  http://wiki.illumos.org/display/illumos/L2ARC+Compression

Notes for Linux port:

A l2arc_nocompress module option was added to prevent the
compression of l2arc buffers regardless of how a dataset's
compression property is set.  This allows the legacy behavior
to be preserved.

Ported by: James H <james@kagisoft.co.uk>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1379
2013-08-08 13:27:21 -07:00
Matthew Ahrens
04434775b7 Illumos #3100: zvol rename fails with EBUSY when dirty.
illumos/illumos-gate@2e2c135528
Illumos changeset: 13780:6da32a929222

3100 zvol rename fails with EBUSY when dirty

Reviewed by: Christopher Siden <chris.siden@delphix.com>
Reviewed by: Adam H. Leventhal <ahl@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Approved by: Eric Schrock <eric.schrock@delphix.com>

Ported-by: Etienne Dechamps <etienne.dechamps@ovh.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #995
2012-10-03 13:59:02 -07:00
Brian Behlendorf
6283f55ea1 Support custom build directories and move includes
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory.  The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.

For example, this project is designed to work on various different
Linux distributions each of which work slightly differently.  This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.

Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution.  When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.

wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz
tar -xzf zfs-x.y.z.tar.gz
cd zfs-x-y-z

------------------------- run concurrently ----------------------
<ubuntu system>  <fedora system>  <debian system>  <rhel6 system>
mkdir ubuntu     mkdir fedora     mkdir debian     mkdir rhel6
cd ubuntu        cd fedora        cd debian        cd rhel6
../configure     ../configure     ../configure     ../configure
make             make             make             make
make check       make check       make check       make check

This change also moves many of the include headers from individual
incude/sys directories under the modules directory in to a single
top level include directory.  This has the advantage of making
the build rules cleaner and logically it makes a bit more sense.
2010-09-08 12:38:56 -07:00