Align vdev_ops_t from illumos for better compatibility.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Igor Kozhukhov <igor@dilos.org>
Closes#8925
Use either SEEK_* or 0,1,2..., but not both.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Closes#8656
UNMAP/TRIM support is a frequently-requested feature to help
prevent performance from degrading on SSDs and on various other
SAN-like storage back-ends. By issuing UNMAP/TRIM commands for
sectors which are no longer allocated the underlying device can
often more efficiently manage itself.
This TRIM implementation is modeled on the `zpool initialize`
feature which writes a pattern to all unallocated space in the
pool. The new `zpool trim` command uses the same vdev_xlate()
code to calculate what sectors are unallocated, the same per-
vdev TRIM thread model and locking, and the same basic CLI for
a consistent user experience. The core difference is that
instead of writing a pattern it will issue UNMAP/TRIM commands
for those extents.
The zio pipeline was updated to accommodate this by adding a new
ZIO_TYPE_TRIM type and associated spa taskq. This new type makes
is straight forward to add the platform specific TRIM/UNMAP calls
to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are
handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs.
This makes it possible to largely avoid changing the pipieline,
one exception is that TRIM zio's may exceed the 16M block size
limit since they contain no data.
In addition to the manual `zpool trim` command, a background
automatic TRIM was added and is controlled by the 'autotrim'
property. It relies on the exact same infrastructure as the
manual TRIM. However, instead of relying on the extents in a
metaslab's ms_allocatable range tree, a ms_trim tree is kept
per metaslab. When 'autotrim=on', ranges added back to the
ms_allocatable tree are also added to the ms_free tree. The
ms_free tree is then periodically consumed by an autotrim
thread which systematically walks a top level vdev's metaslabs.
Since the automatic TRIM will skip ranges it considers too small
there is value in occasionally running a full `zpool trim`. This
may occur when the freed blocks are small and not enough time
was allowed to aggregate them. An automatic TRIM and a manual
`zpool trim` may be run concurrently, in which case the automatic
TRIM will yield to the manual TRIM.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Contributions-by: Tim Chase <tim@chase2k.com>
Contributions-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8419Closes#598
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210ebCloses#8230
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1ebCloses#6900
On a raidz vdev, a block that does not span all child vdevs, excluding
its skip sectors if any, may not be affected by a child vdev outage or
failure. In such cases, the block does not need to be resilvered.
However, current resilver algorithm simply resilvers all blocks on a
degraded raidz vdev. Such spurious IO is not only wasteful, but also
adds the risk of overwriting good data.
This patch eliminates such spurious IOs.
Reviewed-by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Isaac Huang <he.huang@intel.com>
Closes#5316
zfsonlinux/spl@8f87971 added __spl_pf_fstrans_check for the xfs related
check, so we use them accordingly.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes#6113
The introduction of parallel zvol prefetch causes deadlock when using
vdev_file.
spa_async->(spa_namespace_lock)->txg_wait_synced->(wait for txg_sync)
txg_sync->zio_wait->(wait for vdev_file_io_fsync on system_taskq)
zvol_prefetch_minors_impl (on system_taskq)->spa_open_common->(wait for spa_namespace_lock)
We fix this by using dedicated taskq for vdev_file. This same change
was originally made in commit bc25c93 but reverted in commit aa9af22
when dynamic taskqs were added.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Closes#5506Closes#5495
Add the TASKQID_INVALID macros and update callers to use the macro
instead of testing against 0. There is no functional change
even though the functions in zfs_ctldir.c incorrectly used -1
instead of 0.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #5347
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Dan McDonald <danmcd@omniti.com>
Ported by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/6531
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/97e8130
Porting notes:
- Added new IO delay tracepoints, and moved common ZIO tracepoint macros
to a new trace_common.h file.
- Used zio_delay_taskq() in place of OpenZFS's timeout_generic() function.
- Updated zinject man page
- Updated zpool_scrub test files
The LBA weighting makes sense on rotational media where the outer tracks
have twice the bandwidth of the inner tracks. However, it is detrimental
on nonrotational media such as solid state disks, where the only effect
is to ensure that metaslabs enter the best-fit allocation behavior
sooner, which is detrimental to performance. It also makes no sense on
files where the underlying filesystem can arrange things however it
wants.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3712
Over the years the default values for the taskqs used on Linux have
differed slightly from illumos. In the vast majority of cases this
was done to avoid creating an obnoxious number of idle threads which
would pollute the process listing.
With the addition of support for dynamic taskqs all multi-threaded
queues should be created as dynamic taskqs. This allows us to get
the best of both worlds.
* The illumos default values for the I/O pipeline can be restored.
These values are known to work well for most workloads. The only
exception is the zio write interrupt taskq which is changed to
ZTI_P(12, 8). At least under Linux more threads has been shown
to improve performance, see commit 7e55f4e.
* Reduces the number of idle threads on the system when it's not
under heavy load. The maximum number of threads will only be
created when they are required.
* Remove the vdev_file_taskq and rely on the system_taskq instead
which is now dynamic and may have up to 64-threads. Again this
brings us back inline with upstream.
* Tasks dispatched with taskq_dispatch_ent() are allowed to use
dynamic taskqs. The Linux taskq implementation supports this.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#3507
5244 zio pipeline callers should explicitly invoke next stage
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Alex Reece <alex.reece@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Richard Elling <richard.elling@gmail.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Steven Hartland <killing@multiplay.co.uk>
Approved by: Gordon Ross <gwr@nexenta.com>
References:
https://www.illumos.org/issues/5244https://github.com/illumos/illumos-gate/commit/738f37b
Porting Notes:
1. The unported "2932 support crash dumps to raidz, etc. pools"
caused a merge conflict due to a copyright difference in
module/zfs/vdev_raidz.c.
2. The unported "4128 disks in zpools never go away when pulled"
and additional Linux-specific changes caused merge conflicts in
module/zfs/vdev_disk.c.
Ported-by: Richard Yao <richard.yao@clusterhq.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2828
By marking DMU transaction processing contexts with PF_FSTRANS
we can revert the KM_PUSHPAGE -> KM_SLEEP changes. This brings
us back in line with upstream. In some cases this means simply
swapping the flags back. For others fnvlist_alloc() was replaced
by nvlist_alloc(..., KM_PUSHPAGE) and must be reverted back to
fnvlist_alloc() which assumes KM_SLEEP.
The one place KM_PUSHPAGE is kept is when allocating ARC buffers
which allows us to dip in to reserved memory. This is again the
same as upstream.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
In order to avoid deadlocking in the IO pipeline it is critical that
pageout be avoided during direct memory reclaim. This ensures that
the pipeline threads can always make forward progress and never end
up blocking on a DMU transaction. For this very reason Linux now
provides the PF_FSTRANS flag which may be set in the process context.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
For consistency with disk vdevs honor the zfs_nocacheflush tunable.
This setting is available primarily for debugging and performance
analysis.
Signed-off-by: HC <mmttdebbcc@yahoo.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2336
Originally, vdev_file used system_taskq. This would cause a deadlock,
especially on system with few CPUs. The reason is that the prefetcher
threads, which are on system_taskq, will sometimes be blocked waiting
for I/O to finish. If the prefetcher threads consume all the tasks in
system_taskq, the I/O cannot be served and thus results in a deadlock.
We fix this by creating a dedicated vdev_file_taskq for vdev_file I/O.
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2270
The vdev_file_io_start() function may be processing a zio that the
txg_sync thread is waiting on. In this case it is not safe to perform
memory allocations that may generate new I/O since this could cause a
deadlock. To avoid this, call taskq_dispatch() with TQ_PUSHPAGE
instead of TQ_SLEEP.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1928
3949 ztest fault injection should avoid resilvering devices
3950 ztest: deadman fires when we're doing a scan
3951 ztest hang when running dedup test
3952 ztest: ztest_reguid test and ztest_fault_inject don't place nice together
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
References:
https://www.illumos.org/issues/3949https://www.illumos.org/issues/3950https://www.illumos.org/issues/3951https://www.illumos.org/issues/3952illumos/illumos-gate@2c1e2b4414
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1775
Porting notes:
1. The deadman thread was removed from ztest during the original
port because it depended on Solaris thr_create() interface.
This functionality should be reintroduced using the more
portable pthreads.
3598 want to dtrace when errors are generated in zfs
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
References:
https://www.illumos.org/issues/3598illumos/illumos-gate@be6fd75a69
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1775
Porting notes:
1. include/sys/zfs_context.h has been modified to render some new
macros inert until dtrace is available on Linux.
2. Linux-specific changes have been adapted to use SET_ERROR().
3. I'm NOT happy about this change. It does nothing but ugly
up the code under Linux. Unfortunately we need to take it to
avoid more merge conflicts in the future. -Brian
3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
References:
illumos/illumos-gate@ec94d32https://illumos.org/issues/3581
Notes for Linux port:
Earlier commit 08d08eb reduced contention on this taskq lock by simply
reducing the number of z_fr_iss threads from 100 to one-per-CPU. We
also optimized the taskq implementation in zfsonlinux/spl@3c6ed54.
These changes significantly improved unlink performance to acceptable
levels.
This patch further reduces time spent spinning on this lock by
randomly dispatching the work items over multiple independent task
queues. The Illumos ZFS developers stated that this lock contention
only arose after "3329 spa_sync() spends 10-20% of its time in
spa_free_sync_cb()" was landed. It's not clear if 3329 affects the
Linux port or not. I didn't see spa_free_sync_cb() show up in
oprofile sessions while unlinking large files, but I may just not
have used the right test case.
I tested unlinking a 1 TB of data with and without the patch and
didn't observe a meaningful difference in elapsed time. However,
oprofile showed that the percent time spent in taskq_thread() was
reduced from about 16% to about 5%. Aside from a possible slight
performance benefit this may be worth landing if only for the sake of
maintaining consistency with upstream.
Ported-by: Ned Bass <bass6@llnl.gov>
Closes#1327
3306 zdb should be able to issue reads in parallel
3321 'zpool reopen' command should be documented in the man
page and help
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
References:
illumos/illumos-gate@31d7e8fa33https://www.illumos.org/issues/3306https://www.illumos.org/issues/3321
The vdev_file.c implementation in this patch diverges significantly
from the upstream version. For consistenty with the vdev_disk.c
code the upstream version leverages the Illumos bio interfaces.
This makes sense for Illumos but not for ZoL for two reasons.
1) The vdev_disk.c code in ZoL has been rewritten to use the
Linux block device interfaces which differ significantly
from those in Illumos. Therefore, updating the vdev_file.c
to use the Illumos interfaces doesn't get you consistency
with vdev_disk.c.
2) Using the upstream patch as is would requiring implementing
compatibility code for those Solaris block device interfaces
in user and kernel space. That additional complexity could
lead to confusion and doesn't buy us anything.
For these reasons I've opted to simply move the existing vn_rdwr()
as is in to the taskq function. This has the advantage of being
low risk and easy to understand. Moving the vn_rdwr() function
in to its own taskq thread also neatly avoids the possibility of
a stack overflow.
Finally, because of the additional work which is being handled by
the free taskq the number of threads has been increased. The
thread count under Illumos defaults to 100 but was decreased to 2
in commit 08d08e due to contention. We increase it to 8 until
the contention can be address by porting Illumos #3581.
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1354
Differences between how paging is done on Solaris and Linux can cause
deadlocks if KM_SLEEP is used in any the following contexts.
* The txg_sync thread
* The zvol write/discard threads
* The zpl_putpage() VFS callback
This is because KM_SLEEP will allow for direct reclaim which may result
in the VM calling back in to the filesystem or block layer to write out
pages. If a lock is held over this operation the potential exists to
deadlock the system. To ensure forward progress all memory allocations
in these contexts must us KM_PUSHPAGE which disables performing any I/O
to accomplish the memory allocation.
Previously, this behavior was acheived by setting PF_MEMALLOC on the
thread. However, that resulted in unexpected side effects such as the
exhaustion of pages in ZONE_DMA. This approach touchs more of the zfs
code, but it is more consistent with the right way to handle these cases
under Linux.
This is patch lays the ground work for being able to safely revert the
following commits which used PF_MEMALLOC:
21ade34 Disable direct reclaim for z_wr_* threads
cfc9a5c Fix zpl_writepage() deadlock
eec8164 Fix ASSERTION(!dsl_pool_sync_context(tx->tx_pool))
Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #726
vdev_tsd can be NULL for certain vdev states.
At least in userland testing with ztest.
References to Illumos issue:
https://www.illumos.org/issues/1680
Ported-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#655
I appologize in advance why to many things ended up in this commit.
When it could be seperated in to a whole series of commits teasing
that all apart now would take considerable time and I'm not sure
there's much merrit in it. As such I'll just summerize the intent
of the changes which are all (or partly) in this commit. Broadly
the intent is to remove as much Solaris specific code as possible
and replace it with native Linux equivilants. More specifically:
1) Replace all instances of zfsvfs_t with zfs_sb_t. While the
type is largely the same calling it private super block data
rather than a zfsvfs is more consistent with how Linux names
this. While non critical it makes the code easier to read when
your thinking in Linux friendly VFS terms.
2) Replace vnode_t with struct inode. The Linux VFS doesn't have
the notion of a vnode and there's absolutely no good reason to
create one. There are in fact several good reasons to remove it.
It just adds overhead on Linux if we were to manage one, it
conplicates the code, and it likely will lead to bugs so there's
a good change it will be out of date. The code has been updated
to remove all need for this type.
3) Replace all vtype_t's with umode types. Along with this shift
all uses of types to mode bits. The Solaris code would pass a
vtype which is redundant with the Linux mode. Just update all the
code to use the Linux mode macros and remove this redundancy.
4) Remove using of vn_* helpers and replace where needed with
inode helpers. The big example here is creating iput_aync to
replace vn_rele_async. Other vn helpers will be addressed as
needed but they should be be emulated. They are a Solaris VFS'ism
and should simply be replaced with Linux equivilants.
5) Update znode alloc/free code. Under Linux it's common to
embed the inode specific data with the inode itself. This removes
the need for an extra memory allocation. In zfs this information
is called a znode and it now embeds the inode with it. Allocators
have been updated accordingly.
6) Minimal integration with the vfs flags for setting up the
super block and handling mount options has been added this
code will need to be refined but functionally it's all there.
This will be the first and last of these to large to review commits.