To make better predictions on parallel workloads dmu_zfetch() should
be called as early as possible to reduce possible request reordering.
In particular, it should be called before dmu_buf_hold_array_by_dnode()
calls dbuf_hold(), which may sleep waiting for indirect blocks, waking
up multiple threads same time on completion, that can significantly
reorder the requests, making the stream look like random. But we
should not issue prefetch requests before the on-demand ones, since
they may get to the disks first despite the I/O scheduler, increasing
on-demand request latency.
This patch splits dmu_zfetch() into two functions: dmu_zfetch_prepare()
and dmu_zfetch_run(). The first can be executed as early as needed.
It only updates statistics and makes predictions without issuing any
I/Os. The I/O issuance is handled by dmu_zfetch_run(), which can be
called later when all on-demand I/Os are already issued. It even
tracks the activity of other concurrent threads, issuing the prefetch
only when _all_ on-demand requests are issued.
For many years it was a big problem for storage servers, handling
deeper request queues from their clients, having to either serialize
consequential reads to make ZFS prefetcher usable, or execute the
incoming requests as-is and get almost no prefetch from ZFS, relying
only on deep enough prefetch by the clients. Benefits of those ways
varied, but neither was perfect. With this patch deeper queue
sequential read benchmarks with CrystalDiskMark from Windows via
iSCSI to FreeBSD target show me much better throughput with almost
100% prefetcher hit rate, comparing to almost zero before.
While there, I also removed per-stream zs_lock as useless, completely
covered by parent zf_lock. Also I reused zs_blocks refcount to track
zf_stream linkage of the stream, since I believe previous zs_fetch ==
NULL check in dmu_zfetch_stream_done() was racy.
Delete prefetch streams when they reach ends of files. It saves up
to 1KB of RAM per file, plus reduces searches through the stream list.
Block data prefetch (speculation and indirect block prefetch is still
done since they are cheaper) if all dbufs of the stream are already
in DMU cache. First cache miss immediately fires all the prefetch
that would be done for the stream by that time. It saves some CPU
time if same files within DMU cache capacity are read over and over.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam Moss <c@yotes.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes#11652
If TX_WRITE is create on a file, and the file is later deleted and a new
directory is created on the same object id, it is possible that when
zil_commit happens, zfs_get_data will be called on the new directory.
This may result in panic as it tries to do range lock.
This patch fixes this issue by record the generation number during
zfs_log_write, so zfs_get_data can check if the object is valid.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <david.chen@nutanix.com>
Closes#10593Closes#11682
The RAIDZ and DRAID code is responsible for reporting checksum errors on
their child vdevs. Checksum errors represent events where a disk
returned data or parity that should have been correct, but was not. In
other words, these are instances of silent data corruption. The
checksum errors show up in the vdev stats (and thus `zpool status`'s
CKSUM column), and in the event log (`zpool events`).
Note, this is in contrast with the more common "noisy" errors where a
disk goes offline, in which case ZFS knows that the disk is bad and
doesn't try to read it, or the device returns an error on the requested
read or write operation.
RAIDZ/DRAID generate checksum errors via three code paths:
1. When RAIDZ/DRAID reconstructs a damaged block, checksum errors are
reported on any children whose data was not used during the
reconstruction. This is handled in `raidz_reconstruct()`. This is the
most common type of RAIDZ/DRAID checksum error.
2. When RAIDZ/DRAID is not able to reconstruct a damaged block, that
means that the data has been lost. The zio fails and an error is
returned to the consumer (e.g. the read(2) system call). This would
happen if, for example, three different disks in a RAIDZ2 group are
silently damaged. Since the damage is silent, it isn't possible to know
which three disks are damaged, so a checksum error is reported against
every child that returned data or parity for this read. (For DRAID,
typically only one "group" of children is involved in each io.) This
case is handled in `vdev_raidz_cksum_finish()`. This is the next most
common type of RAIDZ/DRAID checksum error.
3. If RAIDZ/DRAID is not able to reconstruct a damaged block (like in
case 2), but there happens to be additional copies of this block due to
"ditto blocks" (i.e. multiple DVA's in this blkptr_t), and one of those
copies is good, then RAIDZ/DRAID compares each sector of the data or
parity that it retrieved with the good data from the other DVA, and if
they differ then it reports a checksum error on this child. This
differs from case 2 in that the checksum error is reported on only the
subset of children that actually have bad data or parity. This case
happens very rarely, since normally only metadata has ditto blocks. If
the silent damage is extensive, there will be many instances of case 2,
and the pool will likely be unrecoverable.
The code for handling case 3 is considerably more complicated than the
other cases, for two reasons:
1. It needs to run after the main raidz read logic has completed. The
data RAIDZ read needs to be preserved until after the alternate DVA has
been read, which necessitates refcounts and callbacks managed by the
non-raidz-specific zio layer.
2. It's nontrivial to map the sections of data read by RAIDZ to the
correct data. For example, the correct data does not include the parity
information, so the parity must be recalculated based on the correct
data, and then compared to the parity that was read from the RAIDZ
children.
Due to the complexity of case 3, the rareness of hitting it, and the
minimal benefit it provides above case 2, this commit removes the code
for case 3. These types of errors will now be handled the same as case
2, i.e. the checksum error will be reported against all children that
returned data or parity.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11735
The `rr_code` field in `raidz_row_t` is unused.
This commit removes the field, as well as the code that's used to set
it.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11736
Resolve some oddities in zfsdev_close() which could result in a
panic and were not present in the equivalent function for Linux.
- Remove unused definition ZFS_MIN_MINOR
- FreeBSD: Simplify zfsdev state destruction
- Assert zs_minor is valid in zfsdev_close
- Make locking around zfsdev state match Linux
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11720
For some reason cppcheck 1.90 is generating an invalidSyntax warning
when the BF64_SET macro is used in the zstream source. The same
warning is not reported by cppcheck 2.3, nor is their any evident
problem with the expanded macro. This appears to be an issue with
this version of cppcheck. This commit annotates the source to suppress
the warning.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#11700
This change modifies the behavior of how we determine how much slop
space to use in the pool, such that now it has an upper limit. The
default upper limit is 128G, but is configurable via a tunable.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Prakash Surya <prakash.surya@delphix.com>
Closes#11023
Making uio_impl.h the common header interface between Linux and FreeBSD
so both OS's can share a common header file. This also helps reduce code
duplication for zfs_uio_t for each OS.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Closes#11622
Also fixes leak of the dlopen handle in the error case.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Signed-off-by: Christian Schwarz <me@cschwarz.com>
Closes#11602
Fix regression seen in issue #11545 where checksum errors
where not being counted or showing up in a zpool event.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#11609
Property to allow sets of features to be specified; for compatibility
with specific versions / releases / external systems. Influences
the behavior of 'zpool upgrade' and 'zpool create'. Initial man
page changes and test cases included.
Brief synopsis:
zpool create -o compatibility=off|legacy|file[,file...] pool vdev...
compatibility = off : disable compatibility mode (enable all features)
compatibility = legacy : request that no features be enabled
compatibility = file[,file...] : read features from specified files.
Only features present in *all* files will be enabled on the
resulting pool. Filenames may be absolute, or relative to
/etc/zfs/compatibility.d or /usr/share/zfs/compatibility.d (/etc
checked first).
Only affects zpool create, zpool upgrade and zpool status.
ABI changes in libzfs:
* New function "zpool_load_compat" to load and parse compat sets.
* Add "zpool_compat_status_t" typedef for compatibility parse status.
* Add ZPOOL_PROP_COMPATIBILITY to the pool properties enum
* Add ZPOOL_STATUS_COMPATIBILITY_ERR to the pool status enum
An initial set of base compatibility sets are included in
cmd/zpool/compatibility.d, and the Makefile for cmd/zpool is
modified to install these in $pkgdatadir/compatibility.d and to
create symbolic links to a reasonable set of aliases.
Reviewed-by: ericloewe
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Colm Buckley <colm@tuatha.org>
Closes#11468
FreeBSD's zfsd fails to build after e2af2acce3 due to strict type
checking errors from the implicit conversion between bool and boolean_t
in the inline predicate definitions in abd.h.
Use conditionals to return the correct value type from these functions.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Ryan Moeller <freqlabs@FreeBSD.org>
Closes#11592
zfs_znode_update_vfs is a more platform-agnostic name than
zfs_inode_update. Besides that, the function's prototype is moved to
include/sys/zfs_znode.h as the function is also used in common code.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ka Ho Ng <khng300@gmail.com>
Sponsored by: The FreeBSD Foundation
Closes#11580
ABD's currently track their parent/child relationship. This applies to
`abd_get_offset()` and `abd_borrow_buf()`. However, nothing depends on
knowing this relationship, it's only used for consistency checks to
verify that we are not destroying an ABD that's still in use. When we
are creating/destroying ABD's frequently, the performance impact of
maintaining these data structures (in particular the atomic
increment/decrement operations) can be measurable.
This commit removes this verification code on production builds, but
keeps it when ZFS_DEBUG is set.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11535
The runtime of vdev_validate is dominated by the disk accesses in
vdev_label_read_config. Speed it up by validating all vdevs in
parallel using a taskq.
Sponsored by: Axcient
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alan Somers <asomers@gmail.com>
Closes#11470
metaslab_init is the slowest part of importing a mature pool, and it
must be repeated hundreds of times for each top-level vdev. But its
speed is dominated by a few serialized disk accesses. That can lead to
import times of > 1 hour for pools with many top-level vdevs on spinny
disks.
Speed up the import by using a taskqueue to parallelize vdev_load across
all top-level vdevs.
This also requires adding mutex protection to
metaslab_class_t.mc_historgram. The mc_histogram fields were
unprotected when that code was first written in "Illumos 4976-4984 -
metaslab improvements" (OpenZFS
f3a7f6610f). The lock wasn't added until
3dfb57a35e, though it's unclear exactly
which fields it's supposed to protect. In any case, it wasn't until
vdev_load was parallelized that any code attempted concurrent access to
those fields.
Sponsored by: Axcient
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alan Somers <asomers@gmail.com>
Closes#11470
Mixing ZIL and normal allocations has several problems:
1. The ZIL allocations are allocated, written to disk, and then a few
seconds later freed. This leaves behind holes (free segments) where the
ZIL blocks used to be, which increases fragmentation, which negatively
impacts performance.
2. When under moderate load, ZIL allocations are of 128KB. If the pool
is fairly fragmented, there may not be many free chunks of that size.
This causes ZFS to load more metaslabs to locate free segments of 128KB
or more. The loading happens synchronously (from zil_commit()), and can
take around a second even if the metaslab's spacemap is cached in the
ARC. All concurrent synchronous operations on this filesystem must wait
while the metaslab is loading. This can cause a significant performance
impact.
3. If the pool is very fragmented, there may be zero free chunks of
128KB or more. In this case, the ZIL falls back to txg_wait_synced(),
which has an enormous performance impact.
These problems can be eliminated by using a dedicated log device
("slog"), even one with the same performance characteristics as the
normal devices.
This change sets aside one metaslab from each top-level vdev that is
preferentially used for ZIL allocations (vdev_log_mg,
spa_embedded_log_class). From an allocation perspective, this is
similar to having a dedicated log device, and it eliminates the
above-mentioned performance problems.
Log (ZIL) blocks can be allocated from the following locations. Each
one is tried in order until the allocation succeeds:
1. dedicated log vdevs, aka "slog" (spa_log_class)
2. embedded slog metaslabs (spa_embedded_log_class)
3. other metaslabs in normal vdevs (spa_normal_class)
The space required for the embedded slog metaslabs is usually between
0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop"
space that is not available for user data.
On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity,
and recordsize=8k, testing shows a ~50% performance increase on random
8k sync writes. On even more fragmented systems (which hit problem #3
above and call txg_wait_synced()), the performance improvement can be
arbitrarily large (>100x).
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11389
In FreeBSD the struct uio was just a typedef to uio_t. In order to
extend this struct, outside of the definition for the struct uio, the
struct uio has been embedded inside of a uio_t struct.
Also renamed all the uio_* interfaces to be zfs_uio_* to make it clear
this is a ZFS interface.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Closes#11438
The `abd_get_offset_*()` routines create an abd_t that references
another abd_t, and doesn't allocate any pages/buffers of its own. In
some workloads, these routines may be called frequently, to create many
abd_t's representing small pieces of a single large abd_t. In
particular, the upcoming RAIDZ Expansion project makes heavy use of
these routines.
This commit adds the ability for the caller to allocate and provide the
abd_t struct to a variant of `abd_get_offset_*()`. This eliminates the
cost of allocating the abd_t and performing the accounting associated
with it (`abdstat_struct_size`). The RAIDZ/DRAID code uses this for
the `rc_abd`, which references the zio's abd. The upcoming RAIDZ
Expansion project will leverage this infrastructure to increase
performance of reads post-expansion by around 50%.
Additionally, some of the interfaces around creating and destroying
abd_t's are cleaned up. Most significantly, the distinction between
`abd_put()` and `abd_free()` is eliminated; all types of abd_t's are
now disposed of with `abd_free()`.
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Issue #8853Closes#11439
Each zfs ioctl that changes on-disk state (e.g. set property, create
snapshot, destroy filesystem) is recorded in the zpool history, and is
printed by `zpool history -i`.
For performance diagnostic purposes, it would be useful to know how long
each of these ioctls took to run. This commit adds that functionality,
with a new `ZPOOL_HIST_ELAPSED_NS` member of the history nvlist.
Additionally, the time recorded in this history log is currently the
time that the history record is written to disk. But in many cases (CLI
args logging and ioctl logging), this happens asynchronously,
potentially many seconds after the operation completed. This commit
changes the timestamp to reflect when the history event was created,
rather than when it was written to disk.
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11440
Build error on illumos with gcc 10 did reveal:
In function 'dmu_objset_refresh_ownership':
../../common/fs/zfs/dmu_objset.c:857:25: error: implicit conversion
from 'boolean_t' to 'ds_hold_flags_t' {aka 'enum ds_hold_flags'}
[-Werror=enum-conversion]
857 | dsl_dataset_disown(ds, decrypt, tag);
| ^~~~~~~
cc1: all warnings being treated as errors
libzfs_input_check.c: In function 'zfs_ioc_input_tests':
libzfs_input_check.c:754:28: error: implicit conversion from
'enum dmu_objset_type' to 'enum lzc_dataset_type'
[-Werror=enum-conversion]
754 | err = lzc_create(dataset, DMU_OST_ZFS, NULL, NULL, 0);
| ^~~~~~~~~~~
cc1: all warnings being treated as errors
The same issue is present in openzfs, and also the same issue about
ds_hold_flags_t, which currently defines exactly one valid value.
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Toomas Soome <tsoome@me.com>
Closes#11406
On a system with very high fragmentation, we may need to do lots of gang
allocations (e.g. most indirect block allocations (~50KB) may need to
gang). Before failing a "normal" allocation and resorting to ganging, we
try every metaslab. This has the impact of loading every metaslab (not
a huge deal since we now typically keep all metaslabs loaded), and also
iterating over every metaslab for every failing allocation. If there are
many metaslabs (more than the typical ~200, e.g. due to vdev expansion
or very large vdevs), the CPU cost of this iteration can be very
impactful. This iteration is done with the mg_lock held, creating long
hold times and high lock contention for concurrent allocations,
ultimately causing long txg sync times and poor application performance.
To address this, this commit changes the behavior of "normal" (not
try_hard, not ZIL) allocations. These will now only examine the 100
best metaslabs (as determined by their ms_weight). If none of these
have a large enough free segment, then the allocation will fail and
we'll fall back on ganging.
To accomplish this, we will now (normally) gang before doing a
`try_hard` allocation. Non-try_hard allocations will only examine the
100 best metaslabs of each vdev. In summary, we will first try normal
allocation. If that fails then we will do a gang allocation. If that
fails then we will do a "try hard" gang allocation. If that fails then
we will have a multi-layer gang block.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11327
Metaslab rotor and aliquot are used to distribute workload between
vdevs while keeping some locality for logically adjacent blocks. Once
multiple allocators were introduced to separate allocation of different
objects it does not make much sense for different allocators to write
into different metaslabs of the same metaslab group (vdev) same time,
competing for its resources. This change makes each allocator choose
metaslab group independently, colliding with others only sporadically.
Test including simultaneous write into 4 files with recordsize of 4KB
on a striped pool of 30 disks on a system with 40 logical cores show
reduction of vdev queue lock contention from 54 to 27% due to better
load distribution. Unfortunately it won't help much ZVOLs yet since
only one dataset/ZVOL is synced at a time, and so for the most part
only one allocator is used, but it may improve later.
While there, to reduce the number of pointer dereferences change
per-allocator storage for metaslab classes and groups from several
separate malloc()'s to variable length arrays at the ends of the
original class and group structures.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#11288
Building the spa module for i386 caused gcc to emit
-Wint-to-pointer-cast "cast to pointer from integer of different size"
because spa.spa_did was uint64_t but pthread_join (via thread_join in
spa_deactivate) takes a pointer (32-bit on i386). Define spa_did to be
pointer-size instead. For now spa_did is in fact never non-zero and the
thread_join could instead be ifdef'd out, but changing the size of
spa_did may be more useful for the future.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Libby <rlibby@FreeBSD.org>
Closes#11336
The last change caused the read completion callback to not be called
if the IO was still in progress. This change restores allocation
of the arc buf callback, but in the callback path checks the new
acb_nobuf field to know to skip buffer allocation.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11324
The performance of `zfs receive` can be bottlenecked on the CPU consumed
by the `receive_writer` thread, especially when receiving streams with
small compressed block sizes. Much of the CPU is spent creating and
destroying dbuf's and arc buf's, one for each `WRITE` record in the send
stream.
This commit introduces the concept of "lightweight writes", which allows
`zfs receive` to write to the DMU by providing an ABD, and instantiating
only a new type of `dbuf_dirty_record_t`. The dbuf and arc buf for this
"dirty leaf block" are not instantiated.
Because there is no dbuf with the dirty data, this mechanism doesn't
support reading from "lightweight-dirty" blocks (they would see the
on-disk state rather than the dirty data). Since the dedup-receive code
has been removed, `zfs receive` is write-only, so this works fine.
Because there are no arc bufs for the received data, the received data
is no longer cached in the ARC.
Testing a receive of a stream with average compressed block size of 4KB,
this commit improves performance by 50%, while also reducing CPU usage
by 50% of a CPU. On a per-block basis, CPU consumed by receive_writer()
and dbuf_evict() is now 1/7th (14%) of what it was.
Baseline: 450MB/s, CPU in receive_writer() 40% + dbuf_evict() 35%
New: 670MB/s, CPU in receive_writer() 17% + dbuf_evict() 0%
The code is also restructured in a few ways:
Added a `dr_dnode` field to the dbuf_dirty_record_t. This simplifies
some existing code that no longer needs `DB_DNODE_ENTER()` and related
routines. The new field is needed by the lightweight-type dirty record.
To ensure that the `dr_dnode` field remains valid until the dirty record
is freed, we have to ensure that the `dnode_move()` doesn't relocate the
dnode_t. To do this we keep a hold on the dnode until it's zio's have
completed. This is already done by the user-accounting code
(`userquota_updates_task()`), this commit extends that so that it always
keeps the dnode hold until zio completion (see `dnode_rele_task()`).
`dn_dirty_txg` was previously zeroed when the dnode was synced. This
was not necessary, since its meaning can be "when was this dnode last
dirtied". This change simplifies the new `dnode_rele_task()` code.
Removed some dead code related to `DRR_WRITE_BYREF` (dedup receive).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11105
ZFS currently doesn't react to hotplugging cpu or memory into the
system in any way. This patch changes that by adding logic to the ARC
that allows the system to take advantage of new memory that is added
for caching purposes. It also adds logic to the taskq infrastructure
to support dynamically expanding the number of threads allocated to a
taskq.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Matthew Ahrens <matthew.ahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#11212
Add ARC_FLAG_NO_BUF to indicate that a buffer need not be
instantiated. This fixes a ~20% performance regression on
cached reads due to zfetch changes.
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11220Closes#11232
Investigating influence of scrub (especially sequential) on random read
latency I've noticed that on some HDDs single 4KB read may take up to 4
seconds! Deeper investigation shown that many HDDs heavily prioritize
sequential reads even when those are submitted with queue depth of 1.
This patch addresses the latency from two sides:
- by using _min_active queue depths for non-interactive requests while
the interactive request(s) are active and few requests after;
- by throttling it further if no interactive requests has completed
while configured amount of non-interactive did.
While there, I've also modified vdev_queue_class_to_issue() to give
more chances to schedule at least _min_active requests to the lowest
priorities. It should reduce starvation if several non-interactive
processes are running same time with some interactive and I think should
make possible setting of zfs_vdev_max_active to as low as 1.
I've benchmarked this change with 4KB random reads from ZVOL with 16KB
block size on newly written non-fragmented pool. On fragmented pool I
also saw improvements, but not so dramatic. Below are log2 histograms
of the random read latency in milliseconds for different devices:
4 2x mirror vdevs of SATA HDD WDC WD20EFRX-68EUZN0 before:
0, 0, 2, 1, 12, 21, 19, 18, 10, 15, 17, 21
after:
0, 0, 0, 24, 101, 195, 419, 250, 47, 4, 0, 0
, that means maximum latency reduction from 2s to 500ms.
4 2x mirror vdevs of SATA HDD WDC WD80EFZX-68UW8N0 before:
0, 0, 2, 31, 38, 28, 18, 12, 17, 20, 24, 10, 3
after:
0, 0, 55, 247, 455, 470, 412, 181, 36, 0, 0, 0, 0
, i.e. from 4s to 250ms.
1 SAS HDD SEAGATE ST14000NM0048 before:
0, 0, 29, 70, 107, 45, 27, 1, 0, 0, 1, 4, 19
after:
1, 29, 681, 1261, 676, 1633, 67, 1, 0, 0, 0, 0, 0
, i.e. from 4s to 125ms.
1 SAS SSD SEAGATE XS3840TE70014 before (microseconds):
0, 0, 0, 0, 0, 0, 0, 0, 70, 18343, 82548, 618
after:
0, 0, 0, 0, 0, 0, 0, 0, 283, 92351, 34844, 90
I've also measured scrub time during the test and on idle pools. On
idle fragmented pool I've measured scrub getting few percent faster
due to use of QD3 instead of QD2 before. On idle non-fragmented pool
I've measured no difference. On busy non-fragmented pool I've measured
scrub time increase about 1.5-1.7x, while IOPS increase reached 5-9x.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes#11166
- Don't leave fstrans set when passed a snapshot
- Don't remove minor if volmode already matches new value
- (FreeBSD) Wait for GEOM ops to complete before trying
remove (at create time GEOM will be "tasting" in parallel)
- (FreeBSD) Don't leak zvol_state_lock on open if zv == NULL
- (FreeBSD) Don't try to unlock zv->zv_state lock if zv == NULL
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11199
For encrypted receives, where user accounting is initially disabled on
creation, both 'zfs userspace' and 'zfs groupspace' fails with
EOPNOTSUPP: this is because dmu_objset_id_quota_upgrade_cb() forgets to
set OBJSET_FLAG_USERACCOUNTING_COMPLETE on the objset flags after a
successful dmu_objset_space_upgrade().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#9501Closes#9596
The output of ZFS channel programs is logged on-disk in the zpool
history, and printed by `zpool history -i`. Channel programs can use
10MB of memory by default, and up to 100MB by using the `zfs program -m`
flag. Therefore their output can be up to some fraction of 100MB.
In addition to being somewhat wasteful of the limited space reserved for
the pool history (which for large pools is 1GB), in extreme cases this
can result in a failure of `ASSERT(length <= DMU_MAX_ACCESS);` in
`dmu_buf_hold_array_by_dnode()`.
This commit limits the output size that will be logged to 1MB. Larger
outputs will not be logged, instead a entry will be logged indicating
the size of the omitted output.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11194
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10102
The field is yet another leftover from unsupported zfs_znode_move.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Closes#11186
The oid comes from the znode we are already passing.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11176
In Linux 5.10 the linux/frame.h header was renamed linux/objtool.h.
Add a configure check to detect and use the correctly named header.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#11085
Move zfs_get_data() in to platform-independent code. The only
platform-specific aspect of it is the way we release an inode
(Linux) / vnode_t (FreeBSD). I am not aware of a platform that
could be supported by ZFS that couldn't implement zfs_rele_async
itself. It's sibling zvol_get_data already is platform-independent.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Christian Schwarz <me@cschwarz.com>
Closes#10979
Current CPU_SEQID users don't care about possibly changing CPU ID, but
enclose it within kpreempt disable/enable in order to fend off warnings
from Linux's CONFIG_DEBUG_PREEMPT.
There is no need to do it. The expected way to get CPU ID while allowing
for migration is to use raw_smp_processor_id.
In order to make this future-proof this patch keeps CPU_SEQID as is and
introduces CPU_SEQID_UNSTABLE instead, to make it clear that consumers
explicitly want this behavior.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Closes#11142
The zfs_holey() and zfs_access() functions can be made common
to both FreeBSD and Linux.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11125
Note that this only tracks sizes as requested by the caller.
Actual allocated space will almost always be bigger (e.g., rounded up to
the next power of 2 or page size). Additionally the allocated buffer may
be holding other areas hostage. Nonetheless, this is a starting point
for tracking memory usage in zstd.
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Closes#11129
The original xuio zero copy functionality has always been unused
on Linux and FreeBSD. Remove this disabled code to avoid any
confusion and improve readability.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11124
Refer to the correct section or alternative for FreeBSD and Linux.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11132
The zfs_fsync, zfs_read, and zfs_write function are almost identical
between Linux and FreeBSD. With a little refactoring they can be
moved to the common code which is what is done by this commit.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11078
The acltype property is currently hidden on FreeBSD and does not
reflect the NFSv4 style ZFS ACLs used on the platform. This makes it
difficult to observe that a pool imported from FreeBSD on Linux has a
different type of ACL that is being ignored, and vice versa.
Add an nfsv4 acltype and expose the property on FreeBSD.
Make the default acltype nfsv4 on FreeBSD.
Setting acltype to an unhanded style is treated the same as setting
it to off. The ACLs will not be removed, but they will be ignored.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10520
In FreeBSD, there are three compile environments that are supported:
user land, the kernel and the bootloader / standalone. Adjust the
headers to compile in the standalone environment. Limit kernel-only
items from view when _STANDALONE is defined.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Warner Losh <imp@FreeBSD.org>
Closes#10998
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam Moss <c@yotes.com>
Signed-off-by: Christian Schwarz <me@cschwarz.com>
Closes#11047
Code cleanup, a follow up commit to 4d55ea81.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Co-authored-by: Ryan Moeller <ryan@freqlabs.com>
Signed-off-by: Christian Schwarz <me@cschwarz.com>
Closes#11020
This change updates the documentation to refer to the project
as OpenZFS instead ZFS on Linux. Web links have been updated
to refer to https://github.com/openzfs/zfs. The extraneous
zfsonlinux.org web links in the ZED and SPL sources have been
dropped.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#11007
In C, const indicates to the reader that mutation will not occur.
It can also serve as a hint about ownership.
Add const in a few places where it makes sense.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <freqlabs@FreeBSD.org>
Closes#10997
In non regular use cases allocated memory might stay persistent in memory
pool. This small patch checks every minute if there are old objects which
can be released from memory pool.
Right now with regular use, the pool is checked for old objects on each
allocation attempt from this pool. so basically polling by its use. Now
consider what happens if someone writes a lot of files and stops use of
the volume or even unmounts it. So the code will no longer check if
objects can be released from the pool. Already allocated objects will
still stay in pool cache. this is no big issue for common use. But
someone discovered this issue while doing tests. personally i know this
behavior and I'm aware of it. Its no big issue. just a enhancement
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Closes#10938Closes#10969
The m4 objtool configure check can incorrectly fail because of a
missing header in the test. This appears to be the result of a
recent kernel change and was observed on the Fedora 5.8.11-200
kernel.
In file included from /home/fedora/zfs/build/objtool/objtool.c:75:
./arch/x86/include/asm/frame.h💯57: error: 'struct pt_regs'
declared inside parameter list will not be visible outside
of this definition or declaration [-Werror]
The consequence of this is that the "stack_frame_non_standard"
check is never run and HAVE_STACK_FRAME_NON_STANDARD is set
incorrectly which results in a build failure. This change adds
the appropriate header to the "objtool" check so it now behaves
as intended.
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10990
The current dmu_zfetch code implicitly assumes that I/Os complete
within min_sec_reap seconds. With async dmu and a readonly workload
(and thus no exponential backoff in operations from the "write
throttle") such as L2ARC rebuild it is possible to saturate the drives
with I/O requests. These are then effectively compounded with prefetch
requests.
This change reference counts streams and prevents them from being
recycled after their min_sec_reap timeout if they still have
outstanding I/Os.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10900
The procfs_list interface is required by several kstats. Implement
this functionality for FreeBSD to provide access to these kstats.
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10890
Use the same reduced buffer size for lauxlib that is used on Linux.
Fixes panic on HEAD in lua gsub test designed to exhaust stack space.
With this we can remove the special case to reserve more stack space
on FreeBSD.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Kyle Evans <kevans@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10959
== Motivation and Context
The new vdev ashift optimization prevents the removal of devices when
a zfs configuration is comprised of disks which have different logical
and physical block sizes. This is caused because we set 'spa_min_ashift'
in vdev_open and then later call 'vdev_ashift_optimize'. This would
result in an inconsistency between spa's ashift calculations and that
of the top-level vdev.
In addition, the optimization logical ignores the overridden ashift
value that would be provided by '-o ashift=<val>'.
== Description
This change reworks the vdev ashift optimization so that it's only
set the first time the device is configured. It still allows the
physical and logical ahsift values to be set every time the device
is opened but those values are only consulted on first open.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Cedric Berger <cedric@precidata.com>
Signed-off-by: George Wilson <gwilson@delphix.com>
External-Issue: DLPX-71831
Closes#10932
Prefer acltype=off|posix, retaining the old names as aliases.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10918
nvlist does allow us to support different data types and systems.
To encapsulate user data to/from nvlist, the libzfsbootenv library is
provided.
Reviewed-by: Arvind Sankar <nivedita@alum.mit.edu>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Toomas Soome <tsoome@me.com>
Closes#10774
Currently the ARC state (MFU/MRU) of cached L2ARC buffer and their
content type is unknown. Knowing this information may prove beneficial
in adjusting the L2ARC caching policy.
This commit adds L2ARC arcstats that display the aligned size
(in bytes) of L2ARC buffers according to their content type
(data/metadata) and according to their ARC state (MRU/MFU or
prefetch). It also expands the existing evict_l2_eligible arcstat to
differentiate between MFU and MRU buffers.
L2ARC caches buffers from the MRU and MFU lists of ARC. Upon caching a
buffer, its ARC state (MRU/MFU) is stored in the L2 header
(b_arcs_state). The l2_m{f,r}u_asize arcstats reflect the aligned size
(in bytes) of L2ARC buffers according to their ARC state (based on
b_arcs_state). We also account for the case where an L2ARC and ARC
cached MRU or MRU_ghost buffer transitions to MFU. The l2_prefetch_asize
reflects the alinged size (in bytes) of L2ARC buffers that were cached
while they had the prefetch flag set in ARC. This is dynamically updated
as the prefetch flag of L2ARC buffers changes.
When buffers are evicted from ARC, if they are determined to be L2ARC
eligible then their logical size is recorded in
evict_l2_eligible_m{r,f}u arcstats according to their ARC state upon
eviction.
Persistent L2ARC:
When committing an L2ARC buffer to a log block (L2ARC metadata) its
b_arcs_state and prefetch flag is also stored. If the buffer changes
its arcstate or prefetch flag this is reflected in the above arcstats.
However, the L2ARC metadata cannot currently be updated to reflect this
change.
Example: L2ARC caches an MRU buffer. L2ARC metadata and arcstats count
this as an MRU buffer. The buffer transitions to MFU. The arcstats are
updated to reflect this. Upon pool re-import or on/offlining the L2ARC
device the arcstats are cleared and the buffer will now be counted as an
MRU buffer, as the L2ARC metadata were not updated.
Bug fix:
- If l2arc_noprefetch is set, arc_read_done clears the L2CACHE flag of
an ARC buffer. However, prefetches may be issued in a way that
arc_read_done() is bypassed. Instead, move the related code in
l2arc_write_eligible() to account for those cases too.
Also add a test and update manpages for l2arc_mfuonly module parameter,
and update the manpages and code comments for l2arc_noprefetch.
Move persist_l2arc tests to l2arc.
Reviewed-by: Ryan Moeller <freqlabs@FreeBSD.org>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#10743
When hz > 1000, msec / (1000 / hz) results in division by zero.
I found somewhere in FreeBSD using howmany(msec * hz, 1000) to convert
ms to ticks, avoiding the potential for a zero in the divisor.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <freqlabs@FreeBSD.org>
Closes#10894
Duplicate io and checksum ereport events can misrepresent that
things are worse than they seem. Ideally the zpool events and the
corresponding vdev stat error counts in a zpool status should be
for unique errors -- not the same error being counted over and over.
This can be demonstrated in a simple example. With a single bad
block in a datafile and just 5 reads of the file we end up with a
degraded vdev, even though there is only one unique error in the pool.
The proposed solution to the above issue, is to eliminate duplicates
when posting events and when updating vdev error stats. We now save
recent error events of interest when posting events so that we can
easily check for duplicates when posting an error.
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#10861
If a `zfs_space_check_t` other than `ZFS_SPACE_CHECK_NONE` is used with
`dsl_sync_task_nowait()`, the sync task may fail due to ENOSPC.
However, there is no way to notice or communicate this failure, so it's
extremely difficult to use this functionality correctly, and in fact
almost all callers use `ZFS_SPACE_CHECK_NONE`.
This commit removes the `zfs_space_check_t` argument from
`dsl_sync_task_nowait()`, and always uses `ZFS_SPACE_CHECK_NONE`.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10855
There are a number of places where cv_?_sig is used simply for
accounting purposes but the surrounding code has no ability to
cope with actually receiving a signal. On FreeBSD it is possible
to send signals to individual kernel threads so this could
enable undesirable behavior.
This patch adds routines on Linux that will do the same idle
accounting as _sig without making the task interruptible. On
FreeBSD cv_*_idle are all aliases for cv_*
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10843
Allow to rename file systems without remounting if it is possible.
It is possible for file systems with 'mountpoint' property set to
'legacy' or 'none' - we don't have to change mount directory for them.
Currently such file systems are unmounted on rename and not even
mounted back.
This introduces layering violation, as we need to update
'f_mntfromname' field in statfs structure related to mountpoint (for
the dataset we are renaming and all its children).
In my opinion it is worth it, as it allow to update FreeBSD in even
cleaner way - in ZFS-only configuration root file system is ZFS file
system with 'mountpoint' property set to 'legacy'. If root dataset is
named system/rootfs, we can snapshot it (system/rootfs@upgrade), clone
it (system/oldrootfs), update FreeBSD and if it doesn't boot we can
boot back from system/oldrootfs and rename it back to system/rootfs
while it is mounted as /. Before it was not possible, because
unmounting / was not possible.
Authored by: Pawel Jakub Dawidek <pjd@FreeBSD.org>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: Matt Macy <mmacy@freebsd.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10839
For Linux, when zfs is compiled as an in kernel static variant
and the in kernel zstd library is compiled statically into the kernel
a symbol collision will occur. This wrapper header renames all
of the relevant zstd functions to avoid this problem.
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Closes#10775
Increase the size of DDT_NAMELEN and MNT_LINE_MAX to appease GCC
snprintf truncation warnings.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chris McDonough <chrism@plope.com>
Closes#10712Closes#10766
Many modern devices use physical allocation units that are much
larger than the minimum logical allocation size accessible by
external commands. Two prevalent examples of this are 512e disk
drives (512b logical sector, 4K physical sector) and flash devices
(512b logical sector, 4K or larger allocation block size, and 128k
or larger erase block size). Operations that modify less than the
physical sector size result in a costly read-modify-write or garbage
collection sequence on these devices.
Simply exporting the true physical sector of the device to ZFS would
yield optimal performance, but has two serious drawbacks:
1. Existing pools created with devices that have different logical
and physical block sizes, but were configured to use the logical
block size (e.g. because the OS version used for pool construction
reported the logical block size instead of the physical block
size) will suddenly find that the vdev allocation size has
increased. This can be easily tolerated for active members of
the array, but ZFS would prevent replacement of a vdev with
another identical device because it now appears that the smaller
allocation size required by the pool is not supported by the new
device.
2. The device's physical block size may be too large to be supported
by ZFS. The optimal allocation size for the vdev may be quite
large. For example, a RAID controller may export a vdev that
requires read-modify-write cycles unless accessed using 64k
aligned/sized requests. ZFS currently has an 8k minimum block
size limit.
Reporting both the logical and physical allocation sizes for vdevs
solves these problems. A device may be used so long as the logical
block size is compatible with the configuration. By comparing the
logical and physical block sizes, new configurations can be optimized
and administrators can be notified of any existing pools that are
sub-optimal.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Matthew Macy <mmacy@freebsd.org>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10619
Removing other_size from arc_stats breaks top in 11.x jails
running on HEAD.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10745
This PR adds two new compression types, based on ZStandard:
- zstd: A basic ZStandard compression algorithm Available compression.
Levels for zstd are zstd-1 through zstd-19, where the compression
increases with every level, but speed decreases.
- zstd-fast: A faster version of the ZStandard compression algorithm
zstd-fast is basically a "negative" level of zstd. The compression
decreases with every level, but speed increases.
Available compression levels for zstd-fast:
- zstd-fast-1 through zstd-fast-10
- zstd-fast-20 through zstd-fast-100 (in increments of 10)
- zstd-fast-500 and zstd-fast-1000
For more information check the man page.
Implementation details:
Rather than treat each level of zstd as a different algorithm (as was
done historically with gzip), the block pointer `enum zio_compress`
value is simply zstd for all levels, including zstd-fast, since they all
use the same decompression function.
The compress= property (a 64bit unsigned integer) uses the lower 7 bits
to store the compression algorithm (matching the number of bits used in
a block pointer, as the 8th bit was borrowed for embedded block
pointers). The upper bits are used to store the compression level.
It is necessary to be able to determine what compression level was used
when later reading a block back, so the concept used in LZ4, where the
first 32bits of the on-disk value are the size of the compressed data
(since the allocation is rounded up to the nearest ashift), was
extended, and we store the version of ZSTD and the level as well as the
compressed size. This value is returned when decompressing a block, so
that if the block needs to be recompressed (L2ARC, nop-write, etc), that
the same parameters will be used to result in the matching checksum.
All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`,
`zio_prop_t`, etc.) uses the separated _compress and _complevel
variables. Only the properties ZAP contains the combined/bit-shifted
value. The combined value is split when the compression_changed_cb()
callback is called, and sets both objset members (os_compress and
os_complevel).
The userspace tools all use the combined/bit-shifted value.
Additional notes:
zdb can now also decode the ZSTD compression header (flag -Z) and
inspect the size, version and compression level saved in that header.
For each record, if it is ZSTD compressed, the parameters of the decoded
compression header get printed.
ZSTD is included with all current tests and new tests are added
as-needed.
Per-dataset feature flags now get activated when the property is set.
If a compression algorithm requires a feature flag, zfs activates the
feature when the property is set, rather than waiting for the first
block to be born. This is currently only used by zstd but can be
extended as needed.
Portions-Sponsored-By: The FreeBSD Foundation
Co-authored-by: Allan Jude <allanjude@freebsd.org>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Co-authored-by: Michael Niewöhner <foss@mniewoehner.de>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
Closes#6247Closes#9024Closes#10277Closes#10278
In FreeBSD trim has defaulted to on for several
years. In order to minimize POLA violations on
import it's important to maintain this default
when importing vendored openzfs in to FreeBSD
base.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10719
We limit the size of nvlists passed to the kernel so a user cannot make
the kernel do an unreasonably large allocation. On FreeBSD this limit
was 128 kiB, which turns out to be a bit too small when doing some
operations involving a large number of datasets or snapshots, for
example replication.
Make this limit tunable, with a platform-specific auto default.
Linux keeps its limit at KMALLOC_MAX_SIZE. FreeBSD uses 1/4 of the
system limit on user wired memory, which allows it to scale depending
on system configuration.
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <freqlabs@FreeBSD.org>
Issue #6572Closes#10706
The ARC caches data in scatter ABD's, which are collections of pages,
which are typically 4K. Therefore, the space used to cache each block
is rounded up to a multiple of 4K. The ABD subsystem tracks this wasted
memory in the `scatter_chunk_waste` kstat. However, the ARC's `size` is
not aware of the memory used by this round-up, it only accounts for the
size that it requested from the ABD subsystem.
Therefore, the ARC is effectively using more memory than it is aware of,
due to the `scatter_chunk_waste`. This impacts observability, e.g.
`arcstat` will show that the ARC is using less memory than it
effectively is. It also impacts how the ARC responds to memory
pressure. As the amount of `scatter_chunk_waste` changes, it appears to
the ARC as memory pressure, so it needs to resize `arc_c`.
If the sector size (`1<<ashift`) is the same as the page size (or
larger), there won't be any waste. If the (compressed) block size is
relatively large compared to the page size, the amount of
`scatter_chunk_waste` will be small, so the problematic effects are
minimal.
However, if using 512B sectors (`ashift=9`), and the (compressed) block
size is small (e.g. `compression=on` with the default `volblocksize=8k`
or a decreased `recordsize`), the amount of `scatter_chunk_waste` can be
very large. On a production system, with `arc_size` at a constant 50%
of memory, `scatter_chunk_waste` has been been observed to be 10-30% of
memory.
This commit adds `scatter_chunk_waste` to `arc_size`, and adds a new
`waste` field to `arcstat`. As a result, the ARC's memory usage is more
observable, and `arc_c` does not need to be adjusted as frequently.
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10701
`KMC_KMEM` and `KMC_VMEM` are now unused since all SPL-implemented
caches are `KMC_KVMEM`.
KMC_KMEM: Given the default value of `spl_kmem_cache_kmem_limit`, we
don't use kmalloc to back the SPL caches, instead we use kvmalloc
(KMC_KVMEM). The flag, module parameter, /proc entries, and associated
code are removed.
KMC_VMEM: This flag is not used, and kvmalloc() is always preferable to
vmalloc(). The flag, /proc entries, and associated code are removed.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10673
Up until now zpool.cache has always lived in /boot on FreeBSD.
For the sake of compatibility fallback to /boot if zpool.cache
isn't found in /etc/zfs.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10720
This was previously moved because nothing else in-tree uses it, but
evidently DilOS uses it out of tree.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Ryan Moeller <freqlabs@freebsd.org>
Closes#10361Closes#10685
ZFS recv should return a useful error message when an invalid index
property value is provided in the send stream properties nvlist
With a compression= property outside of the understood range:
Before:
```
receiving full stream of zof/zstd_send@send2 into testpool/recv@send2
internal error: Invalid argument
Aborted (core dumped)
```
Note: the recv completes successfully, the abort() is likely just to
make it easier to track the unexpected error code.
After:
```
receiving full stream of zof/zstd_send@send2 into testpool/recv@send2
cannot receive compression property on testpool/recv: invalid property
value received 28.9M stream in 1 seconds (28.9M/sec)
```
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Closes#10631
The ARC shrinker callback `arc_shrinker_count/_scan()` is invoked by the
kernel's shrinker mechanism when the system is running low on free
pages. This happens via 2 code paths:
1. "direct reclaim": The system is attempting to allocate a page, but we
are low on memory. The ARC shrinker callback is invoked from the
page-allocation code path.
2. "indirect reclaim": kswapd notices that there aren't many free pages,
so it invokes the ARC shrinker callback.
In both cases, the kernel's shrinker code requests that the ARC shrinker
callback release some of its cache, and then it measures how many pages
were released. However, it's measurement of released pages does not
include pages that are freed via `__free_pages()`, which is how the ARC
releases memory (via `abd_free_chunks()`). Rather, the kernel shrinker
code is looking for pages to be placed on the lists of reclaimable pages
(which is separate from actually-free pages).
Because the kernel shrinker code doesn't detect that the ARC has
released pages, it may call the ARC shrinker callback many times,
resulting in the ARC "collapsing" down to `arc_c_min`. This has several
negative impacts:
1. ZFS doesn't use RAM to cache data effectively.
2. In the direct reclaim case, a single page allocation may wait a long
time (e.g. more than a minute) while we evict the entire ARC.
3. Even with the improvements made in 67c0f0dedc ("ARC shrinking blocks
reads/writes"), occasionally `arc_size` may stay above `arc_c` for the
entire time of the ARC collapse, thus blocking ZFS read/write operations
in `arc_get_data_impl()`.
To address these issues, this commit limits the ways that the ARC
shrinker callback can be used by the kernel shrinker code, and mitigates
the impact of arc_is_overflowing() on ZFS read/write operations.
With this commit:
1. We limit the amount of data that can be reclaimed from the ARC via
the "direct reclaim" shrinker. This limits the amount of time it takes
to allocate a single page.
2. We do not allow the ARC to shrink via kswapd (indirect reclaim).
Instead we rely on `arc_evict_zthr` to monitor free memory and reduce
the ARC target size to keep sufficient free memory in the system. Note
that we can't simply rely on limiting the amount that we reclaim at once
(as for the direct reclaim case), because kswapd's "boosted" logic can
invoke the callback an unlimited number of times (see
`balance_pgdat()`).
3. When `arc_is_overflowing()` and we want to allocate memory,
`arc_get_data_impl()` will wait only for a multiple of the requested
amount of data to be evicted, rather than waiting for the ARC to no
longer be overflowing. This allows ZFS reads/writes to make progress
even while the ARC is overflowing, while also ensuring that the eviction
thread makes progress towards reducing the total amount of memory used
by the ARC.
4. The amount of memory that the ARC always tries to keep free for the
rest of the system, `arc_sys_free` is increased.
5. Now that the shrinker callback is able to provide feedback to the
kernel's shrinker code about our progress, we can safely enable
the kswapd hook. This will allow the arc to receive notifications
when memory pressure is first detected by the kernel. We also
re-enable the appropriate kstats to track these callbacks.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10600
Renamed to avoid conflicting with refcount.h when a different
implementation is already provided by the platform.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10620
When debugging issues or generally analyzing the runtime of
a system it would be nice to be able to tell the different
ZTHRs running by name rather than having to analyze their
stack.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#10630
FreeBSD defines _BIG_ENDIAN BIG_ENDIAN _LITTLE_ENDIAN
LITTLE_ENDIAN on every architecture. Trying to do
cross builds whilst hiding this from ZFS has proven
extremely cumbersome.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10621
This is a step toward being able to vendor the OpenZFS code in FreeBSD.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10625
* libspl: umem: These are obviously and intentionally unused; annotate
them as such to appease -Wunused-parameter builds that include this
header.
* sys/dmu.h: In this case, clear_on_evict_dbufp is only used for
ZFS_DEBUG builds, so annotate it as __maybe_unused to appease
-Wunused-parameter.
Reviewed-By: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Kyle Evans <kevans@FreeBSD.org>
Closes#10606
Drop unnecessary redefinition's of several arcstat values.
Put missing extern declaration of arc_no_grow_shift in arc_impl.h.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10609
The process of evicting data from the ARC is referred to as
`arc_adjust`.
This commit changes the term to `arc_evict`, which is more specific.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10592
These tunables were renamed from vfs.zfs.arc_min and
vfs.zfs.arc_max to vfs.zfs.arc.min and vfs.zfs.arc.max.
Add legacy compat tunables for the old names.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10579
Livelists and spacemaps are data structures that are logs of allocations
and frees. Livelists entries are block pointers (blkptr_t). Spacemaps
entries are ranges of numbers, most often used as to track
allocated/freed regions of metaslabs/vdevs.
These data structures can become self-inconsistent, for example if a
block or range can be "double allocated" (two allocation records without
an intervening free) or "double freed" (two free records without an
intervening allocation).
ZDB (as well as zfs running in the kernel) can detect these
inconsistencies when loading livelists and metaslab. However, it
generally halts processing when the error is detected.
When analyzing an on-disk problem, we often want to know the entire set
of inconsistencies, which is not possible with the current behavior.
This commit adds a new flag, `zdb -y`, which analyzes the livelist and
metaslab data structures and displays all of their inconsistencies.
Note that this is different from the leak detection performed by
`zdb -b`, which checks for inconsistencies between the spacemaps and the
tree of block pointers, but assumes the spacemaps are self-consistent.
The specific checks added are:
Verify livelists by iterating through each sublivelists and:
- report leftover FREEs
- report double ALLOCs and double FREEs
- record leftover ALLOCs together with their TXG [see Cross Check]
Verify spacemaps by iterating over each metaslab and:
- iterate over spacemap and then the metaslab's entries in the
spacemap log, then report any double FREEs and double ALLOCs
Verify that livelists are consistenet with spacemaps. The space
referenced by livelists (after using the FREE's to cancel out
corresponding ALLOCs) should be allocated, according to the spacemaps.
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sara Hartse <sara.hartse@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-66031
Closes#10515
== Motivation and Context
The current implementation of 'sharenfs' and 'sharesmb' relies on
the use of the sharetab file. The use of this file is os-specific
and not required by linux or freebsd. Currently the code must
maintain updates to this file which adds complexity and presents
a significant performance impact when sharing many datasets. In
addition, concurrently running 'zfs sharenfs' command results in
missing entries in the sharetab file leading to unexpected failures.
== Description
This change removes the sharetab logic from the linux and freebsd
implementation of 'sharenfs' and 'sharesmb'. It still preserves an
os-specific library which contains the logic required for sharing
NFS or SMB. The following entry points exist in the vastly simplified
libshare library:
- sa_enable_share -- shares a dataset but may not commit the change
- sa_disable_share -- unshares a dataset but may not commit the change
- sa_is_shared -- determine if a dataset is shared
- sa_commit_share -- notify NFS/SMB subsystem to commit the shares
- sa_validate_shareopts -- determine if sharing options are valid
The sa_commit_share entry point is provided as a performance enhancement
and is not required. The sa_enable_share/sa_disable_share may commit
the share as part of the implementation. Libshare provides a framework
for both NFS and SMB but some operating systems may not fully support
these protocols or all features of the protocol.
NFS Operation:
For linux, libshare updates /etc/exports.d/zfs.exports to add
and remove shares and then commits the changes by invoking
'exportfs -r'. This file, is automatically read by the kernel NFS
implementation which makes for better integration with the NFS systemd
service. For FreeBSD, libshare updates /etc/zfs/exports to add and
remove shares and then commits the changes by sending a SIGHUP to
mountd.
SMB Operation:
For linux, libshare adds and removes files in /var/lib/samba/usershares
by calling the 'net' command directly. There is no need to commit the
changes. FreeBSD does not support SMB.
== Performance Results
To test sharing performance we created a pool with an increasing number
of datasets and invoked various zfs actions that would enable and
disable sharing. The performance testing was limited to NFS sharing.
The following tests were performed on an 8 vCPU system with 128GB and
a pool comprised of 4 50GB SSDs:
Scale testing:
- Share all filesystems in parallel -- zfs sharenfs=on <dataset> &
- Unshare all filesystems in parallel -- zfs sharenfs=off <dataset> &
Functional testing:
- share each filesystem serially -- zfs share -a
- unshare each filesystem serially -- zfs unshare -a
- reset sharenfs property and unshare -- zfs inherit -r sharenfs <pool>
For 'zfs sharenfs=on' scale testing we saw an average reduction in time
of 89.43% and for 'zfs sharenfs=off' we saw an average reduction in time
of 83.36%.
Functional testing also shows a huge improvement:
- zfs share -- 97.97% reduction in time
- zfs unshare -- 96.47% reduction in time
- zfs inhert -r sharenfs -- 99.01% reduction in time
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Bryant G. Ly <bryangly@gmail.com>
Signed-off-by: George Wilson <gwilson@delphix.com>
External-Issue: DLPX-68690
Closes#1603Closes#7692Closes#7943Closes#10300
The filesystem_limit and snapshot_limit properties limit the number of
filesystems or snapshots that can be created below this dataset.
According to the manpage, "The limit is not enforced if the user is
allowed to change the limit." Two types of users are allowed to change
the limit:
1. Those that have been delegated the `filesystem_limit` or
`snapshot_limit` permission, e.g. with
`zfs allow USER filesystem_limit DATASET`. This works properly.
2. A user with elevated system privileges (e.g. root). This does not
work - the root user will incorrectly get an error when trying to create
a snapshot/filesystem, if it exceeds the `_limit` property.
The problem is that `priv_policy_ns()` does not work if the `cred_t` is
not that of the current process. This happens when
`dsl_enforce_ds_ss_limits()` is called in syncing context (as part of a
sync task's check func) to determine the permissions of the
corresponding user process.
This commit fixes the issue by passing the `task_struct` (typedef'ed as
a `proc_t`) to syncing context, and then using `has_capability()` to
determine if that process is privileged. Note that we still need to
pass the `cred_t` to syncing context so that we can check if the user
was delegated this permission with `zfs allow`.
This problem only impacts Linux. Wrappers are added to FreeBSD but it
continues to use `priv_check_cred()`, which works on arbitrary `cred_t`.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#8226Closes#10545
zfs_rangelock_tryenter() bails immediately instead of waiting for the
lock to become available. This will be used to resolve a deadlock in
the FreeBSD page-in code. No functional change intended.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Mark Johnston <markj@FreeBSD.org>
Closes#10519
The device_rebuild feature enables sequential reconstruction when
resilvering. Mirror vdevs can be rebuilt in LBA order which may
more quickly restore redundancy depending on the pools average block
size, overall fragmentation and the performance characteristics
of the devices. However, block checksums cannot be verified
as part of the rebuild thus a scrub is automatically started after
the sequential resilver completes.
The new '-s' option has been added to the `zpool attach` and
`zpool replace` command to request sequential reconstruction
instead of healing reconstruction when resilvering.
zpool attach -s <pool> <existing vdev> <new vdev>
zpool replace -s <pool> <old vdev> <new vdev>
The `zpool status` output has been updated to report the progress
of sequential resilvering in the same way as healing resilvering.
The one notable difference is that multiple sequential resilvers
may be in progress as long as they're operating on different
top-level vdevs.
The `zpool wait -t resilver` command was extended to wait on
sequential resilvers. From this perspective they are no different
than healing resilvers.
Sequential resilvers cannot be supported for RAIDZ, but are
compatible with the dRAID feature being developed.
As part of this change the resilver_restart_* tests were moved
in to the functional/replacement directory. Additionally, the
replacement tests were renamed and extended to verify both
resilvering and rebuilding.
Original-patch-by: Isaac Huang <he.huang@intel.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: John Poduska <jpoduska@datto.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10349
OS-specific code (e.g. under `module/os/linux`) does not need to share
its code structure with any other operating systems. In particular, the
ARC and kmem code need not be similar to the code in illumos, because we
won't be syncing this OS-specific code between operating systems. For
example, if/when illumos support is added to the common repo, we would
add a file `module/os/illumos/zfs/arc_os.c` for the illumos versions of
this code.
Therefore, we can simplify the code in the OS-specific ARC and kmem
routines.
These changes do not impact system behavior, they are purely code
cleanup. The changes are:
Arenas are not used on Linux or FreeBSD (they are always `NULL`), so
`heap_arena`, `zio_arena`, and `zio_alloc_arena` can be removed, along
with code that uses them.
In `arc_available_memory()`:
* `desfree` is unused, remove it
* rename `freemem` to avoid conflict with pre-existing `#define`
* remove checks related to arenas
* use units of bytes, rather than converting from bytes to pages and
then back to bytes
`SPL_KMEM_CACHE_REAP` is unused, remove it.
`skc_reap` is unused, remove it.
The `count` argument to `spl_kmem_cache_reap_now()` is unused, remove
it.
`vmem_size()` and associated type and macros are unused, remove them.
In `arc_memory_throttle()`, use a less confusing variable name to store
the result of `arc_free_memory()`.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10499
The kernel headers are installed for DKMS on linux, so don't install
them unless we're building on linux.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Closes#10506
Reduce the usage of EXTRA_DIST. If files are conditionally included in
_SOURCES, _HEADERS etc, automake is smart enough to dist all files that
could possibly be included, but this does not apply to EXTRA_DIST,
resulting in make dist depending on the configuration.
Add some files that were missing altogether in various Makefile's.
The changes to disted files in this commit (excluding deleted files):
+./cmd/zed/agents/README.md
+./etc/init.d/README.md
+./lib/libspl/os/freebsd/getexecname.c
+./lib/libspl/os/freebsd/gethostid.c
+./lib/libspl/os/freebsd/getmntany.c
+./lib/libspl/os/freebsd/mnttab.c
-./lib/libzfs/libzfs_core.pc
-./lib/libzfs/libzfs.pc
+./lib/libzfs/os/freebsd/libzfs_compat.c
+./lib/libzfs/os/freebsd/libzfs_fsshare.c
+./lib/libzfs/os/freebsd/libzfs_ioctl_compat.c
+./lib/libzfs/os/freebsd/libzfs_zmount.c
+./lib/libzutil/os/freebsd/zutil_compat.c
+./lib/libzutil/os/freebsd/zutil_device_path_os.c
+./lib/libzutil/os/freebsd/zutil_import_os.c
+./module/lua/README.zfs
+./module/os/linux/spl/README.md
+./tests/README.md
+./tests/zfs-tests/tests/functional/cli_root/zfs_clone/zfs_clone_rm_nested.ksh
+./tests/zfs-tests/tests/functional/cli_root/zfs_send/zfs_send_encrypted_unloaded.ksh
+./tests/zfs-tests/tests/functional/inheritance/README.config
+./tests/zfs-tests/tests/functional/inheritance/README.state
+./tests/zfs-tests/tests/functional/rsend/rsend_016_neg.ksh
+./tests/zfs-tests/tests/perf/fio/sequential_readwrite.fio
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Closes#10501
ZFS registers a memory hook, `__arc_shrinker_func`, which is supposed to
allow the ARC to shrink when the kernel experiences memory pressure.
The ARC shrinker changes `arc_c` via a call to
`arc_reduce_target_size()`. Before commit 3ec34e5527, the ARC
shrinker would also evict data from the ARC to bring `arc_size` down to
the new `arc_c`. However, that commit (seemingly inadvertently) made it
so that the ARC shrinker no longer evicts any data or waits for eviction
to complete.
Repeated calls to the ARC shrinker can reduce `arc_c` drastically, often
all the way to `arc_c_min`. Since it doesn't wait for the actual
eviction of data from the ARC, this creates a situation where `arc_size`
is more than `arc_c` for the several seconds/minutes it takes for
`arc_adjust_zthr` to evict data from the ARC. During this time,
arc_get_data_impl() will block, so ZFS can't process read/write requests
(e.g. from iSCSI, NFS, or read/write syscalls).
To ensure that `arc_c` doesn't shrink faster than the adjust thread can
keep up, this commit makes the ARC shrinker wait for the eviction to
complete, resulting in similar behavior to what we had before commit
3ec34e5527.
Note: commit 3ec34e5527 is `OpenZFS 9284 - arc_reclaim_thread
has 2 jobs` and was integrated in December 2018, and is part of ZoL
0.8.x but not 0.7.x.
Additionally, when the ARC size is reduced drastically, the
`arc_adjust_zthr` can be on-CPU for many seconds without blocking. Any
threads that are bound to the same CPU that arc_adjust_zthr is running
on will not able to run for a long time.
To ensure that CPU-bound threads can make progress, this commit changes
`arc_evict_state_impl()` make a voluntary preemption call,
`cond_resched()`.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-70703
Closes#10496
There's no need to specify the srcdir explicitly in _HEADERS and
EXTRA_DIST.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Closes#10493
This tunable required a handler to be implemented for
ZFS_MODULE_PARAM_CALL.
Add the handler so the tunable can be declared in common code.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10490
On Illumos callers of cv_timedwait and cv_timedwait_hires
can't distinguish between whether or not the cv was signaled
or the call timed out. Illumos handles this (for some definition
of handles) by calling cv_signal in the return path if we were
signaled but the return value indicates instead that we timed
out. This would make sense if it were possible to query the the
cv for its net signal disposition. However, this isn't possible
and, in spite of the fact that there are places in the code that
clearly take a different and incompatible path if a timeout value
is indicated, this distinction appears to be rather subtle to most
developers. This problem is further compounded by the fact that on
Linux, calling cv_signal in the return path wouldn't even do the
right thing unless there are other waiters.
Since it is possible for the caller to independently determine how
much time is remaining but it is not possible to query if the cv
was in fact signaled, prioritizing signalling over timeout seems
like a cleaner solution. In addition, judging from usage patterns
within the code itself, it is also less error prone.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10471