Mark functions used only in the same translation unit as static. This
only includes functions that do not have a prototype in a header file
either.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Closes#10470
The strcpy() and sprintf() functions are deprecated on some platforms.
Care is needed to ensure correct size is used. If some platforms
miss snprintf, we can add a #define to sprintf, likewise strlcpy().
The biggest change is adding a size parameter to zfs_id_to_fuidstr().
The various *_impl_get() functions are only used on linux and have
not yet been updated.
Reviewed by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Closes#10400
These paths are never exercised, as the parameters given are always
different cipher and plaintext `crypto_data_t` pointers.
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Attila Fueloep <attila@fueloep.org>
Signed-off-by: Dirkjan Bussink <d.bussink@gmail.com>
Closes#9661Closes#10015
There are a couple of x86_64 architectures which support all needed
features to make the accelerated GCM implementation work but the
MOVBE instruction. Those are mainly Intel Sandy- and Ivy-Bridge
and AMD Bulldozer, Piledriver, and Steamroller.
By using MOVBE only if available and replacing it with a MOV
followed by a BSWAP if not, those architectures now benefit from
the new GCM routines and performance is considerably better
compared to the original implementation.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam D. Moss <c@yotes.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Followup #9749Closes#10029
Currently SIMD accelerated AES-GCM performance is limited by two
factors:
a. The need to disable preemption and interrupts and save the FPU
state before using it and to do the reverse when done. Due to the
way the code is organized (see (b) below) we have to pay this price
twice for each 16 byte GCM block processed.
b. Most processing is done in C, operating on single GCM blocks.
The use of SIMD instructions is limited to the AES encryption of the
counter block (AES-NI) and the Galois multiplication (PCLMULQDQ).
This leads to the FPU not being fully utilized for crypto
operations.
To solve (a) we do crypto processing in larger chunks while owning
the FPU. An `icp_gcm_avx_chunk_size` module parameter was introduced
to make this chunk size tweakable. It defaults to 32 KiB. This step
alone roughly doubles performance. (b) is tackled by porting and
using the highly optimized openssl AES-GCM assembler routines, which
do all the processing (CTR, AES, GMULT) in a single routine. Both
steps together result in up to 32x reduction of the time spend in
the en/decryption routines, leading up to approximately 12x
throughput increase for large (128 KiB) blocks.
Lastly, this commit changes the default encryption algorithm from
AES-CCM to AES-GCM when setting the `encryption=on` property.
Reviewed-By: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-By: Jason King <jason.king@joyent.com>
Reviewed-By: Tom Caputi <tcaputi@datto.com>
Reviewed-By: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#9749
Resolve the following uninitialized variable warnings. In practice
these were unreachable due to the goto. Replacing the goto with a
return resolves the warning and yields more readable code.
[module/icp/algs/modes/ccm.c:892]: (error) Uninitialized variable: ccm_param
[module/icp/algs/modes/ccm.c:893]: (error) Uninitialized variable: ccm_param
[module/icp/algs/modes/gcm.c:564]: (error) Uninitialized variable: gcm_param
[module/icp/algs/modes/gcm.c:565]: (error) Uninitialized variable: gcm_param
[module/icp/algs/modes/gcm.c:599]: (error) Uninitialized variable: gmac_param
[module/icp/algs/modes/gcm.c:600]: (error) Uninitialized variable: gmac_param
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#9732
If gcm_mode_encrypt_contiguous_blocks() is called more than once
in succession, with the accumulated lengths being less than
blocksize, ctx->copy_to will be incorrectly advanced. Later, if
out is NULL, the bcopy at line 114 will overflow
ctx->gcm_copy_to since ctx->gcm_remainder_len is larger than the
ctx->gcm_copy_to buffer can hold.
The fix is to set ctx->copy_to only if it's not already set.
For ZoL the issue may be academic, since in all my testing I wasn't
able to hit neither of both conditions needed to trigger it, but
other consumers can easily do so.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#9660
In gcm_mode_decrypt_contiguous_blocks(), if vmem_alloc() fails,
bcopy is called with a NULL pointer destination and a length > 0.
This results in undefined behavior. Further ctx->gcm_pt_buf is
freed but not set to NULL, leading to a potential write after
free and a double free due to missing return value handling in
crypto_update_uio(). The code as is may write to ctx->gcm_pt_buf
in gcm_decrypt_final() and may free ctx->gcm_pt_buf again in
aes_decrypt_atomic().
The fix is to slightly rework error handling and check the return
value in crypto_update_uio().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#9659
Contrary to initial testing we cannot rely on these kernels to
invalidate the per-cpu FPU state and restore the FPU registers.
Nor can we guarantee that the kernel won't modify the FPU state
which we saved in the task struck.
Therefore, the kfpu_begin() and kfpu_end() functions have been
updated to save and restore the FPU state using our own dedicated
per-cpu FPU state variables.
This has the additional advantage of allowing us to use the FPU
again in user threads. So we remove the code which was added to
use task queues to ensure some functions ran in kernel threads.
Reviewed-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #9346Closes#9403
It is no longer necessary; mod_compat.h is included from zfs_context.h.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9449
Move platform specific Linux headers under include/os/linux/.
Update the build system accordingly to detect the platform.
This lays some of the initial groundwork to supporting building
for other platforms.
As part of this change it was necessary to create both a user
and kernel space sys/simd.h header which can be included in
either context. No functional change, the source has been
refactored and the relevant #include's updated.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Matthew Macy <mmacy@FreeBSD.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#9198
Resolve an assortment of style inconsistencies including
use of white space, typos, capitalization, and line wrapping.
There is no functional change.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#9030
Restore the SIMD optimization for 4.19.38 LTS, 4.14.120 LTS,
and 5.0 and newer kernels. This is accomplished by leveraging
the fact that by definition dedicated kernel threads never need
to concern themselves with saving and restoring the user FPU state.
Therefore, they may use the FPU as long as we can guarantee user
tasks always restore their FPU state before context switching back
to user space.
For the 5.0 and 5.1 kernels disabling preemption and local
interrupts is sufficient to allow the FPU to be used. All non-kernel
threads will restore the preserved user FPU state.
For 5.2 and latter kernels the user FPU state restoration will be
skipped if the kernel determines the registers have not changed.
Therefore, for these kernels we need to perform the additional
step of saving and restoring the FPU registers. Invalidating the
per-cpu global tracking the FPU state would force a restore but
that functionality is private to the core x86 FPU implementation
and unavailable.
In practice, restricting SIMD to kernel threads is not a major
restriction for ZFS. The vast majority of SIMD operations are
already performed by the IO pipeline. The remaining cases are
relatively infrequent and can be handled by the generic code
without significant impact. The two most noteworthy cases are:
1) Decrypting the wrapping key for an encrypted dataset,
i.e. `zfs load-key`. All other encryption and decryption
operations will use the SIMD optimized implementations.
2) Generating the payload checksums for a `zfs send` stream.
In order to avoid making any changes to the higher layers of ZFS
all of the `*_get_ops()` functions were updated to take in to
consideration the calling context. This allows for the fastest
implementation to be used as appropriate (see kfpu_allowed()).
The only other notable instance of SIMD operations being used
outside a kernel thread was at module load time. This code
was moved in to a taskq in order to accommodate the new kernel
thread restriction.
Finally, a few other modifications were made in order to further
harden this code and facilitate testing. They include updating
each implementations operations structure to be declared as a
constant. And allowing "cycle" to be set when selecting the
preferred ops in the kernel as well as user space.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8754Closes#8793Closes#8965
- Add two new module parameters to icp (icp_aes_impl, icp_gcm_impl)
that control the crypto implementation. At the moment there is a
choice between generic and aesni (on platforms that support it).
- This enables support for AES-NI and PCLMULQDQ-NI on AMD Family
15h (bulldozer) and newer CPUs (zen).
- Modify aes_key_t to track what implementation it was generated
with as key schedules generated with various implementations
are not necessarily interchangable.
Reviewed by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Nathaniel R. Lewis <linux.robotdude@gmail.com>
Closes#7102Closes#7103
Properly annotate functions and data section so that objtool does not complain
when CONFIG_STACK_VALIDATION and CONFIG_FRAME_POINTER are enabled.
Pass KERNELCPPFLAGS to assembler.
Use kfpu_begin()/kfpu_end() to protect SIMD regions in Linux kernel.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Closes#5872Closes#5041
Enable picky cstyle checks and resolve the new warnings. The vast
majority of the changes needed were to handle minor issues with
whitespace formatting. This patch contains no functional changes.
Non-whitespace changes are as follows:
* 8 times ; to { } in for/while loop
* fix missing ; in cmd/zed/agents/zfs_diagnosis.c
* comment (confim -> confirm)
* change endline , to ; in cmd/zpool/zpool_main.c
* a number of /* BEGIN CSTYLED */ /* END CSTYLED */ blocks
* /* CSTYLED */ markers
* change == 0 to !
* ulong to unsigned long in module/zfs/dsl_scan.c
* rearrangement of module_param lines in module/zfs/metaslab.c
* add { } block around statement after for_each_online_node
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#5465
A port of the Illumos Crypto Framework to a Linux kernel module (found
in module/icp). This is needed to do the actual encryption work. We cannot
use the Linux kernel's built in crypto api because it is only exported to
GPL-licensed modules. Having the ICP also means the crypto code can run on
any of the other kernels under OpenZFS. I ended up porting over most of the
internals of the framework, which means that porting over other API calls (if
we need them) should be fairly easy. Specifically, I have ported over the API
functions related to encryption, digests, macs, and crypto templates. The ICP
is able to use assembly-accelerated encryption on amd64 machines and AES-NI
instructions on Intel chips that support it. There are place-holder
directories for similar assembly optimizations for other architectures
(although they have not been written).
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4329