ABD's currently track their parent/child relationship. This applies to
`abd_get_offset()` and `abd_borrow_buf()`. However, nothing depends on
knowing this relationship, it's only used for consistency checks to
verify that we are not destroying an ABD that's still in use. When we
are creating/destroying ABD's frequently, the performance impact of
maintaining these data structures (in particular the atomic
increment/decrement operations) can be measurable.
This commit removes this verification code on production builds, but
keeps it when ZFS_DEBUG is set.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11535
I originally applied a fix in #11539 to fix a parent's child references
when a gang ABD is free'd. However, I did not take into account
abd_gang_add_gang(). We still need to make sure to update the child
references in this function as well. In order to resolve this I removed
decreasing the gang ABD's size in abd_free_gang() as well as moved back
the original placeent of zfs_refcount_remove_many() in abd_free().
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Closes#11542
If we do not write any buffers to the cache device and the evict hand
has not advanced do not update the cache device header.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#11522Closes#11537
Moving the call to zfs_refcount_remove_many() in abd_free() to be called
before any of the ABD free variants are called. This is necessary
because abd_free_gang() adjusts the abd_size for the gang ABD. If the
parent's child references are removed after free'ing the gang ABD the
refcount is not adjusted correctly for the parent's children.
I also removed some stray abd_put() in comments and changed
abd_free_gang_abd() -> abd_free_gang().
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Closes#11539
Before a hash table was added on top of the nvlist code, there were
cases where the nvlist allocation was changed from fnvlist_alloc()
to nvlist_alloc() to avoid expensive NV_UNIQUE_NAME checks. Now
this is no longer necessary. These changes should be reverted to be
consistent with other code. There are some cases where this change
will also reduce the number of iterations.
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Mark Maybee <mark.maybee@delphix.com>
Closes#11464
The runtime of vdev_validate is dominated by the disk accesses in
vdev_label_read_config. Speed it up by validating all vdevs in
parallel using a taskq.
Sponsored by: Axcient
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alan Somers <asomers@gmail.com>
Closes#11470
This is similar to what we already do in vdev_geom_read_config.
Sponsored by: Axcient
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alan Somers <asomers@gmail.com>
Closes#11470
metaslab_init is the slowest part of importing a mature pool, and it
must be repeated hundreds of times for each top-level vdev. But its
speed is dominated by a few serialized disk accesses. That can lead to
import times of > 1 hour for pools with many top-level vdevs on spinny
disks.
Speed up the import by using a taskqueue to parallelize vdev_load across
all top-level vdevs.
This also requires adding mutex protection to
metaslab_class_t.mc_historgram. The mc_histogram fields were
unprotected when that code was first written in "Illumos 4976-4984 -
metaslab improvements" (OpenZFS
f3a7f6610f). The lock wasn't added until
3dfb57a35e, though it's unclear exactly
which fields it's supposed to protect. In any case, it wasn't until
vdev_load was parallelized that any code attempted concurrent access to
those fields.
Sponsored by: Axcient
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alan Somers <asomers@gmail.com>
Closes#11470
When scrubbing, (non-sequential) resilvering, or correcting a checksum
error using RAIDZ parity, ZFS should heal any incorrect RAIDZ parity by
overwriting it. For example, if P disks are silently corrupted (P being
the number of failures tolerated; e.g. RAIDZ2 has P=2), `zpool scrub`
should detect and heal all the bad state on these disks, including
parity. This way if there is a subsequent failure we are fully
protected.
With RAIDZ2 or RAIDZ3, a block can have silent damage to a parity
sector, and also damage (silent or known) to a data sector. In this
case the parity should be healed but it is not.
The problem can be noticed by scrubbing the pool twice. Assuming there
was no damage concurrent with the scrubs, the first scrub should fix all
silent damage, and the second scrub should be "clean" (`zpool status`
should not report checksum errors on any disks). If the bug is
encountered, then the second scrub will repair the silently-damaged
parity that the first scrub failed to repair, and these checksum errors
will be reported after the second scrub. Since the first scrub repaired
all the damaged data, the bug can not be encountered during the second
scrub, so subsequent scrubs (more than two) are not necessary.
The root cause of the problem is some code that was inadvertently added
to `raidz_parity_verify()` by the DRAID changes. The incorrect code
causes the parity healing to be aborted if there is damaged data
(`rc_error != 0`) or the data disk is not present (`!rc_tried`). These
checks are not necessary, because we only call `raidz_parity_verify()`
if we have the correct data (which may have been reconstructed using
parity, and which was verified by the checksum).
This commit fixes the problem by removing the incorrect checks in
`raidz_parity_verify()`.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11489Closes#11510
Create a common exit point for spa_export_common (a very long
function), which avoids missing steps on failure. This work
is helpful for the planned forced pool export changes.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Will Andrews <will@firepipe.net>
Closes#11514
Fix two minor errors reported by cppcheck:
In module/zfs/abd.c (abd_get_offset_impl), add non-NULL
assertion to prevent NULL dereference warning.
In module/zfs/arc.c (l2arc_write_buffers), change 'try'
variable to 'pass' to avoid C++ reserved word.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Colm Buckley <colm@tuatha.org>
Closes#11507
Follow up for commit 624222a, value asserted <= SPA_OLD_MAXBLOCKSIZE
instead of SPA_MAXBLOCKSIZE as it should be after the previous change.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#11501
Mixing ZIL and normal allocations has several problems:
1. The ZIL allocations are allocated, written to disk, and then a few
seconds later freed. This leaves behind holes (free segments) where the
ZIL blocks used to be, which increases fragmentation, which negatively
impacts performance.
2. When under moderate load, ZIL allocations are of 128KB. If the pool
is fairly fragmented, there may not be many free chunks of that size.
This causes ZFS to load more metaslabs to locate free segments of 128KB
or more. The loading happens synchronously (from zil_commit()), and can
take around a second even if the metaslab's spacemap is cached in the
ARC. All concurrent synchronous operations on this filesystem must wait
while the metaslab is loading. This can cause a significant performance
impact.
3. If the pool is very fragmented, there may be zero free chunks of
128KB or more. In this case, the ZIL falls back to txg_wait_synced(),
which has an enormous performance impact.
These problems can be eliminated by using a dedicated log device
("slog"), even one with the same performance characteristics as the
normal devices.
This change sets aside one metaslab from each top-level vdev that is
preferentially used for ZIL allocations (vdev_log_mg,
spa_embedded_log_class). From an allocation perspective, this is
similar to having a dedicated log device, and it eliminates the
above-mentioned performance problems.
Log (ZIL) blocks can be allocated from the following locations. Each
one is tried in order until the allocation succeeds:
1. dedicated log vdevs, aka "slog" (spa_log_class)
2. embedded slog metaslabs (spa_embedded_log_class)
3. other metaslabs in normal vdevs (spa_normal_class)
The space required for the embedded slog metaslabs is usually between
0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop"
space that is not available for user data.
On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity,
and recordsize=8k, testing shows a ~50% performance increase on random
8k sync writes. On even more fragmented systems (which hit problem #3
above and call txg_wait_synced()), the performance improvement can be
arbitrarily large (>100x).
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11389
In FreeBSD the struct uio was just a typedef to uio_t. In order to
extend this struct, outside of the definition for the struct uio, the
struct uio has been embedded inside of a uio_t struct.
Also renamed all the uio_* interfaces to be zfs_uio_* to make it clear
this is a ZFS interface.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Closes#11438
The `abd_get_offset_*()` routines create an abd_t that references
another abd_t, and doesn't allocate any pages/buffers of its own. In
some workloads, these routines may be called frequently, to create many
abd_t's representing small pieces of a single large abd_t. In
particular, the upcoming RAIDZ Expansion project makes heavy use of
these routines.
This commit adds the ability for the caller to allocate and provide the
abd_t struct to a variant of `abd_get_offset_*()`. This eliminates the
cost of allocating the abd_t and performing the accounting associated
with it (`abdstat_struct_size`). The RAIDZ/DRAID code uses this for
the `rc_abd`, which references the zio's abd. The upcoming RAIDZ
Expansion project will leverage this infrastructure to increase
performance of reads post-expansion by around 50%.
Additionally, some of the interfaces around creating and destroying
abd_t's are cleaned up. Most significantly, the distinction between
`abd_put()` and `abd_free()` is eliminated; all types of abd_t's are
now disposed of with `abd_free()`.
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Issue #8853Closes#11439
Each zfs ioctl that changes on-disk state (e.g. set property, create
snapshot, destroy filesystem) is recorded in the zpool history, and is
printed by `zpool history -i`.
For performance diagnostic purposes, it would be useful to know how long
each of these ioctls took to run. This commit adds that functionality,
with a new `ZPOOL_HIST_ELAPSED_NS` member of the history nvlist.
Additionally, the time recorded in this history log is currently the
time that the history record is written to disk. But in many cases (CLI
args logging and ioctl logging), this happens asynchronously,
potentially many seconds after the operation completed. This commit
changes the timestamp to reflect when the history event was created,
rather than when it was written to disk.
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11440
If the system is very low on memory (specifically,
`arc_free_memory() < arc_sys_free/2`, i.e. less than 1/16th of RAM
free), `arc_evict_state_impl()` will defer wakups. In this case, the
arc_evict_waiter_t's remain on the list, even though `arc_evict_count`
has been incremented past their `aew_count`.
The problem is that `arc_wait_for_eviction()` assumes that if there are
waiters on the list, the count they are waiting for has not yet been
reached. However, the deferred wakeups may violate this, causing
`ASSERT(last->aew_count > arc_evict_count)` to fail.
This commit resolves the issue by having new waiters use the greater of
`arc_evict_count` and the last `aew_count`.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: George Amanakis <gamanakis@gmail.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11285Closes#11397
Build error on illumos with gcc 10 did reveal:
In function 'dmu_objset_refresh_ownership':
../../common/fs/zfs/dmu_objset.c:857:25: error: implicit conversion
from 'boolean_t' to 'ds_hold_flags_t' {aka 'enum ds_hold_flags'}
[-Werror=enum-conversion]
857 | dsl_dataset_disown(ds, decrypt, tag);
| ^~~~~~~
cc1: all warnings being treated as errors
libzfs_input_check.c: In function 'zfs_ioc_input_tests':
libzfs_input_check.c:754:28: error: implicit conversion from
'enum dmu_objset_type' to 'enum lzc_dataset_type'
[-Werror=enum-conversion]
754 | err = lzc_create(dataset, DMU_OST_ZFS, NULL, NULL, 0);
| ^~~~~~~~~~~
cc1: all warnings being treated as errors
The same issue is present in openzfs, and also the same issue about
ds_hold_flags_t, which currently defines exactly one valid value.
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Toomas Soome <tsoome@me.com>
Closes#11406
Individual transactions may not be larger than DMU_MAX_ACCESS.
This is enforced by the assertions in dmu_tx_hold_write() and
dmu_tx_hold_write_by_dnode(). There's an additional check in
dmu_tx_count_write() however it has no effect and only sets a
local err variable. We could enable this check, however since
it's already enforced by ASSERTs elsewhere I opted to remove it
instead.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3731Closes#11384
After porting the fix for https://github.com/openzfs/zfs/issues/5295
over to illumos, we started hitting an assertion failure when running
the testsuite:
assertion failed: rc->rc_count == number, file: .../refcount.c
and the unexpected hold has this stack:
dsl_dataset_long_hold+0x59 dmu_objset_upgrade+0x73
dmu_objset_id_quota_upgrade+0x15 dmu_objset_own+0x14f
The simplest reproducer for this in illumos is
zpool create -f -O version=1 testpool c3t0d0; zpool destroy testpool
which is run as part of the zpool_create_tempname test, but I can't get
this to trigger on FreeBSD. This appears to be because of the call to
txg_wait_synced() in dmu_objset_upgrade_stop() (which was missing in
illumos), slows down dmu_objset_disown() enough to avoid the condition.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andy Fiddaman <andy@omnios.org>
Closes#11368
Based on a conversation with Matt on the OpenZFS Slack.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Christian Schwarz <me@cschwarz.com>
Closes#11370
As of the 5.10 kernel the generic splice compatibility code has been
removed. All filesystems are now responsible for registering a
->splice_read and ->splice_write callback to support this operation.
The good news is the VFS provided generic_file_splice_read() and
iter_file_splice_write() callbacks can be used provided the ->iter_read
and ->iter_write callback support pipes. However, this is currently
not the case and only iovecs and bvecs (not pipes) are ever attached
to the uio structure.
This commit changes that by allowing full iov_iter structures to be
attached to uios. Ever since the 4.9 kernel the iov_iter structure
has supported iovecs, kvecs, bvevs, and pipes so it's desirable to
pass the entire thing when possible. In conjunction with this the
uio helper functions (i.e uiomove(), uiocopy(), etc) have been
updated to understand the new UIO_ITER type.
Note that using the kernel provided uio_iter interfaces allowed the
existing Linux specific uio handling code to be simplified. When
there's no longer a need to support kernel's older than 4.9, then
it will be possible to remove the iovec and bvec members from the
uio structure and always use a uio_iter. Until then we need to
maintain all of the existing types for older kernels.
Some additional refactoring and cleanup was included in this change:
- Added checks to configure to detect available iov_iter interfaces.
Some are available all the way back to the 3.10 kernel and are used
when available. In particular, uio_prefaultpages() now always uses
iov_iter_fault_in_readable() which is available for all supported
kernels.
- The unused UIO_USERISPACE type has been removed. It is no longer
needed now that the uio_seg enum is platform specific.
- Moved zfs_uio.c from the zcommon.ko module to the Linux specific
platform code for the zfs.ko module. This gets it out of libzfs
where it was never needed and keeps this Linux specific code out
of the common sources.
- Removed unnecessary O_APPEND handling from zfs_iter_write(), this
is redundant and O_APPEND is already handled in zfs_write();
Reviewed-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#11351
The space in special devices is not included in spa_dspace (or
dsl_pool_adjustedsize(), or the zfs `available` property). Therefore
there is always at least as much free space in the normal class, as
there is allocated in the special class(es). And therefore, there is
always enough free space to remove a special device.
However, the checks for free space when removing special devices did not
take this into account. This commit corrects that.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11329
After e357046 it should not be necessary to periodically update ARC
kstats and tunables. Tunable updates are applied when modified, and
kstats are updated on demand.
Update kstats in `arc_evict_cb_check()` for `ZFS_DEBUG` builds only.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11237
On a system with very high fragmentation, we may need to do lots of gang
allocations (e.g. most indirect block allocations (~50KB) may need to
gang). Before failing a "normal" allocation and resorting to ganging, we
try every metaslab. This has the impact of loading every metaslab (not
a huge deal since we now typically keep all metaslabs loaded), and also
iterating over every metaslab for every failing allocation. If there are
many metaslabs (more than the typical ~200, e.g. due to vdev expansion
or very large vdevs), the CPU cost of this iteration can be very
impactful. This iteration is done with the mg_lock held, creating long
hold times and high lock contention for concurrent allocations,
ultimately causing long txg sync times and poor application performance.
To address this, this commit changes the behavior of "normal" (not
try_hard, not ZIL) allocations. These will now only examine the 100
best metaslabs (as determined by their ms_weight). If none of these
have a large enough free segment, then the allocation will fail and
we'll fall back on ganging.
To accomplish this, we will now (normally) gang before doing a
`try_hard` allocation. Non-try_hard allocations will only examine the
100 best metaslabs of each vdev. In summary, we will first try normal
allocation. If that fails then we will do a gang allocation. If that
fails then we will do a "try hard" gang allocation. If that fails then
we will have a multi-layer gang block.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11327
Metaslab rotor and aliquot are used to distribute workload between
vdevs while keeping some locality for logically adjacent blocks. Once
multiple allocators were introduced to separate allocation of different
objects it does not make much sense for different allocators to write
into different metaslabs of the same metaslab group (vdev) same time,
competing for its resources. This change makes each allocator choose
metaslab group independently, colliding with others only sporadically.
Test including simultaneous write into 4 files with recordsize of 4KB
on a striped pool of 30 disks on a system with 40 logical cores show
reduction of vdev queue lock contention from 54 to 27% due to better
load distribution. Unfortunately it won't help much ZVOLs yet since
only one dataset/ZVOL is synced at a time, and so for the most part
only one allocator is used, but it may improve later.
While there, to reduce the number of pointer dereferences change
per-allocator storage for metaslab classes and groups from several
separate malloc()'s to variable length arrays at the ends of the
original class and group structures.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#11288
The last change caused the read completion callback to not be called
if the IO was still in progress. This change restores allocation
of the arc buf callback, but in the callback path checks the new
acb_nobuf field to know to skip buffer allocation.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11324
When removing and subsequently reattaching a vdev, CKSUM errors may
occur as vdev_indirect_read_all() reads from all children of a mirror
in case of a resilver.
Fix this by checking whether a child is missing the data and setting a
flag (ic_error) which is then checked in vdev_indirect_repair() and
suppresses incrementing the checksum counter.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#11277
The performance of `zfs receive` can be bottlenecked on the CPU consumed
by the `receive_writer` thread, especially when receiving streams with
small compressed block sizes. Much of the CPU is spent creating and
destroying dbuf's and arc buf's, one for each `WRITE` record in the send
stream.
This commit introduces the concept of "lightweight writes", which allows
`zfs receive` to write to the DMU by providing an ABD, and instantiating
only a new type of `dbuf_dirty_record_t`. The dbuf and arc buf for this
"dirty leaf block" are not instantiated.
Because there is no dbuf with the dirty data, this mechanism doesn't
support reading from "lightweight-dirty" blocks (they would see the
on-disk state rather than the dirty data). Since the dedup-receive code
has been removed, `zfs receive` is write-only, so this works fine.
Because there are no arc bufs for the received data, the received data
is no longer cached in the ARC.
Testing a receive of a stream with average compressed block size of 4KB,
this commit improves performance by 50%, while also reducing CPU usage
by 50% of a CPU. On a per-block basis, CPU consumed by receive_writer()
and dbuf_evict() is now 1/7th (14%) of what it was.
Baseline: 450MB/s, CPU in receive_writer() 40% + dbuf_evict() 35%
New: 670MB/s, CPU in receive_writer() 17% + dbuf_evict() 0%
The code is also restructured in a few ways:
Added a `dr_dnode` field to the dbuf_dirty_record_t. This simplifies
some existing code that no longer needs `DB_DNODE_ENTER()` and related
routines. The new field is needed by the lightweight-type dirty record.
To ensure that the `dr_dnode` field remains valid until the dirty record
is freed, we have to ensure that the `dnode_move()` doesn't relocate the
dnode_t. To do this we keep a hold on the dnode until it's zio's have
completed. This is already done by the user-accounting code
(`userquota_updates_task()`), this commit extends that so that it always
keeps the dnode hold until zio completion (see `dnode_rele_task()`).
`dn_dirty_txg` was previously zeroed when the dnode was synced. This
was not necessary, since its meaning can be "when was this dnode last
dirtied". This change simplifies the new `dnode_rele_task()` code.
Removed some dead code related to `DRR_WRITE_BYREF` (dedup receive).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11105
In the redaction list traversal code, there is a bug in the binary search
logic when looking for the resume point. Maxbufid can be decremented to -1,
causing us to read the last possible block of the object instead of the one we
wanted. This can cause incorrect resume behavior, or possibly even a hang in
some cases. In addition, when examining non-last blocks, we can treat the
block as being the same size as the last block, causing us to miss entries in
the redaction list when determining where to resume. Finally, we were ignoring
the case where the resume point was found in the buffer being searched, and
resuming from minbufid. All these issues have been corrected, and the code has
been significantly simplified to make future issues less likely.
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#11297
ZFS currently doesn't react to hotplugging cpu or memory into the
system in any way. This patch changes that by adding logic to the ARC
that allows the system to take advantage of new memory that is added
for caching purposes. It also adds logic to the taskq infrastructure
to support dynamically expanding the number of threads allocated to a
taskq.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Matthew Ahrens <matthew.ahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#11212
Add ARC_FLAG_NO_BUF to indicate that a buffer need not be
instantiated. This fixes a ~20% performance regression on
cached reads due to zfetch changes.
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11220Closes#11232
The fnvlist_lookup_boolean_value() function should not be used
to check the force argument since it's optional. It may not be
provided or may have been created with the wrong flags.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#11281Closes#11284
During module load time all of the available fetcher4 and raidz
implementations are benchmarked for a fixed amount of time to
determine the fastest available. Manual testing has shown that this
time can be significantly reduced with negligible effect on the final
results.
This commit changes the benchmark time to 1ms which can reduce the
module load time by over a second on x86_64. On an x86_64 system
with sse3, ssse3, and avx2 instructions the benchmark times are:
Fletcher4 603ms -> 15ms
RAIDZ 1,322ms -> 64ms
Reviewed-by: Matthew Macy <mmacy@freebsd.org>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#11282
Since 8c4fb36a24 (PR #7795) spa_has_pending_synctask() started to
take two more locks per write inside txg_all_lists_empty(). I am
surprised those pool-wide locks are not contended, but still their
operations are visible in CPU profiles under contended vdev lock.
This commit slightly changes vdev_queue_max_async_writes() flow to
not call the function if we are going to return max_active any way
due to high amount of dirty data. It allows to save some CPU time
exactly when the pool is busy.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-By: Tom Caputi <caputit1@tcnj.edu>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#11280
When sending raw encrypted datasets the user space accounting is present
when it's not expected to be. This leads to the subsequent mount failure
due a checksum error when verifying the local mac.
Fix this by clearing the OBJSET_FLAG_USERACCOUNTING_COMPLETE and reset
the local mac. This allows the user accounting to be correctly updated
on first mount using the normal upgrade process.
Reviewed-By: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-By: Tom Caputi <caputit1@tcnj.edu>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#10523Closes#11221
It was found that setting min_active tunables for non-interactive I/Os
makes them stuck. It is caused by zfs_vdev_nia_delay, that can never
be reached if we never issue any I/Os due to min_active set to zero.
Fix this by issuing at least one non-interactive I/O at a time when
there are no interactive I/Os. When there are interactive I/Os, zero
min_active allows to completely block any non-interactive I/O. It may
min_active starvation in some scenarios, but who we are to deny foot
shooting?
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#11261
This is needed for zfsd to autoreplace vdevs.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11260
In function dmu_buf_hold_array_by_dnode, the usage of zio is only for
the reading operation. Only create the zio and wait it in the reading
scenario as a performance optimization.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Finix Yan <yancw@info2soft.com>
Closes#11251Closes#11256
Commit 85703f6 added a new ASSERT to zfs_write() as part of the
cleanup which isn't correct in the case where multiple processes
are concurrently extending a file. The `zp->z_size` is updated
atomically while holding a range lock on only a portion of the
file. Therefore, it's possible for the file size to increase
after a same check is performed earlier in the loop causing this
ASSERT to fail. The code itself handles this case correctly so
only the invalid ASSERT needs to be removed.
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#11235
Investigating influence of scrub (especially sequential) on random read
latency I've noticed that on some HDDs single 4KB read may take up to 4
seconds! Deeper investigation shown that many HDDs heavily prioritize
sequential reads even when those are submitted with queue depth of 1.
This patch addresses the latency from two sides:
- by using _min_active queue depths for non-interactive requests while
the interactive request(s) are active and few requests after;
- by throttling it further if no interactive requests has completed
while configured amount of non-interactive did.
While there, I've also modified vdev_queue_class_to_issue() to give
more chances to schedule at least _min_active requests to the lowest
priorities. It should reduce starvation if several non-interactive
processes are running same time with some interactive and I think should
make possible setting of zfs_vdev_max_active to as low as 1.
I've benchmarked this change with 4KB random reads from ZVOL with 16KB
block size on newly written non-fragmented pool. On fragmented pool I
also saw improvements, but not so dramatic. Below are log2 histograms
of the random read latency in milliseconds for different devices:
4 2x mirror vdevs of SATA HDD WDC WD20EFRX-68EUZN0 before:
0, 0, 2, 1, 12, 21, 19, 18, 10, 15, 17, 21
after:
0, 0, 0, 24, 101, 195, 419, 250, 47, 4, 0, 0
, that means maximum latency reduction from 2s to 500ms.
4 2x mirror vdevs of SATA HDD WDC WD80EFZX-68UW8N0 before:
0, 0, 2, 31, 38, 28, 18, 12, 17, 20, 24, 10, 3
after:
0, 0, 55, 247, 455, 470, 412, 181, 36, 0, 0, 0, 0
, i.e. from 4s to 250ms.
1 SAS HDD SEAGATE ST14000NM0048 before:
0, 0, 29, 70, 107, 45, 27, 1, 0, 0, 1, 4, 19
after:
1, 29, 681, 1261, 676, 1633, 67, 1, 0, 0, 0, 0, 0
, i.e. from 4s to 125ms.
1 SAS SSD SEAGATE XS3840TE70014 before (microseconds):
0, 0, 0, 0, 0, 0, 0, 0, 70, 18343, 82548, 618
after:
0, 0, 0, 0, 0, 0, 0, 0, 283, 92351, 34844, 90
I've also measured scrub time during the test and on idle pools. On
idle fragmented pool I've measured scrub getting few percent faster
due to use of QD3 instead of QD2 before. On idle non-fragmented pool
I've measured no difference. On busy non-fragmented pool I've measured
scrub time increase about 1.5-1.7x, while IOPS increase reached 5-9x.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes#11166
Commit a1d477c2 accidentally disabled DTL updates for the zil_claim()
case described at the end of vdev_stat_update() by unconditionally
disabling all DTL updates when loading. This was done to avoid
a deadlock on the vd_dtl_lock when loading the DTLs from disk.
vdev_dtl_contains <--- Takes vd->vd_dtl_lock
vdev_mirror_child_missing
vdev_mirror_io_start
zio_vdev_io_start
__zio_execute
arc_read
dbuf_issue_final_prefetch
dbuf_prefetch_impl
dbuf_prefetch
dmu_prefetch
space_map_iterate
space_map_load_length
space_map_load
vdev_dtl_load <--- Takes vd->vd_dtl_lock
vdev_load
spa_ld_load_vdev_metadata
spa_tryimport
The missing DTL updates can be restored by moving the space_map_load()
call outside the vd_dtl_lock. A private range tree is populated by
reading the space map and then merged in to the DTL_MISSING tree
under the lock.
Furthermore, the SPA_LOAD_NONE check in vdev_dtl_contains() leads to an
additional problem. Any resilvering which occurs before SPA_LOAD_NONE
is set will incorrectly determine that there's nothing to repair. This
can result in full redundancy not being restored for some blocks.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#11218
Is this block when abuf != NULL ever reached? Yes, it is.
Add asserts and comments to prove that when we get here, we have a full
block write at an aligned offset extending past EOF.
Simplify by removing the check that tx_bytes == max_blksz, since we can
assert that it is always true.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11191
- Don't leave fstrans set when passed a snapshot
- Don't remove minor if volmode already matches new value
- (FreeBSD) Wait for GEOM ops to complete before trying
remove (at create time GEOM will be "tasting" in parallel)
- (FreeBSD) Don't leak zvol_state_lock on open if zv == NULL
- (FreeBSD) Don't try to unlock zv->zv_state lock if zv == NULL
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11199
For encrypted receives, where user accounting is initially disabled on
creation, both 'zfs userspace' and 'zfs groupspace' fails with
EOPNOTSUPP: this is because dmu_objset_id_quota_upgrade_cb() forgets to
set OBJSET_FLAG_USERACCOUNTING_COMPLETE on the objset flags after a
successful dmu_objset_space_upgrade().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#9501Closes#9596
In case of cache device removal it is possible that at the end of
l2arc_evict() we have l2ad_hand = l2ad_evict. This can lead to the
following panic in case of a debug build:
VERIFY3(dev->l2ad_hand < dev->l2ad_evict) failed (321920512 < 321920512)
Call Trace:
dump_stack+0x66/0x90
spl_panic+0xef/0x117 [spl]
l2arc_remove_vdev+0x11d/0x290 [zfs]
spa_load_l2cache+0x275/0x5b0 [zfs]
spa_vdev_remove+0x4a5/0x6e0 [zfs]
zfs_ioc_vdev_remove+0x59/0xa0 [zfs]
zfsdev_ioctl_common+0x5b3/0x630 [zfs]
zfsdev_ioctl+0x53/0xe0 [zfs]
do_vfs_ioctl+0x42e/0x6b0
ksys_ioctl+0x5e/0x90
do_syscall_64+0x5b/0x1a0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
In case of cache device removal it also possible that l2ad_hand +
distance > l2ad_end since we do not iterate l2arc_evict() and l2ad_hand
is not reset. This has no functional consequence however as the cache
device is about to be removed.
Fix this by omitting the ASSERT in case of device removal.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#11205
The output of ZFS channel programs is logged on-disk in the zpool
history, and printed by `zpool history -i`. Channel programs can use
10MB of memory by default, and up to 100MB by using the `zfs program -m`
flag. Therefore their output can be up to some fraction of 100MB.
In addition to being somewhat wasteful of the limited space reserved for
the pool history (which for large pools is 1GB), in extreme cases this
can result in a failure of `ASSERT(length <= DMU_MAX_ACCESS);` in
`dmu_buf_hold_array_by_dnode()`.
This commit limits the output size that will be logged to 1MB. Larger
outputs will not be logged, instead a entry will be logged indicating
the size of the omitted output.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11194
FreeBSD's VFS expects EFAULT from zfs_write() if we didn't complete
the full write so it can retry the operation. Add some missing
SET_ERRORs in zfs_write().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11193
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10102
ZFS channel programs (invoked by `zfs program`) are executed in a LUA
sandbox with a limit on the amount of memory they can consume. The
limit is 10MB by default, and can be raised to 100MB with the `-m` flag.
If the memory limit is exceeded, the LUA program exits and the command
fails with a message like `Channel program execution failed: Memory
limit exhausted.`
The LUA sandbox allocates memory with `vmem_alloc(KM_NOSLEEP)`, which
will fail if the requested memory is not immediately available. In this
case, the program fails with the same message, `Memory limit exhausted`.
However, in this case the specified memory limit has not been reached,
and the memory may only be temporarily unavailable.
This commit changes the LUA memory allocator `zcp_lua_alloc()` to use
`vmem_alloc(KM_SLEEP)`, so that we won't spuriously fail when memory is
temporarily low. Instead, we rely on the system to be able to free up
memory (e.g. by evicting from the ARC), and we assume that even at the
highest memory limit of 100MB, the channel program will not truly
exhaust the system's memory.
External-issue: DLPX-71924
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11190
It is a leftover from illumos always set to NULL and introducing a
spurious difference between zio_buf and zio_data_buf.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Closes#11188
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11176
Show that these values will not be changing later.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11176
The oid comes from the znode we are already passing.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11176
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11176
After initial arc_c was reduced to arc_c_min it became possible that
on datasets with primarycache=metadata or none dirty data make up most
of ARC capacity and easily more than configured 50% of initial arc_c,
that causes forced txg commits by arc_tempreserve_space() and periodic
very long write delays.
This patch makes arc_tempreserve_space() to use arc_c only after ARC
warmed up once and arc_c really means something, but use arc_c_max
before that.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes#11178
Fix a couple of places where the wrong tag is passed
to dnode_{hold, rele}
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11184
Move zfs_get_data() in to platform-independent code. The only
platform-specific aspect of it is the way we release an inode
(Linux) / vnode_t (FreeBSD). I am not aware of a platform that
could be supported by ZFS that couldn't implement zfs_rele_async
itself. It's sibling zvol_get_data already is platform-independent.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Christian Schwarz <me@cschwarz.com>
Closes#10979
Current CPU_SEQID users don't care about possibly changing CPU ID, but
enclose it within kpreempt disable/enable in order to fend off warnings
from Linux's CONFIG_DEBUG_PREEMPT.
There is no need to do it. The expected way to get CPU ID while allowing
for migration is to use raw_smp_processor_id.
In order to make this future-proof this patch keeps CPU_SEQID as is and
introduces CPU_SEQID_UNSTABLE instead, to make it clear that consumers
explicitly want this behavior.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Closes#11142
The zfs_holey() and zfs_access() functions can be made common
to both FreeBSD and Linux.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11125
The original xuio zero copy functionality has always been unused
on Linux and FreeBSD. Remove this disabled code to avoid any
confusion and improve readability.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11124
L2ARC devices of several terabytes filled with 4KB blocks may take 15
minutes to rebuild. Due to the way L2ARC log reading is implemented
it is quite likely that for all that time rebuild thread will never
sleep. At least on FreeBSD kernel threads have absolute priority and
can not be preempted by threads with lower priorities. If some thread
is also bound to that specific CPU it may not get any CPU time for all
the 15 minutes.
Reviewed-by: Cedric Berger <cedric@precidata.com>
Reviewed-by: Ryan Moeller <freqlabs@FreeBSD.org>
Reviewed-by: George Amanakis <gamanakis@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#11116
Refer to the correct section or alternative for FreeBSD and Linux.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11132
It's even documented already.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11094
The zfs_fsync, zfs_read, and zfs_write function are almost identical
between Linux and FreeBSD. With a little refactoring they can be
moved to the common code which is what is done by this commit.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11078
The current l2_misses accounting behavior treats all reads to pools
without a configured l2arc as an l2arc miss, IFF there is at least
one other pool on the system which does have an l2arc configured.
This makes it extremely hard to tune for an improved l2arc hit/miss
ratio because this ratio will be modulated by reads from pools which
do not (and should not) have l2arc devices; its upper limit will
depend on the ratio of reads from l2arc'd pools and non-l2arc'd pools.
This PR prevents ARC reads affecting l2arc stats (n.b. l2_misses is
the only relevant one) where the target spa doesn't have an l2arc.
Includes new test - l2arc_l2miss_pos.ksh
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Amanakis <gamanakis@gmail.com>
Signed-off-by: Adam Moss <c@yotes.com>
Closes#10921
The removal of a vdev in the normal class would fail if there was a
special or deup vdev that had a different ashift than the vdevs in
the normal class.
Moved the initialization of spa_min_ashift / spa_max_ashift from
vdev_open so that it occurs after the vdev allocation bias was
initialized (i.e. after vdev_load).
Caveat -- In order to remove a special/dedup vdev it must have the
same ashift as the normal pool vdevs. This could perhaps be lifted
in the future (i.e. for the case where there is ample space in any
surviving special class vdevs)
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#9363Closes#9364Closes#11053
This is a follow up fix for commit 0fdd6106bb. The VERIFY is
only true when we haven't hit an error code path. See added
test case for a reproducer.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Christian Schwarz <me@cschwarz.com>
Closes#11048
After a side-effectful call like add or remove, references to range
segs stored in btrees can no longer be used safely. We move the
remove call to just before the reinsertion call so that the seg
remains valid for as long as we need it.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#11044Closes#11056
Currently streams are only freed when:
- They have no referencing zfetch and and their I/O references
go to zero.
- They are more than 2s old and a new I/O request comes in on
the same zfetch.
This means that we will leak unreferenced streams when their zfetch
structure is freed.
This change checks the reference count on a stream at zfetch free
time. If it is zero we free it immediately. If it has remaining
references we allow the prefetch callback to free it at I/O
completion time.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam Moss <c@yotes.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11052
FreeBSD had this value tunable before the switch to the new OpenZFS.
The tunable name has changed, breaking legacy compat.
Restore legacy compat for this tunable, properly expose the tunable
with the new name on all platforms, and document it in
zfs-module-parameters(5).
While here, clean up the documentation for zfetch_max_distance a bit.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11038
Code cleanup, a follow up commit to 4d55ea81.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Co-authored-by: Ryan Moeller <ryan@freqlabs.com>
Signed-off-by: Christian Schwarz <me@cschwarz.com>
Closes#11020
This change updates the documentation to refer to the project
as OpenZFS instead ZFS on Linux. Web links have been updated
to refer to https://github.com/openzfs/zfs. The extraneous
zfsonlinux.org web links in the ZED and SPL sources have been
dropped.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#11007
When running libzpool with the Undefined Behavior Sanitizer (ubsan)
enabled, a zpool create causes a run-time error:
module/zfs/vdev_label.c:600:14: runtime error: shift exponent 64 is
too large for 64-bit type 'long long unsigned int'`
in vdev_config_generate()
Fix is to convert vdev_removal_max_span to its base-2 logarithm, using
highbit64(), and then compare the "shifts".
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Chuck Tuffli <ctuffli@gmail.com>
Closes#9744Closes#11024
Instead of relying on arbitrary timers after pool export/import or cache
device off/online rely on arcstats. This makes the L2ARC tests more
robust. Also cleanup some functions related to persistent L2ARC.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam Moss <c@yotes.com>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#10983
In C, const indicates to the reader that mutation will not occur.
It can also serve as a hint about ownership.
Add const in a few places where it makes sense.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <freqlabs@FreeBSD.org>
Closes#10997
This causes "zfs send -vt ..." to fail with:
cannot resume send: Unknown error 1030
It turns out that some of the name/value pairs in the verification
list for zfs_ioc_send_space(), zfs_keys_send_space, had the wrong
name, so the ioctl got kicked out in zfs_check_input_nvpairs().
Update the names accordingly.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: John Poduska <jpoduska@datto.com>
Closes#10978
`dbuf_stats_hash_table_data` can take much longer than it needs to
by repeatedly bzeroing its buffer when in fact the buffer only needs
to be NULL terminated.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10993
In non regular use cases allocated memory might stay persistent in memory
pool. This small patch checks every minute if there are old objects which
can be released from memory pool.
Right now with regular use, the pool is checked for old objects on each
allocation attempt from this pool. so basically polling by its use. Now
consider what happens if someone writes a lot of files and stops use of
the volume or even unmounts it. So the code will no longer check if
objects can be released from the pool. Already allocated objects will
still stay in pool cache. this is no big issue for common use. But
someone discovered this issue while doing tests. personally i know this
behavior and I'm aware of it. Its no big issue. just a enhancement
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Closes#10938Closes#10969
When an invalid incremental send is requested where the "to" ds is
before the "from" ds, make sure to drop the reference to the pool
and the dataset before returning the error.
Add an assert on FreeBSD to make sure we don't hold any locks after
returning from an ioctl.
Add some test coverage.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10919
The current dmu_zfetch code implicitly assumes that I/Os complete
within min_sec_reap seconds. With async dmu and a readonly workload
(and thus no exponential backoff in operations from the "write
throttle") such as L2ARC rebuild it is possible to saturate the drives
with I/O requests. These are then effectively compounded with prefetch
requests.
This change reference counts streams and prevents them from being
recycled after their min_sec_reap timeout if they still have
outstanding I/Os.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10900
Prefetching of dnodes in dbuf_read() can cause significant mutex
contention for some workloads and isn't very helpful. This is
because we already get 32 dnodes for each block read, and when
iterating over a directory we prefetch the dnodes in the directory.
Disable this prefetching to prevent the lock contention.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Submitted-by: Adam Moss <c@yotes.com>
Submitted-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Adam Moss <c@yotes.com>
Closes#10877Closes#10953
wkey is NULL at every `goto error;`.
dcp is never NULL.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10884
lr_write_t records that are WR_COPIED have the record data directly
appended to them (see lr_write_t type definition).
The data is copied from the debuf using dmu_read_by_dnode.
This function was called, only for WR_COPIED records, as part of a
short-circuiting if-statement's if-expression.
I found this side-effectful call to dmu_read_by_dnode pretty
hard to spot.
This patch improves readability by moving the call to its own line.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Christian Schwarz <me@cschwarz.com>
Closes#10956
The procfs_list interface is required by several kstats. Implement
this functionality for FreeBSD to provide access to these kstats.
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10890
Resolves an issue with `zfs send` streams from 0.8.4 which
prevents them from being received by versions < 0.7.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Paul Zuchowski <pzuchowski@datto.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#10911Closes#10916
Commit 45152dc removed clearing of L2CACHE flag in arc_read_done() and
moved related code in l2arc_write_eligible(). After careful code
inspection arc_read_done() is not bypassed in the case of prefetches.
Thus restore the old behavior.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: adam moss <c@yotes.com>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#10951
== Motivation and Context
The new vdev ashift optimization prevents the removal of devices when
a zfs configuration is comprised of disks which have different logical
and physical block sizes. This is caused because we set 'spa_min_ashift'
in vdev_open and then later call 'vdev_ashift_optimize'. This would
result in an inconsistency between spa's ashift calculations and that
of the top-level vdev.
In addition, the optimization logical ignores the overridden ashift
value that would be provided by '-o ashift=<val>'.
== Description
This change reworks the vdev ashift optimization so that it's only
set the first time the device is configured. It still allows the
physical and logical ahsift values to be set every time the device
is opened but those values are only consulted on first open.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Cedric Berger <cedric@precidata.com>
Signed-off-by: George Wilson <gwilson@delphix.com>
External-Issue: DLPX-71831
Closes#10932
Reviewed-by: Ryan Moeller <freqlabs@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Pavel Snajdr <snajpa@snajpa.net>
Closes#10879
Reviewed-by: Ryan Moeller <freqlabs@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Pavel Snajdr <snajpa@snajpa.net>
Closes#10879
Reviewed-by: Ryan Moeller <freqlabs@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Pavel Snajdr <snajpa@snajpa.net>
Closes#10879
Reviewed-by: Ryan Moeller <freqlabs@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Pavel Snajdr <snajpa@snajpa.net>
Closes#10879
nvlist does allow us to support different data types and systems.
To encapsulate user data to/from nvlist, the libzfsbootenv library is
provided.
Reviewed-by: Arvind Sankar <nivedita@alum.mit.edu>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Toomas Soome <tsoome@me.com>
Closes#10774
Currently the ARC state (MFU/MRU) of cached L2ARC buffer and their
content type is unknown. Knowing this information may prove beneficial
in adjusting the L2ARC caching policy.
This commit adds L2ARC arcstats that display the aligned size
(in bytes) of L2ARC buffers according to their content type
(data/metadata) and according to their ARC state (MRU/MFU or
prefetch). It also expands the existing evict_l2_eligible arcstat to
differentiate between MFU and MRU buffers.
L2ARC caches buffers from the MRU and MFU lists of ARC. Upon caching a
buffer, its ARC state (MRU/MFU) is stored in the L2 header
(b_arcs_state). The l2_m{f,r}u_asize arcstats reflect the aligned size
(in bytes) of L2ARC buffers according to their ARC state (based on
b_arcs_state). We also account for the case where an L2ARC and ARC
cached MRU or MRU_ghost buffer transitions to MFU. The l2_prefetch_asize
reflects the alinged size (in bytes) of L2ARC buffers that were cached
while they had the prefetch flag set in ARC. This is dynamically updated
as the prefetch flag of L2ARC buffers changes.
When buffers are evicted from ARC, if they are determined to be L2ARC
eligible then their logical size is recorded in
evict_l2_eligible_m{r,f}u arcstats according to their ARC state upon
eviction.
Persistent L2ARC:
When committing an L2ARC buffer to a log block (L2ARC metadata) its
b_arcs_state and prefetch flag is also stored. If the buffer changes
its arcstate or prefetch flag this is reflected in the above arcstats.
However, the L2ARC metadata cannot currently be updated to reflect this
change.
Example: L2ARC caches an MRU buffer. L2ARC metadata and arcstats count
this as an MRU buffer. The buffer transitions to MFU. The arcstats are
updated to reflect this. Upon pool re-import or on/offlining the L2ARC
device the arcstats are cleared and the buffer will now be counted as an
MRU buffer, as the L2ARC metadata were not updated.
Bug fix:
- If l2arc_noprefetch is set, arc_read_done clears the L2CACHE flag of
an ARC buffer. However, prefetches may be issued in a way that
arc_read_done() is bypassed. Instead, move the related code in
l2arc_write_eligible() to account for those cases too.
Also add a test and update manpages for l2arc_mfuonly module parameter,
and update the manpages and code comments for l2arc_noprefetch.
Move persist_l2arc tests to l2arc.
Reviewed-by: Ryan Moeller <freqlabs@FreeBSD.org>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#10743
A great deal of time may go by between when mmp_init() is called and
the MMP thread starts, particularly if there are bad devices, because
there is I/O checking configs etc. If this time is too long,
(gethrtime() - mmp_last_write) > mmp_fail_ns
at the time the MMP thread starts. If MMP is configured to suspend
the pool, the pool will be suspended immediately.
This can be seen in issue #10838
The value of mmp_last_write doesn't matter before the mmp thread
starts. To give the MMP thread time to issue and land MMP writes,
initialize mmp_last_write when the MMP thread starts.
Reviewed-by: Giuseppe Di Natale <guss80@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes#10873
In certain workloads it may be beneficial to reduce wear of L2ARC
devices by not caching MRU metadata and data into L2ARC. This commit
introduces a new tunable l2arc_mfuonly for this purpose.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#10710
On FreeBSD, if priorities divided by four (RQ_PPQ) are equal then
a difference between them is insignificant. In other words,
incrementing pri by only one as on Linux is insufficient.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10872
Commit d4a72f2 which introduced multi-phase scrubs and resilvers
continued the work presented by Nexenta at the 2016 ZFS developer
summit. Update the source to reflect their contribution.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Duplicate io and checksum ereport events can misrepresent that
things are worse than they seem. Ideally the zpool events and the
corresponding vdev stat error counts in a zpool status should be
for unique errors -- not the same error being counted over and over.
This can be demonstrated in a simple example. With a single bad
block in a datafile and just 5 reads of the file we end up with a
degraded vdev, even though there is only one unique error in the pool.
The proposed solution to the above issue, is to eliminate duplicates
when posting events and when updating vdev error stats. We now save
recent error events of interest when posting events so that we can
easily check for duplicates when posting an error.
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#10861
If a `zfs_space_check_t` other than `ZFS_SPACE_CHECK_NONE` is used with
`dsl_sync_task_nowait()`, the sync task may fail due to ENOSPC.
However, there is no way to notice or communicate this failure, so it's
extremely difficult to use this functionality correctly, and in fact
almost all callers use `ZFS_SPACE_CHECK_NONE`.
This commit removes the `zfs_space_check_t` argument from
`dsl_sync_task_nowait()`, and always uses `ZFS_SPACE_CHECK_NONE`.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10855
When created, a zthr is given a name to identify it by. This name is
lost when a cancelled zthr is resumed.
Retain the name of a zthr so it can be used when resuming.
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10881
There are a number of places where cv_?_sig is used simply for
accounting purposes but the surrounding code has no ability to
cope with actually receiving a signal. On FreeBSD it is possible
to send signals to individual kernel threads so this could
enable undesirable behavior.
This patch adds routines on Linux that will do the same idle
accounting as _sig without making the task interruptible. On
FreeBSD cv_*_idle are all aliases for cv_*
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10843
Use ZFS_MODULE_PARAM for cross-platform tunables in spa_stats.c, and
add update tunables.cfg in tests for the newly supported ones.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10858
Moving spa_stats added the additional burden of supporting
KSTAT_TYPE_IO.
spa_state_addr will always return a valid value regardless of
the value of 'n'. On FreeBSD this will cause an infinite loop
as it relies on the raw ops addr routine to indicate that there
is no more data.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <freqlabs@FreeBSD.org>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10860
Allow to rename file systems without remounting if it is possible.
It is possible for file systems with 'mountpoint' property set to
'legacy' or 'none' - we don't have to change mount directory for them.
Currently such file systems are unmounted on rename and not even
mounted back.
This introduces layering violation, as we need to update
'f_mntfromname' field in statfs structure related to mountpoint (for
the dataset we are renaming and all its children).
In my opinion it is worth it, as it allow to update FreeBSD in even
cleaner way - in ZFS-only configuration root file system is ZFS file
system with 'mountpoint' property set to 'legacy'. If root dataset is
named system/rootfs, we can snapshot it (system/rootfs@upgrade), clone
it (system/oldrootfs), update FreeBSD and if it doesn't boot we can
boot back from system/oldrootfs and rename it back to system/rootfs
while it is mounted as /. Before it was not possible, because
unmounting / was not possible.
Authored by: Pawel Jakub Dawidek <pjd@FreeBSD.org>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: Matt Macy <mmacy@freebsd.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10839
use (void) to silence analyzers.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Toomas Soome <tsoome@me.com>
Closes#10857
Initially it was considered simplest to stub out all
of the functions on FreeBSD. Now that FreeBSD supports
KSTAT_TYPE_RAW at least some of the functionality should
be made available.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10842
Because dnode_sync_free_range() must drop dn_mtx during its processing,
using it as a callback to range_tree_vacate() is not safe. No other
operations (besides destroy) are allowed once range_tree_vacate() has
begun, and dropping dn_mtx would leave a window open for another thread
to observe that invalid (and unsafe) state via dnode_block_freed().
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Patrick Mooney <pmooney@oxide.computer>
Closes#10708Closes#10823
The zfs/sa.c source file accidentally includes sys/dnode.h twice.
Remove the second occurrence.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10816Closes#10819
The root cause of the issue is that we only occasionally do as the
comments in the code suggest and actually ignore the %recv dataset when
it comes to filesystem limit tracking. Specifically, the only time we
ignore it is when initializing the filesystem and snapshot limit values;
when creating a new %recv dataset or deleting one, we always update
the bookkeeping. This causes a problem if you init the fs count on a
filesystem that already has a %recv dataset, since the bookmarking
will be decremented but not incremented. This is resolved in this
patch by simply always tracking the %recv dataset as a child.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#10791
The neon support code does not build on FreeBSD,
ifdef out references to fix linker issues on arm64.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10809
Since L2ARC buffers are not evicted on memory pressure, too large
amount of headers on system with irrationally large L2ARC can render
it slow or even unusable. This change limits L2ARC writes and
rebuild if unevictable L2ARC-only headers reach dangerous level.
While there, call arc_adapt() on L2ARC rebuild, so that it could
properly grow arc_c, reflecting potentially significant ARC size
increase and avoiding slow growth with hopeless eviction attempts
later when "overflow" is detected.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reported-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#10765
Export the dmu_offset_next() symbol for use by Lustre.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10796
For Linux, when zfs is compiled as an in kernel static variant
and the in kernel zstd library is compiled statically into the kernel
a symbol collision will occur. This wrapper header renames all
of the relevant zstd functions to avoid this problem.
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Closes#10775
Many modern devices use physical allocation units that are much
larger than the minimum logical allocation size accessible by
external commands. Two prevalent examples of this are 512e disk
drives (512b logical sector, 4K physical sector) and flash devices
(512b logical sector, 4K or larger allocation block size, and 128k
or larger erase block size). Operations that modify less than the
physical sector size result in a costly read-modify-write or garbage
collection sequence on these devices.
Simply exporting the true physical sector of the device to ZFS would
yield optimal performance, but has two serious drawbacks:
1. Existing pools created with devices that have different logical
and physical block sizes, but were configured to use the logical
block size (e.g. because the OS version used for pool construction
reported the logical block size instead of the physical block
size) will suddenly find that the vdev allocation size has
increased. This can be easily tolerated for active members of
the array, but ZFS would prevent replacement of a vdev with
another identical device because it now appears that the smaller
allocation size required by the pool is not supported by the new
device.
2. The device's physical block size may be too large to be supported
by ZFS. The optimal allocation size for the vdev may be quite
large. For example, a RAID controller may export a vdev that
requires read-modify-write cycles unless accessed using 64k
aligned/sized requests. ZFS currently has an 8k minimum block
size limit.
Reporting both the logical and physical allocation sizes for vdevs
solves these problems. A device may be used so long as the logical
block size is compatible with the configuration. By comparing the
logical and physical block sizes, new configurations can be optimized
and administrators can be notified of any existing pools that are
sub-optimal.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Matthew Macy <mmacy@freebsd.org>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10619
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10744
Removing other_size from arc_stats breaks top in 11.x jails
running on HEAD.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10745
This PR adds two new compression types, based on ZStandard:
- zstd: A basic ZStandard compression algorithm Available compression.
Levels for zstd are zstd-1 through zstd-19, where the compression
increases with every level, but speed decreases.
- zstd-fast: A faster version of the ZStandard compression algorithm
zstd-fast is basically a "negative" level of zstd. The compression
decreases with every level, but speed increases.
Available compression levels for zstd-fast:
- zstd-fast-1 through zstd-fast-10
- zstd-fast-20 through zstd-fast-100 (in increments of 10)
- zstd-fast-500 and zstd-fast-1000
For more information check the man page.
Implementation details:
Rather than treat each level of zstd as a different algorithm (as was
done historically with gzip), the block pointer `enum zio_compress`
value is simply zstd for all levels, including zstd-fast, since they all
use the same decompression function.
The compress= property (a 64bit unsigned integer) uses the lower 7 bits
to store the compression algorithm (matching the number of bits used in
a block pointer, as the 8th bit was borrowed for embedded block
pointers). The upper bits are used to store the compression level.
It is necessary to be able to determine what compression level was used
when later reading a block back, so the concept used in LZ4, where the
first 32bits of the on-disk value are the size of the compressed data
(since the allocation is rounded up to the nearest ashift), was
extended, and we store the version of ZSTD and the level as well as the
compressed size. This value is returned when decompressing a block, so
that if the block needs to be recompressed (L2ARC, nop-write, etc), that
the same parameters will be used to result in the matching checksum.
All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`,
`zio_prop_t`, etc.) uses the separated _compress and _complevel
variables. Only the properties ZAP contains the combined/bit-shifted
value. The combined value is split when the compression_changed_cb()
callback is called, and sets both objset members (os_compress and
os_complevel).
The userspace tools all use the combined/bit-shifted value.
Additional notes:
zdb can now also decode the ZSTD compression header (flag -Z) and
inspect the size, version and compression level saved in that header.
For each record, if it is ZSTD compressed, the parameters of the decoded
compression header get printed.
ZSTD is included with all current tests and new tests are added
as-needed.
Per-dataset feature flags now get activated when the property is set.
If a compression algorithm requires a feature flag, zfs activates the
feature when the property is set, rather than waiting for the first
block to be born. This is currently only used by zstd but can be
extended as needed.
Portions-Sponsored-By: The FreeBSD Foundation
Co-authored-by: Allan Jude <allanjude@freebsd.org>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Co-authored-by: Michael Niewöhner <foss@mniewoehner.de>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
Closes#6247Closes#9024Closes#10277Closes#10278
Commit 85ec5cbae updated abd_update_scatter_stats() such that it
calls arc_space_consume() and arc_space_return() when updating the
scatter stats. This requires that the global aggsum value for the
ARC be initialized. Normally this is not an issue, however during
module unload the l2arc_do_free_on_write() function was called in
l2arc_cleanup() after arc_state_fini() destroyed the aggsum values.
We can resolve this issue by performing l2arc_do_free_on_write()
slightly earlier in arc_fini().
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10739
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10727
We limit the size of nvlists passed to the kernel so a user cannot make
the kernel do an unreasonably large allocation. On FreeBSD this limit
was 128 kiB, which turns out to be a bit too small when doing some
operations involving a large number of datasets or snapshots, for
example replication.
Make this limit tunable, with a platform-specific auto default.
Linux keeps its limit at KMALLOC_MAX_SIZE. FreeBSD uses 1/4 of the
system limit on user wired memory, which allows it to scale depending
on system configuration.
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <freqlabs@FreeBSD.org>
Issue #6572Closes#10706
The GRUB restrictions are based around the pool's bootfs property.
Given the current situation where GRUB is not staying current with
OpenZFS pool features, having either a non-ZFS /boot or a separate
pool with limited features are pretty much the only long-term answers
for GRUB support. Only the second case matters in this context. For
the restrictions to be useful, the bootfs property would have to be set
on the boot pool, because that is where we need the restrictions, as
that is the pool that GRUB reads from. The documentation for bootfs
describes it as pointing to the root pool. That's also how it's used in
the initramfs. ZFS does not allow setting bootfs to point to a dataset
in another pool. (If it did, it'd be difficult-to-impossible to enforce
these restrictions cross-pool). Accordingly, bootfs is pretty much
useless for GRUB scenarios moving forward.
Even for users who have only one pool, the existing restrictions for
GRUB are incomplete. They don't prevent you from enabling the
unsupported checksums, for example. For that reason, I have ripped out
all the GRUB restrictions.
A little longer-term, I think extending the proposed features=portable
system to define a features=grub is a much more useful approach. The
user could set that on the boot pool at creation, and things would
Just Work.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8627
The ARC caches data in scatter ABD's, which are collections of pages,
which are typically 4K. Therefore, the space used to cache each block
is rounded up to a multiple of 4K. The ABD subsystem tracks this wasted
memory in the `scatter_chunk_waste` kstat. However, the ARC's `size` is
not aware of the memory used by this round-up, it only accounts for the
size that it requested from the ABD subsystem.
Therefore, the ARC is effectively using more memory than it is aware of,
due to the `scatter_chunk_waste`. This impacts observability, e.g.
`arcstat` will show that the ARC is using less memory than it
effectively is. It also impacts how the ARC responds to memory
pressure. As the amount of `scatter_chunk_waste` changes, it appears to
the ARC as memory pressure, so it needs to resize `arc_c`.
If the sector size (`1<<ashift`) is the same as the page size (or
larger), there won't be any waste. If the (compressed) block size is
relatively large compared to the page size, the amount of
`scatter_chunk_waste` will be small, so the problematic effects are
minimal.
However, if using 512B sectors (`ashift=9`), and the (compressed) block
size is small (e.g. `compression=on` with the default `volblocksize=8k`
or a decreased `recordsize`), the amount of `scatter_chunk_waste` can be
very large. On a production system, with `arc_size` at a constant 50%
of memory, `scatter_chunk_waste` has been been observed to be 10-30% of
memory.
This commit adds `scatter_chunk_waste` to `arc_size`, and adds a new
`waste` field to `arcstat`. As a result, the ARC's memory usage is more
observable, and `arc_c` does not need to be adjusted as frequently.
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10701
* Cast void * to uintptr_t before casting to boolean_t.
* Avoid clashing definition of __asm when not on Linux to
prevent duplicate __volatile__. This was already done in
some places but not all.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <freqlabs@FreeBSD.org>
Closes#10723
Up until now zpool.cache has always lived in /boot on FreeBSD.
For the sake of compatibility fallback to /boot if zpool.cache
isn't found in /etc/zfs.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10720
`thread_create` on FreeBSD stringifies the argument passed as the
thread function to create a name for the thread. The thread name for
`l2arc_dev_rebuild_start` ended up with `(void (*)(void *))` in it.
Change the type signature so the function does not need to be cast
when creating the thread. Rename the function to
`l2arc_dev_rebuild_thread` for clarity and consistency, as well.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Amanakis <gamanakis@gmail.com>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10716
When reading compressed blocks from the L2ARC, with
compressed ARC disabled, arc_hdr_size() returns
LSIZE rather than PSIZE, but the actual read is PSIZE.
This causes l2arc_read_done() to compare the checksum
against the wrong size, resulting in checksum failure.
This manifests as an increase in the kstat l2_cksum_bad
and the read being retried from the main pool, making the
L2ARC ineffective.
Add new L2ARC tests with Compressed ARC enabled/disabled
Blocks are handled differently depending on the state of the
zfs_compressed_arc_enabled tunable.
If a block is compressed on-disk, and compressed_arc is enabled:
- the block is read from disk
- It is NOT decompressed
- It is added to the ARC in its compressed form
- l2arc_write_buffers() may write it to the L2ARC (as is)
- l2arc_read_done() compares the checksum to the BP (compressed)
However, if compressed_arc is disabled:
- the block is read from disk
- It is decompressed
- It is added to the ARC (uncompressed)
- l2arc_write_buffers() will use l2arc_apply_transforms() to
recompress the block, before writing it to the L2ARC
- l2arc_read_done() compares the checksum to the BP (compressed)
- l2arc_read_done() will use l2arc_untransform() to uncompress it
This test writes out a test file to a pool consisting of one disk
and one cache device, then randomly reads from it. Since the arc_max
in the tests is low, this will feed the L2ARC, and result in reads
from the L2ARC.
We compare the value of the kstat l2_cksum_bad before and after
to determine if any blocks failed to survive the trip through the
L2ARC.
Sponsored-by: The FreeBSD Foundation
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Closes#10693
Linux and FreeBSD will most likely never see this issue.
On macOS when kext is unloaded, but zed is still connected, zed
will be issued ENODEV. As the cdevsw is released, the kernel
will not have zfsdev_release() called to release minor/onexit/events,
and it "leaks". This ensures it is cleaned up before unload.
Changed the for loop from zsprev, to zsnext style, for less
code duplication.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Closes#10700
Metaslabs are now (usually) loaded and unloaded infrequently, but when
that is not the case, it is useful to have a log of when and why these
events happened.
This commit enables the zfs_dbgmsg() in metaslab_load(), and adds a
zfs_dbgmsg() in metaslab_unload().
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10683
The arc_adapt() function tunes LRU/MLU balance according to 4 types of
cache hits (which is passed as state agrument): ghost LRU, LRU, MRU,
ghost MRU. If this function is called with wrong cache hit (state),
adaptation will be sub-optimal and performance will suffer.
Some time ago upstream received this commit:
6950 ARC should cache compressed data) in arc_read() do next
sequence (access to ghost buffer)
Before this commit, hit to any ghost list was passed arc_adapt() before
call to arc_access() which revive element in cache and change state from
ghost to real hit.
After this commit, the order of calls was reverted and arc_adapt() is
now called only with «real» hits even if hit was in one of two ghost
lists, which renders ghost lists useless and breaks the ARC algorithm.
FreeBSD fixed this problem locally in Change D19094 / Commit r348772.
This change is an adaptation of the above commit to the current arc
code.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10548Closes#10618
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Closes#10694
In various other pieces of logic have resulted in situations where
we double-free space in ZFS. This in turn results in a double-add
to the range trees. These issues have been much more difficult to
diagnose than they should have been, because the error handling
around this case is much weaker than around the double remove case.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#10654
Pool-wide metadata is stored in the MOS (Meta Object Set). This
metadata is stored in triplicate, in addition to any pool-level
reduncancy (e.g. RAIDZ). However, if all 3+ copies of this metadata are
not available, we can still get EIO/ECKSUM when reading from the MOS.
If we encounter such an error in syncing context, we have typically
already committed to making a change that we now can't do because of the
corrupt/missing metadata. We typically "handle" this with a `VERIFY()`
or `zfs_panic_recover()`. This prevents the system from continuing on
in an undefined state, while minimizing the amount of error-handling
code.
However, there are some code paths that ignore these i/o errors, or
`ASSERT()` that they don't happen. Since assertions are disabled on
non-debug builds, they effectively ignore them as well. This can lead
to ZFS continuing on in an incorrect state, potentially leading to
on-disk inconsistencies.
This commit adds handling for these i/o errors on MOS metadata,
typically with a `VERIFY()`:
* Handle error return from `zap_cursor_retrieve()` in 4 places in
`dsl_deadlist.c`.
* Handle error return from `zap_contains()` in `dsl_dir_hold_obj()`.
Turns out this call isn't necessary because we can always call
`zap_lookup()`.
* Handle error return from `zap_lookup()` in `dsl_fs_ss_limit_check()`.
* Handle error return from `zap_remove()` in `dsl_dir_rename_sync()`.
* Handle error return from `zap_lookup()` in
`dsl_dir_remove_livelist()`.
* Handle error return from `dsl_process_sub_livelist()` in
`spa_livelist_delete_cb()`.
Additionally:
* Augment the internal history log message for `zfs destroy` to note
which method is used (e.g. bptree, livelist, or, synchronous) and the
mintxg.
* Correct a comment in `dbuf_init()`.
* Correct indentation in `dsl_dir_remove_livelist()`.
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10643
In case the L2ARC rebuild was canceled, do not log to spa history
log as the pool may be in the process of being removed and a panic
may occur:
BUG: kernel NULL pointer dereference, address: 0000000000000018
RIP: 0010:spa_history_log_internal+0xb1/0x120 [zfs]
Call Trace:
l2arc_rebuild+0x464/0x7c0 [zfs]
l2arc_dev_rebuild_start+0x2d/0x130 [zfs]
? l2arc_rebuild+0x7c0/0x7c0 [zfs]
thread_generic_wrapper+0x78/0xb0 [spl]
kthread+0xfb/0x130
? IS_ERR+0x10/0x10 [spl]
? kthread_park+0x90/0x90
ret_from_fork+0x35/0x40
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#10659
ZFS recv should return a useful error message when an invalid index
property value is provided in the send stream properties nvlist
With a compression= property outside of the understood range:
Before:
```
receiving full stream of zof/zstd_send@send2 into testpool/recv@send2
internal error: Invalid argument
Aborted (core dumped)
```
Note: the recv completes successfully, the abort() is likely just to
make it easier to track the unexpected error code.
After:
```
receiving full stream of zof/zstd_send@send2 into testpool/recv@send2
cannot receive compression property on testpool/recv: invalid property
value received 28.9M stream in 1 seconds (28.9M/sec)
```
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Closes#10631
A collection of header changes to enable FreeBSD to build
with vendored OpenZFS.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10635
The ARC shrinker callback `arc_shrinker_count/_scan()` is invoked by the
kernel's shrinker mechanism when the system is running low on free
pages. This happens via 2 code paths:
1. "direct reclaim": The system is attempting to allocate a page, but we
are low on memory. The ARC shrinker callback is invoked from the
page-allocation code path.
2. "indirect reclaim": kswapd notices that there aren't many free pages,
so it invokes the ARC shrinker callback.
In both cases, the kernel's shrinker code requests that the ARC shrinker
callback release some of its cache, and then it measures how many pages
were released. However, it's measurement of released pages does not
include pages that are freed via `__free_pages()`, which is how the ARC
releases memory (via `abd_free_chunks()`). Rather, the kernel shrinker
code is looking for pages to be placed on the lists of reclaimable pages
(which is separate from actually-free pages).
Because the kernel shrinker code doesn't detect that the ARC has
released pages, it may call the ARC shrinker callback many times,
resulting in the ARC "collapsing" down to `arc_c_min`. This has several
negative impacts:
1. ZFS doesn't use RAM to cache data effectively.
2. In the direct reclaim case, a single page allocation may wait a long
time (e.g. more than a minute) while we evict the entire ARC.
3. Even with the improvements made in 67c0f0dedc ("ARC shrinking blocks
reads/writes"), occasionally `arc_size` may stay above `arc_c` for the
entire time of the ARC collapse, thus blocking ZFS read/write operations
in `arc_get_data_impl()`.
To address these issues, this commit limits the ways that the ARC
shrinker callback can be used by the kernel shrinker code, and mitigates
the impact of arc_is_overflowing() on ZFS read/write operations.
With this commit:
1. We limit the amount of data that can be reclaimed from the ARC via
the "direct reclaim" shrinker. This limits the amount of time it takes
to allocate a single page.
2. We do not allow the ARC to shrink via kswapd (indirect reclaim).
Instead we rely on `arc_evict_zthr` to monitor free memory and reduce
the ARC target size to keep sufficient free memory in the system. Note
that we can't simply rely on limiting the amount that we reclaim at once
(as for the direct reclaim case), because kswapd's "boosted" logic can
invoke the callback an unlimited number of times (see
`balance_pgdat()`).
3. When `arc_is_overflowing()` and we want to allocate memory,
`arc_get_data_impl()` will wait only for a multiple of the requested
amount of data to be evicted, rather than waiting for the ARC to no
longer be overflowing. This allows ZFS reads/writes to make progress
even while the ARC is overflowing, while also ensuring that the eviction
thread makes progress towards reducing the total amount of memory used
by the ARC.
4. The amount of memory that the ARC always tries to keep free for the
rest of the system, `arc_sys_free` is increased.
5. Now that the shrinker callback is able to provide feedback to the
kernel's shrinker code about our progress, we can safely enable
the kswapd hook. This will allow the arc to receive notifications
when memory pressure is first detected by the kernel. We also
re-enable the appropriate kstats to track these callbacks.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10600
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Closes#10636
When a clone is promoted, its livelist is no longer accurate, so it is
discarded. If the clone's origin is also a clone (i.e. we are promoting
a clone of a clone), then the origin's livelist is also no longer
accurate, so it should be discarded, but the code doesn't actually do
that.
Consider a pool with:
* Filesystem A
* Clone B, a clone of A
* Clone C, a clone of B
If we promote C, it discards C's livelist. It should discard B's
livelist, but that is not happening. The impact is that when B is
destroyed, we use the livelist to find the blocks to free, but the
livelist is no longer correct so we end up freeing blocks that are still
in use by C. The incorrectly-freed blocks can be reallocated causing
checksum errors. And when C is destroyed it can double-free the
incorrectly-freed blocks.
The problem is that we remove the livelist of `origin_ds->ds_dir`, but
the origin snapshot has already been moved to the promoted dsl_dir. So
this is actually trying to remove the livelist of the promoted dsl_dir,
which was already removed. As explained in a comment in the beginning
of `dsl_dataset_promote_sync()`, we need to use the saved `odd` for the
origin's dsl_dir.
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10652
In `vdev_load()`, we look up several entries in the `vdev_top_zap`
object. In most cases, if we encounter an i/o error, it will be
returned to the caller. However, when handling
`VDEV_TOP_ZAP_ALLOCATION_BIAS`, if we get an i/o error, we may continue
on, which in theory could cause us to not realize that a vdev should be
used only for `special` allocations.
In practice, if we encountered an i/o error while looking for
`VDEV_TOP_ZAP_ALLOCATION_BIAS` in the `vdev_top_zap`, we'd also get an
i/o error while looking for other entries in the same object, and thus
the zpool open/import would fail. Therefore the impact of this problem
is negligible.
This commit adds error handling for i/o errors while accessing the
`vdev_top_zap`, so that we aren't relying on unrelated code to fail for
us.
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10637
Renamed to avoid conflicting with refcount.h when a different
implementation is already provided by the platform.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10620
When debugging issues or generally analyzing the runtime of
a system it would be nice to be able to tell the different
ZTHRs running by name rather than having to analyze their
stack.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#10630
FreeBSD defines _BIG_ENDIAN BIG_ENDIAN _LITTLE_ENDIAN
LITTLE_ENDIAN on every architecture. Trying to do
cross builds whilst hiding this from ZFS has proven
extremely cumbersome.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10621
This is a step toward being able to vendor the OpenZFS code in FreeBSD.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10625
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10623