Commit Graph

159 Commits

Author SHA1 Message Date
George Amanakis
9249f1272e
Persistent L2ARC minor fixes
Minor fixes on persistent L2ARC improving code readability and fixing 
a typo in zdb.c when byte-swapping a log block. It also improves the 
pesist_l2arc_007_pos.ksh test by giving it more time to retrieve log 
blocks on the cache device.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam D. Moss <c@yotes.com>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes #10210
2020-04-17 09:27:40 -07:00
George Amanakis
77f6826b83
Persistent L2ARC
This commit makes the L2ARC persistent across reboots. We implement
a light-weight persistent L2ARC metadata structure that allows L2ARC
contents to be recovered after a reboot. This significantly eases the
impact a reboot has on read performance on systems with large caches.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Saso Kiselkov <skiselkov@gmail.com>
Co-authored-by: Jorgen Lundman <lundman@lundman.net>
Co-authored-by: George Amanakis <gamanakis@gmail.com>
Ported-by: Yuxuan Shui <yshuiv7@gmail.com>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes #925 
Closes #1823 
Closes #2672 
Closes #3744 
Closes #9582
2020-04-10 10:33:35 -07:00
Matthew Ahrens
9cdf7b1f6b
Improve zfs destroy performance with zio_t-free zio_free()
When "zfs destroy" is run, it completes quickly, and in the background
we locate the blocks to free and free them.  This background activity
can be observed with `zpool get freeing` and `zpool wait -t free ...`.

This background activity is processed by a single thread (the spa_sync
thread) which calls zio_free() on each of the blocks to free.  With even
modest storage performance, the CPU consumption of zio_free() can be the
performance bottleneck.

Performance of zio_free() can be improved by not actually creating a
zio_t in the common case (non-dedup, non-gang), instead calling
metaslab_free() directly.  This avoids the CPU cost of allocating the
zio_t, and more importantly the cost of adding and later removing this
zio_t from the parent zio's child list.

The result is that performance of background freeing more than doubles,
from 0.6 million blocks per second to 1.3 million blocks per second.

Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10034
2020-02-28 14:49:44 -08:00
Justin Keogh
12f7b90c93
zdb: Always print symlink target
When zdb is printing paths, also print the symlink target if it exists.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Signed-off-by: Justin Keogh <commits@v6y.net>
Closes #9925
2020-02-12 11:36:05 -08:00
Paul Zuchowski
bc67cba7c0
Fix zdb -R with 'b' flag
zdb -R :b fails due to the indirect block being compressed,
and the 'b' and 'd' flag not working in tandem when specified.
Fix the flag parsing code and create a zfs test for zdb -R
block display.  Also fix the zio flags where the dotted notation
for the vdev portion of DVA (i.e. 0.0:offset:length) fails.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes #9640
Closes #9729
2020-02-10 14:00:05 -08:00
Ned Bass
a3403164d7 zdb: add support for object ranges for zdb -d
Allow a range of object identifiers to dump with -d. This may
be useful when dumping a large dataset and you want to break
it up into multiple phases, or to resume where a previous scan
left off. Object type selection flags are supported to reduce
the performance overhead of verbosely dumping unwanted objects,
and to reduce the amount of post-processing work needed to
filter out unwanted objects from zdb output.

This change extends existing syntax in a backward-compatible
way. That is, the base case of a range is to specify a single
object identifier to dump. Ranges and object identifiers can
be intermixed as command line parameters.

Usage synopsis:

    Object ranges take the form <start>:<end>[:<flags>]
        start    Starting object number
        end      Ending object number, or -1 for no upper bound
        flags    Optional flags to select object types:
         A    All objects (this is the default)
         d    ZFS directories
         f    ZFS files
         m    SPA space maps
         z    ZAPs
         -    Negate effect of next flag

Examples:

 # Dump all file objects
 zdb -dd tank/fish 0👎f

 # Dump all file and directory objects
 zdb -dd tank/fish 0👎fd

 # Dump all types except file and directory objects
 zdb -dd tank/fish 0👎A-f-d

 # Dump object IDs in a specific range
 zdb -dd tank/fish 1000:2000

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Paul Zuchowski <pzuchowski@datto.com>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes #9832
2020-01-24 11:00:46 -08:00
Paul Zuchowski
f12e42cccf zdb -d should accept the numeric objset id
As an alternative to the dataset name, zdb now allows the decimal 
or hexadecimal objset ID to be specified.  When permanent errors
are reported as 2 hexadecimal numbers (objset ID : object ID) in 
zpool status; you can now use 'zdb <pool>[/objset ID] object' to
determine the names of the objset and object which have the error.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes #9733
2020-01-16 09:22:49 -08:00
Ned Bass
8b3438e503 zdb: print block checksums with 6 d's of verbosity
Include checksums in the output of 'zdb -dddddd' along
with other indirect block information already displayed.

Example output follows (with long lines trimmed):

$ zdb -dddddd tank/fish 128
Dataset tank/fish [ZPL], ID 259, cr_txg 10, 16.2M, 93 objects, rootbp DV

    Object  lvl   iblk   dblk  dsize  dnsize  lsize   %full  type
       128    2   128K   128K   634K     512     1M  100.00  ZFS plain f
                                               168   bonus  System attri
    dnode flags: USED_BYTES USERUSED_ACCOUNTED USEROBJUSED_ACCOUNTED
    dnode maxblkid: 7
    path    /c
    uid     0
    gid     0
    atime    Sat Dec 21 10:49:26 2019
    mtime    Sat Dec 21 10:49:26 2019
    ctime    Sat Dec 21 10:49:26 2019
    crtime    Sat Dec 21 10:49:26 2019
    gen    41
    mode    100755
    size    964592
    parent    34
    links    1
    pflags    40800000104
Indirect blocks:
               0 L1  0:2c0000:400 0:c021e00:400 20000L/400P F=8 B=41/41
               0  L0 0:227800:13800 20000L/13800P F=1 B=41/41 cksum=167a
           20000  L0 0:25ec00:17c00 20000L/17c00P F=1 B=41/41 cksum=2312
           40000  L0 0:276800:18400 20000L/18400P F=1 B=41/41 cksum=24e0
           60000  L0 0:2a7800:18800 20000L/18800P F=1 B=41/41 cksum=25be
           80000  L0 0:28ec00:18c00 20000L/18c00P F=1 B=41/41 cksum=2579
           a0000  L0 0:24d000:11c00 20000L/11c00P F=1 B=41/41 cksum=140a
           c0000  L0 0:23b000:12000 20000L/12000P F=1 B=41/41 cksum=164e
           e0000  L0 0:221e00:5a00 20000L/5a00P F=1 B=41/41 cksum=9de790

        segment [0000000000000000, 0000000000100000) size    1M

Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes #9765
2019-12-30 09:14:40 -08:00
Paul Zuchowski
f0bf435176 zio_decompress_data always ASSERTs successful decompression
This interferes with zdb_read_block trying all the decompression
algorithms when the 'd' flag is specified, as some are
expected to fail.  Also control the output when guessing
algorithms, try the more common compression types first, allow
specifying lsize/psize, and fix an uninitialized variable.

Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes #9612 
Closes #9630
2019-12-10 15:51:58 -08:00
Matthew Macy
2a8ba608d3 Replace ASSERTV macro with compiler annotation
Remove the ASSERTV macro and handle suppressing unused 
compiler warnings for variables only in ASSERTs using the 
__attribute__((unused)) compiler annotation.  The annotation
is understood by both gcc and clang.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9671
2019-12-05 12:37:00 -08:00
Paul Zuchowski
5a08977374 Fix zdb_read_block using zio after it is destroyed
The checksum display code of zdb_read_block uses a zio
to read in the block and then calls zio_checksum_compute.
Use a new zio in the call to zio_checksum_compute not the zio
from the read which has been destroyed by zio_wait.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes #9644
Closes #9657
2019-12-03 14:37:15 -08:00
Paul Zuchowski
894f6696b4 Add display of checksums to zdb -R
The function zdb_read_block (zdb -R) was always intended to have a :c 
flag which would read the DVA and length supplied by the user, and 
display the checksum. Since we don't know which checksum goes with 
the data, we should calculate and display them all.

For each checksum in the table, read in the data at the supplied 
DVA:length, calculate the checksum, and display it. Update the man 
page and create a zfs test for the new feature.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes #9607
2019-11-27 10:08:18 -08:00
Matthew Macy
da92d5cbb3 Add zfs_file_* interface, remove vnodes
Provide a common zfs_file_* interface which can be implemented on all 
platforms to perform normal file access from either the kernel module
or the libzpool library.

This allows all non-portable vnode_t usage in the common code to be 
replaced by the new portable zfs_file_t.  The associated vnode and
kobj compatibility functions, types, and macros have been removed
from the SPL.  Moving forward, vnodes should only be used in platform
specific code when provided by the native operating system.

Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9556
2019-11-21 09:32:57 -08:00
Matthew Macy
d46f0deb03 Add wrapper for Linux BLKFLSBUF ioctl
FreeBSD has no analog. Buffered block devices were removed a decade
plus ago.

Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9508
2019-10-28 09:53:39 -07:00
Matthew Macy
8b2d097c17 Remove gratuitous Linux only include in ztest & zdb
We don't need to include stdio_ext.h

Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9483
2019-10-19 17:08:19 -07:00
Paul Dagnelie
ca5777793e Reduce loaded range tree memory usage
This patch implements a new tree structure for ZFS, and uses it to 
store range trees more efficiently.

The new structure is approximately a B-tree, though there are some 
small differences from the usual characterizations. The tree has core 
nodes and leaf nodes; each contain data elements, which the elements 
in the core nodes acting as separators between its children. The 
difference between core and leaf nodes is that the core nodes have an 
array of children, while leaf nodes don't. Every node in the tree may 
be only partially full; in most cases, they are all at least 50% full 
(in terms of element count) except for the root node, which can be 
less full. Underfull nodes will steal from their neighbors or merge to 
remain full enough, while overfull nodes will split in two. The data 
elements are contained in tree-controlled buffers; they are copied 
into these on insertion, and overwritten on deletion. This means that 
the elements are not independently allocated, which reduces overhead, 
but also means they can't be shared between trees (and also that 
pointers to them are only valid until a side-effectful tree operation 
occurs). The overhead varies based on how dense the tree is, but is 
usually on the order of about 50% of the element size; the per-node 
overheads are very small, and so don't make a significant difference. 
The trees can accept arbitrary records; they accept a size and a 
comparator to allow them to be used for a variety of purposes.

The new trees replace the AVL trees used in the range trees today. 
Currently, the range_seg_t structure contains three 8 byte integers 
of payload and two 24 byte avl_tree_node_ts to handle its storage in 
both an offset-sorted tree and a size-sorted tree (total size: 64 
bytes). In the new model, the range seg structures are usually two 4 
byte integers, but a separate one needs to exist for the size-sorted 
and offset-sorted tree. Between the raw size, the 50% overhead, and 
the double storage, the new btrees are expected to use 8*1.5*2 = 24 
bytes per record, or 33.3% as much memory as the AVL trees (this is 
for the purposes of storing metaslab range trees; for other purposes, 
like scrubs, they use ~50% as much memory).

We reduced the size of the payload in the range segments by teaching 
range trees about starting offsets and shifts; since metaslabs have a 
fixed starting offset, and they all operate in terms of disk sectors, 
we can store the ranges using 4-byte integers as long as the size of 
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle 
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not 
anticipate disks of this size in the near future, there should be 
almost no cases where metaslabs need 64-byte integers to store their 
ranges. We do still have the capability to store 64-byte integer ranges 
to account for cases where we are storing per-vdev (or per-dnode) trees, 
which could reasonably go above the limits discussed. We also do not 
store fill information in the compact version of the node, since it 
is only used for sorted scrub.

We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than 
they are for the avl tree, remove usually requires a find operation, 
while in the AVL tree model the element itself suffices. Some clever 
changes actually caused an overall speedup in metaslab loading; we use 
approximately 40% less cpu to load metaslabs in our tests on Illumos.

Another memory and performance optimization was achieved by changing 
what is stored in the size-sorted trees. When a disk is heavily 
fragmented, the df algorithm used by default in ZFS will almost always 
find a number of small regions in its initial cursor-based search; it 
will usually only fall back to the size-sorted tree to find larger 
regions. If we increase the size of the cursor-based search slightly, 
and don't store segments that are smaller than a tunable size floor 
in the size-sorted tree, we can further cut memory usage down to 
below 20% of what the AVL trees store. This also results in further 
reductions in CPU time spent loading metaslabs.

The 16KiB size floor was chosen because it results in substantial memory 
usage reduction while not usually resulting in situations where we can't 
find an appropriate chunk with the cursor and are forced to use an 
oversized chunk from the size-sorted tree. In addition, even if we do 
have to use an oversized chunk from the size-sorted tree, the chunk 
would be too small to use for ZIL allocations, so it isn't as big of a 
loss as it might otherwise be. And often, more small allocations will 
follow the initial one, and the cursor search will now find the 
remainder of the chunk we didn't use all of and use it for subsequent 
allocations. Practical testing has shown little or no change in 
fragmentation as a result of this change.

If the size-sorted tree becomes empty while the offset sorted one still 
has entries, it will load all the entries from the offset sorted tree 
and disregard the size floor until it is unloaded again. This operation 
occurs rarely with the default setting, only on incredibly thoroughly 
fragmented pools.

There are some other small changes to zdb to teach it to handle btrees, 
but nothing major.
                                           
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy seb@delphix.com
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9181
2019-10-09 10:36:03 -07:00
Andrea Gelmini
ad0b23b14a Fix typos in cmd/
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes #9234
2019-08-30 09:43:30 -07:00
George Wilson
c8242a96ba spa_load_verify() may consume too much memory
When a pool is imported it will scan the pool to verify the integrity 
of the data and metadata. The amount it scans will depend on the 
import flags provided. On systems with small amounts of memory or 
when importing a pool from the crash kernel, it's possible for 
spa_load_verify to issue too many I/Os that it consumes all the memory 
of the system resulting in an OOM message or a hang.

To prevent this, we limit the amount of memory that the initial pool
scan can consume. This change will, by default, use 1/16th of the ARC
for scan I/Os to prevent running the system out of memory during import.

Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: George Wilson george.wilson@delphix.com
External-issue: DLPX-65237
External-issue: DLPX-65238
Closes #9146
2019-08-13 08:11:57 -06:00
Paul Dagnelie
c81f1790e2 Metaslab max_size should be persisted while unloaded
When we unload metaslabs today in ZFS, the cached max_size value is
discarded. We instead use the histogram to determine whether or not we
think we can satisfy an allocation from the metaslab. This can result in
situations where, if we're doing I/Os of a size not aligned to a
histogram bucket, a metaslab is loaded even though it cannot satisfy the
allocation we think it can. For example, a metaslab with 16 entries in
the 16k-32k bucket may have entirely 16kB entries. If we try to allocate
a 24kB buffer, we will load that metaslab because we think it should be
able to handle the allocation. Doing so is expensive in CPU time, disk
reads, and average IO latency. This is exacerbated if the write being
attempted is a sync write.

This change makes ZFS cache the max_size after the metaslab is
unloaded. If we ever get a free (or a coalesced group of frees) larger
than the max_size, we will update it. Otherwise, we leave it as is. When
attempting to allocate, we use the max_size as a lower bound, and
respect it unless we are in try_hard. However, we do age the max_size
out at some point, since we expect the actual max_size to increase as we
do more frees. A more sophisticated algorithm here might be helpful, but
this works reasonably well.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9055
2019-08-05 14:34:27 -07:00
Sara Hartse
37f03da8ba Fast Clone Deletion
Deleting a clone requires finding blocks are clone-only, not shared
with the snapshot. This was done by traversing the entire block tree
which results in a large performance penalty for sparsely
written clones.

This is new method keeps track of clone blocks when they are
modified in a "Livelist" so that, when it’s time to delete,
the clone-specific blocks are already at hand.

We see performance improvements because now deletion work is
proportional to the number of clone-modified blocks, not the size
of the original dataset.

Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Sara Hartse <sara.hartse@delphix.com>
Closes #8416
2019-07-26 10:54:14 -07:00
Serapheim Dimitropoulos
bac15c1198 zdb: don't print log spacemap stats in pools without the feature
Creating a pool with not features enabled and running
`zdb -mmmmmm on` it before the patch:

```
Log Space Maps in Pool:

Log Space Map Obsolete Entry Statistics:
0        valid entries out of 0        - txg 0
0        valid entries out of 0        - total
```

After this patch the above output goes away.

Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #9048
2019-07-18 12:54:03 -07:00
Serapheim Dimitropoulos
93e28d661e Log Spacemap Project
= Motivation

At Delphix we've seen a lot of customer systems where fragmentation
is over 75% and random writes take a performance hit because a lot
of time is spend on I/Os that update on-disk space accounting metadata.
Specifically, we seen cases where 20% to 40% of sync time is spend
after sync pass 1 and ~30% of the I/Os on the system is spent updating
spacemaps.

The problem is that these pools have existed long enough that we've
touched almost every metaslab at least once, and random writes
scatter frees across all metaslabs every TXG, thus appending to
their spacemaps and resulting in many I/Os. To give an example,
assuming that every VDEV has 200 metaslabs and our writes fit within
a single spacemap block (generally 4K) we have 200 I/Os. Then if we
assume 2 levels of indirection, we need 400 additional I/Os and
since we are talking about metadata for which we keep 2 extra copies
for redundancy we need to triple that number, leading to a total of
1800 I/Os per VDEV every TXG.

We could try and decrease the number of metaslabs so we have less
I/Os per TXG but then each metaslab would cover a wider range on
disk and thus would take more time to be loaded in memory from disk.
In addition, after it's loaded, it's range tree would consume more
memory.

Another idea would be to just increase the spacemap block size
which would allow us to fit more entries within an I/O block
resulting in fewer I/Os per metaslab and a speedup in loading time.
The problem is still that we don't deal with the number of I/Os
going up as the number of metaslabs is increasing and the fact
is that we generally write a lot to a few metaslabs and a little
to the rest of them. Thus, just increasing the block size would
actually waste bandwidth because we won't be utilizing our bigger
block size.

= About this patch

This patch introduces the Log Spacemap project which provides the
solution to the above problem while taking into account all the
aforementioned tradeoffs. The details on how it achieves that can
be found in the references sections below and in the code (see
Big Theory Statement in spa_log_spacemap.c).

Even though the change is fairly constraint within the metaslab
and lower-level SPA codepaths, there is a side-change that is
user-facing. The change is that VDEV IDs from VDEV holes will no
longer be reused. To give some background and reasoning for this,
when a log device is removed and its VDEV structure was replaced
with a hole (or was compacted; if at the end of the vdev array),
its vdev_id could be reused by devices added after that. Now
with the pool-wide space maps recording the vdev ID, this behavior
can cause problems (e.g. is this entry referring to a segment in
the new vdev or the removed log?). Thus, to simplify things the
ID reuse behavior is gone and now vdev IDs for top-level vdevs
are truly unique within a pool.

= Testing

The illumos implementation of this feature has been used internally
for a year and has been in production for ~6 months. For this patch
specifically there don't seem to be any regressions introduced to
ZTS and I have been running zloop for a week without any related
problems.

= Performance Analysis (Linux Specific)

All performance results and analysis for illumos can be found in
the links of the references. Redoing the same experiments in Linux
gave similar results. Below are the specifics of the Linux run.

After the pool reached stable state the percentage of the time
spent in pass 1 per TXG was 64% on average for the stock bits
while the log spacemap bits stayed at 95% during the experiment
(graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png).

Sync times per TXG were 37.6 seconds on average for the stock
bits and 22.7 seconds for the log spacemap bits (related graph:
sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result
the log spacemap bits were able to push more TXGs, which is also
the reason why all graphs quantified per TXG have more entries for
the log spacemap bits.

Another interesting aspect in terms of txg syncs is that the stock
bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8,
and 20% reach 9. The log space map bits reached sync pass 4 in 79%
of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This
emphasizes the fact that not only we spend less time on metadata
but we also iterate less times to convergence in spa_sync() dirtying
objects.
[related graphs:
stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png
lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png]

Finally, the improvement in IOPs that the userland gains from the
change is approximately 40%. There is a consistent win in IOPS as
you can see from the graphs below but the absolute amount of
improvement that the log spacemap gives varies within each minute
interval.
sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png
sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png

= Porting to Other Platforms

For people that want to port this commit to other platforms below
is a list of ZoL commits that this patch depends on:

Make zdb results for checkpoint tests consistent
db587941c5

Update vdev_is_spacemap_addressable() for new spacemap encoding
419ba59145

Simplify spa_sync by breaking it up to smaller functions
8dc2197b7b

Factor metaslab_load_wait() in metaslab_load()
b194fab0fb

Rename range_tree_verify to range_tree_verify_not_present
df72b8bebe

Change target size of metaslabs from 256GB to 16GB
c853f382db

zdb -L should skip leak detection altogether
21e7cf5da8

vs_alloc can underflow in L2ARC vdevs
7558997d2f

Simplify log vdev removal code
6c926f426a

Get rid of space_map_update() for ms_synced_length
425d3237ee

Introduce auxiliary metaslab histograms
928e8ad47d

Error path in metaslab_load_impl() forgets to drop ms_sync_lock
8eef997679

= References

Background, Motivation, and Internals of the Feature
- OpenZFS 2017 Presentation:
youtu.be/jj2IxRkl5bQ
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project

Flushing Algorithm Internals & Performance Results
(Illumos Specific)
- Blogpost:
sdimitro.github.io/post/zfs-lsm-flushing/
- OpenZFS 2018 Presentation:
youtu.be/x6D2dHRjkxw
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm

Upstream Delphix Issues:
DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320
DLPX-63385

Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #8442
2019-07-16 10:11:49 -07:00
Paul Dagnelie
3fab4d9e08 zdb -vvvvv on ztest pool dies with "out of memory"
ztest creates some extremely large files as part of its 
operation. When zdb tries to dump a large enough file, it 
can run out of memory or spend an extremely long time 
attempting to print millions or billions of uint64_ts.

We cap the amount of data from a uint64 object that we 
are willing to read and print.

Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
External-issue: DLPX-53814
Closes #8947
2019-06-25 12:50:37 -07:00
loli10K
5279ae918b Redacted Send/Receive causes zdb to dump core
When used with verbosity >= 4 zdb fails an assertion in dump_bookmarks()
because it expects snprintf() to retun 0 on success.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes #8948
2019-06-24 18:06:26 -07:00
Paul Dagnelie
30af21b025 Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to 
a target system. One possible use case for this feature is to not 
transmit sensitive information to a data warehousing, test/dev, or 
analytics environment. Another is to save space by not replicating 
unimportant data within a given dataset, for example in backup tools 
like zrepl.

Redacted send/receive is a three-stage process. First, a clone (or 
clones) is made of the snapshot to be sent to the target. In this 
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction 
snapshot" (or snapshots). Second, the new zfs redact command is used 
to create a redaction bookmark. The redaction bookmark stores the 
list of blocks in a snapshot that were modified by the redaction 
snapshot(s). Finally, the redaction bookmark is passed as a parameter 
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive 
or unwanted information, and those blocks are not included in the send 
stream.  When sending from the redaction bookmark, the blocks it 
contains are considered as candidate blocks in addition to those 
blocks in the destination snapshot that were modified since the 
creation_txg of the redaction bookmark.  This step is necessary to 
allow the target to rehydrate data in the case where some blocks are 
accidentally or unnecessarily modified in the redaction snapshot.

The changes to bookmarks to enable fast space estimation involve 
adding deadlists to bookmarks. There is also logic to manage the 
life cycles of these deadlists.

The new size estimation process operates in cases where previously 
an accurate estimate could not be provided. In those cases, a send 
is performed where no data blocks are read, reducing the runtime 
significantly and providing a byte-accurate size estimate.

Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 09:48:12 -07:00
Olaf Faaland
060f0226e6 MMP interval and fail_intervals in uberblock
When Multihost is enabled, and a pool is imported, uberblock writes
include ub_mmp_delay to allow an importing node to calculate the
duration of an activity test.  This value, is not enough information.

If zfs_multihost_fail_intervals > 0 on the node with the pool imported,
the safe minimum duration of the activity test is well defined, but does
not depend on ub_mmp_delay:

zfs_multihost_fail_intervals * zfs_multihost_interval

and if zfs_multihost_fail_intervals == 0 on that node, there is no such
well defined safe duration, but the importing host cannot tell whether
mmp_delay is high due to I/O delays, or due to a very large
zfs_multihost_interval setting on the host which last imported the pool.
As a result, it may use a far longer period for the activity test than
is necessary.

This patch renames ub_mmp_sequence to ub_mmp_config and uses it to
record the zfs_multihost_interval and zfs_multihost_fail_intervals
values, as well as the mmp sequence.  This allows a shorter activity
test duration to be calculated by the importing host in most situations.
These values are also added to the multihost_history kstat records.

It calculates the activity test duration differently depending on
whether the new fields are present or not; for importing pools with
only ub_mmp_delay, it uses

(zfs_multihost_interval + ub_mmp_delay) * zfs_multihost_import_intervals

Which results in an activity test duration less sensitive to the leaf
count.

In addition, it makes a few other improvements:
* It updates the "sequence" part of ub_mmp_config when MMP writes
  in between syncs occur.  This allows an importing host to detect MMP
  on the remote host sooner, when the pool is idle, as it is not limited
  to the granularity of ub_timestamp (1 second).
* It issues writes immediately when zfs_multihost_interval is changed
  so remote hosts see the updated value as soon as possible.
* It fixes a bug where setting zfs_multihost_fail_intervals = 1 results
  in immediate pool suspension.
* Update tests to verify activity check duration is based on recorded
  tunable values, not tunable values on importing host.
* Update tests to verify the expected number of uberblocks have valid
  MMP fields - fail_intervals, mmp_interval, mmp_seq (sequence number),
  that sequence number is incrementing, and that uberblock values match
  tunable settings.

Reviewed-by: Andreas Dilger <andreas.dilger@whamcloud.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes #7842
2019-03-21 12:47:57 -07:00
Igor K
cf89a4ec9d zdb: replace label_t to zdb_label_t for reduce collisions
with builds on illumos based platform we can see build issue
because label_t has been redefined.

for reduce build issues on others platforms we should rename
label_t to zdb_label_t.

Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Igor Kozhukhov <igor@dilos.org>
Closes #8397
2019-02-13 11:28:36 -08:00
Serapheim Dimitropoulos
425d3237ee Get rid of space_map_update() for ms_synced_length
Initially, metaslabs and space maps used to be the same thing
in ZFS. Later, we started differentiating them by referring
to the space map as the on-disk state of the metaslab, making
the metaslab a higher-level concept that is metadata that deals
with space accounting. Today we've managed to split that code
furthermore, with the space map being its own on-disk data
structure used in areas of ZFS besides metaslabs (e.g. the
vdev-wide space maps used for zpool checkpoint or vdev removal
features).

This patch refactors the space map code to further split the
space map code from the metaslab code. It does so by getting
rid of the idea that the space map can have a different in-core
and on-disk length (sm_length vs smp_length) which is something
that is only used for the metaslab code, and other consumers
of space maps just have to deal with. Instead, this patch
introduces changes that move the old in-core length of the
metaslab's space map to the metaslab structure itself (see
ms_synced_length field) while making the space map code only
care about the actual space map's length on-disk.

The result of this is that space map consumers no longer have
to deal with syncing two different lengths for the same
structure (e.g. space_map_update() goes away) while metaslab
specific behavior stays within the metaslab code. Specifically,
the ms_synced_length field keeps track of the amount of data
metaslab_load() can read from the metaslab's space map while
working concurrently with metaslab_sync() that may be
appending to that same space map.

As a side note, the patch also adds a few comments around
the metaslab code documenting some assumptions and expected
behavior.

Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #8328
2019-02-12 10:38:11 -08:00
Serapheim Dimitropoulos
21e7cf5da8 zdb -L should skip leak detection altogether
Currently the point of -L option in zdb is to  disable leak
tracing and the loading of space maps because they are expensive,
yet still do leak detection in terms of space. Unfortunately,
there is a scenario where this is a lie. If we are using zdb -L
on a pool where a vdev is being removed, zdb_claim_removing()
will open the metaslab space maps of that device.

This patch makes it so zdb -L skips leak detection altogether
and ensures that no space maps are loaded.

Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #8335
2019-01-30 09:54:27 -08:00
Serapheim Dimitropoulos
df72b8bebe Rename range_tree_verify to range_tree_verify_not_present
The range_tree_verify function looks for a segment in a
range tree and panics if the segment is present on the
tree. This patch gives the function a more descriptive
name.

Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #8327
2019-01-25 09:51:24 -08:00
Serapheim Dimitropoulos
b194fab0fb Factor metaslab_load_wait() in metaslab_load()
Most callers that need to operate on a loaded metaslab, always
call metaslab_load_wait() before loading the metaslab just in
case someone else is already doing the work.

Factoring metaslab_load_wait() within metaslab_load() makes the
later more robust, as callers won't have to do the load-wait
check explicitly every time they need to load a metaslab.

Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #8290
2019-01-18 11:10:32 -08:00
Brian Behlendorf
64bdf63f5c
ztest: split block reconstruction
Increase the default allowed number of reconstruction attempts.
There's not an exact right number for this setting.  It needs
to be set large enough to cover any realistic failure scenarios
and small enough to avoid stalling the IO pipeline and invoking
the dead man detection.

The current value of 256 was empirically determined to be too
low based on multi-day runs of ztest.  The fault injection code
would inject more damage than could be reconstructed given the
relatively small number of attempts.  However, in all observed
cases the block could be reconstructed using a slightly higher
limit.

Based on local testing increasing the default value to 4096 was
determined to strike the best balance.  Checking all combinations
takes less than 10s in the worst case, and has so far eliminated
the vast majority of false positives detected by ztest.  This
delay is roughly on par with how long retries may be performed
to a misbehaving HDD and was deemed to be reasonable.  Better to
err on the side of a brief delay rather than fail to reconstruct
the data.

Lastly, the -Y flag has been added to zdb to make it easy to try all
possible combinations when performing split block reconstruction.
For badly damaged blocks with 18 splits, they can be fully enumerated
within a few minutes.  This has been done to ensure permanent errors
are never incorrectly reported when ztest verifies the pool with zdb.

Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8271
2019-01-16 14:10:02 -08:00
Tom Caputi
e3c85c0938 Move assert in dump_dir() in zdb
This one line patch moves an assert in the function dump_dir()
below an error check that ensures it ran correctly. This ensures
zdb dumps the error that actually caused the problem, as opposed
to one of its symptoms.

Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #8171
2018-12-05 09:30:28 -08:00
Don Brady
e89f1295d4 Add libzutil for libzfs or libzpool consumers
Adds a libzutil for utility functions that are common to libzfs and
libzpool consumers (most of what was in libzfs_import.c).  This
removes the need for utilities to link against both libzpool and
libzfs.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes #8050
2018-11-05 11:22:33 -08:00
Serapheim Dimitropoulos
0a544c174d zdb -k does not work on Linux when used with -e
This minor bug was introduced with the port of the feature from
OpenZFS to ZoL. This patch fixes the issue that was caused by
a minor re-ordering from the original code.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #8001
2018-10-30 11:46:18 -05:00
Tom Caputi
ab4c009e3d Fix dbgmsg printing in ztest and zdb
This patch resolves a problem where the -G option in both zdb and
ztest would cause the code to call __dprintf() to print zfs_dbgmsg
output. This function was not properly wired to add messages to the
dbgmsg log as it is in userspace and so the messages were simply
dropped. This patch also tries to add some degree of distinction to
dprintf() (which now prints directly to stdout) and zfs_dbgmsg()
(which adds messages to an internal list that can be dumped with
zfs_dbgmsg_print()).

In addition, this patch corrects an issue where ztest used a global
variable to decide whether to dump the dbgmsg buffer on a crash.
This did not work because ztest spins up more instances of itself
using execv(), which did not copy the global variable to the new
process. The option has been moved to the ztest_shared_opts_t
which already exists for interprocess communication.

This patch also changes zfs_dbgmsg_print() to use write() calls
instead of printf() so that it will not fail when used in a signal
handler.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #8010
2018-10-24 14:36:50 -07:00
Serapheim Dimitropoulos
9b2266e3d8 OpenZFS 9682 - page fault in dsl_async_clone_destroy() while opening pool
Authored by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: George Melikov <mail@gmelikov.ru>

OpenZFS-issue: https://www.illumos.org/issues/9682
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ade2c82828
Closes #8037
2018-10-19 12:06:21 -07:00
Paul Dagnelie
d52d80b700 Add types to featureflags in zfs
The boolean featureflags in use thus far in ZFS are extremely useful,
but because they take advantage of the zap layer, more interesting data
than just a true/false value can be stored in a featureflag. In redacted
send/receive, this is used to store the list of redaction snapshots for
a redacted dataset.

This change adds the ability for ZFS to store types other than a boolean
in a featureflag. The only other implemented type is a uint64_t array.
It also modifies the interfaces around dataset features to accomodate
the new capabilities, and adds a few new functions to increase
encapsulation.

This functionality will be used by the Redacted Send/Receive feature.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7981
2018-10-16 11:15:04 -07:00
Matthew Ahrens
0aa5916a30
OpenZFS 9847 - leaking dd_clones (DMU_OT_DSL_CLONES) objects (#7979)
OpenZFS 9847 - leaking dd_clones (DMU_OT_DSL_CLONES) objects

We're leaking the dd_clones objects in dsl_dir_destroy_sync.  This bug
appears to have been around forever.  Thankfully the amount of space
typically involved is tiny.

In addition this adds a mechanism in ZDB to find objects in the MOS
which are leaked (not referenced anywhere).

Porting notes:
* Added dd_crypto_obj to ZDB MOS object leak tracking

Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Matthew Ahrens <mahrens@delphix.com>

OpenZFS-issue: https://illumos.org/issues/9847
Closes #7979
2018-10-12 11:28:26 -07:00
Brian Behlendorf
27f80e85c2 Improved error handling for extreme rewinds
The vdev_checkpoint_sm_object(), vdev_obsolete_sm_object(), and
vdev_obsolete_counts_are_precise() functions assume that the
only way a zap_lookup() can fail is if the requested entry is
missing.  While this is the most common cause, it's not the only
cause.  Attemping to access a damaged ZAP will result in other
errors.

The most likely scenario for accessing a damaged ZAP is during
an extreme rewind pool import.  Under these conditions the pool
is expected to contain damaged objects and the import code was
updated to handle this gracefully.  Getting an ECKSUM error from
these ZAPs after the pool in import a far less likely, therefore
the behavior for call paths was not modified.

Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #7809
Closes #7921
2018-10-12 11:24:04 -07:00
Don Brady
cc99f275a2 Pool allocation classes
Allocation Classes add the ability to have allocation classes in a
pool that are dedicated to serving specific block categories, such
as DDT data, metadata, and small file blocks. A pool can opt-in to
this feature by adding a 'special' or 'dedup' top-level VDEV.

Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Reviewed-by: Andreas Dilger <andreas.dilger@chamcloud.com>
Reviewed-by: DHE <git@dehacked.net>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Gregor Kopka <gregor@kopka.net>
Reviewed-by: Kash Pande <kash@tripleback.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes #5182
2018-09-05 18:33:36 -07:00
Olaf Faaland
34fe773e30 Skip import activity test in more zdb code paths
Since zdb opens the pools read-only, it cannot damage the pool in the
event the pool is already imported either on the same host or on
another one.

If the pool vdev structure is changing while zdb is importing the
pool, it may cause zdb to crash.  However this is unlikely, and in any
case it's a user space process and can simply be run again.

For this reason, zdb should disable the multihost activity test on
import that is normally run.

This commit fixes a few zdb code paths where that had been overlooked.
It also adds tests to ensure that several common use cases handle this
properly in the future.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Gu Zheng <guzheng2331314@163.com>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes #7797 
Closes #7801
2018-08-20 10:05:23 -07:00
Brian Behlendorf
e2cc448b60
Reduce zdb output when pool contains checkpoint
When running zdb without additional arguments against a pool containing
a checkpoint the entire checkpoint spacemap should not be dumped.  Make
this behavior conditional upon passing the -mmmm option as described in
the zdb(8) man page.

     -mmmm   Display every spacemap record.

Reviewed-by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed-by: Giuseppe Di Natale <guss80@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #7702
2018-07-10 21:23:17 -07:00
Serapheim Dimitropoulos
4d044c4c1d OpenZFS 9238 - ZFS Spacemap Encoding V2
Motivation
==========

The current space map encoding has the following disadvantages:
[1] Assuming 512 sector size each entry can represent at most 16MB for a segment.
    This makes the encoding very inefficient for large regions of space.
[2] As vdev-wide space maps have started to be used by new features (i.e.
    device removal, zpool checkpoint) we've started imposing limits in the
    vdevs that can be used with them based on the maximum addressable offset
    (currently 64PB for a top-level vdev).

New encoding
============

The layout can be found at space_map.h and it remains backwards compatible with
the old one. The introduced two-word entry format, besides extending the limits
imposed by the single-entry layout, also includes a vdev field and some extra
padding after its prefix.

The extra padding after the prefix should is reserved for future usage (e.g.
new prefixes for future encodings or new fields for flags). The new vdev field
not only makes the space maps more self-descriptive, but also opens the doors
for pool-wide space maps (expected to be used in the log spacemap project).

One final important note is that the number of bits used for vdevs is reduced
to 24 bits for blkptrs. That was decided as we don't know of any setups that
use more than 16M vdevs for the time being and we wanted to fit the vdev field
in the space map. In addition that gives us some extra bits in dva_t.

Other references:
=================

The new encoding is also discussed towards the end of the Log Space Map
presentation from 2017's OpenZFS summit.
Link: https://www.youtube.com/watch?v=jj2IxRkl5bQ

Authored by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <gwilson@zfsmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Gordon Ross <gwr@nexenta.com>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>

OpenZFS-commit: https://github.com/openzfs/openzfs/commit/90a56e6d
OpenZFS-issue: https://www.illumos.org/issues/9238
Closes #7665
2018-07-05 12:02:34 -07:00
Serapheim Dimitropoulos
d2734cce68 OpenZFS 9166 - zfs storage pool checkpoint
Details about the motivation of this feature and its usage can
be found in this blogpost:

    https://sdimitro.github.io/post/zpool-checkpoint/

A lightning talk of this feature can be found here:
https://www.youtube.com/watch?v=fPQA8K40jAM

Implementation details can be found in big block comment of
spa_checkpoint.c

Side-changes that are relevant to this commit but not explained
elsewhere:

* renames members of "struct metaslab trees to be shorter without
  losing meaning

* space_map_{alloc,truncate}() accept a block size as a
  parameter. The reason is that in the current state all space
  maps that we allocate through the DMU use a global tunable
  (space_map_blksz) which defauls to 4KB. This is ok for metaslab
  space maps in terms of bandwirdth since they are scattered all
  over the disk. But for other space maps this default is probably
  not what we want. Examples are device removal's vdev_obsolete_sm
  or vdev_chedkpoint_sm from this review. Both of these have a
  1:1 relationship with each vdev and could benefit from a bigger
  block size.

Porting notes:

* The part of dsl_scan_sync() which handles async destroys has
  been moved into the new dsl_process_async_destroys() function.

* Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write
  to block device backed pools.

* ZTS:
  * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg".

  * Don't use large dd block sizes on /dev/urandom under Linux in
    checkpoint_capacity.

  * Adopt Delphix-OS's setting of 4 (spa_asize_inflation =
    SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed
    its attempts to fill the pool

  * Create the base and nested pools with sync=disabled to speed up
    the "setup" phase.

  * Clear labels in test pool between checkpoint tests to avoid
    duplicate pool issues.

  * The import_rewind_device_replaced test has been marked as "known
    to fail" for the reasons listed in its DISCLAIMER.

  * New module parameters:

      zfs_spa_discard_memory_limit,
      zfs_remove_max_bytes_pause (not documented - debugging only)
      vdev_max_ms_count (formerly metaslabs_per_vdev)
      vdev_min_ms_count

Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>

OpenZFS-issue: https://illumos.org/issues/9166
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8
Closes #7570
2018-06-26 10:07:42 -07:00
Pavel Zakharov
8a393be353 OpenZFS 9235 - rename zpool_rewind_policy_t to zpool_load_policy_t
We want to be able to pass various settings during import/open of a
pool, which are not only related to rewind. Instead of adding a new
policy and duplicate a bunch of code, we should just rename
rewind_policy to a more generic term like load_policy.

For instance, we'd like to set spa->spa_import_flags from the nvlist,
rather from a flags parameter passed to spa_import as in some cases we
want those flags not only for the import case, but also for the open
case. One such flag could be ZFS_IMPORT_MISSING_LOG (as used in zdb)
which would allow zfs to open a pool when logs are missing.

Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>

OpenZFS-issue: https://illumos.org/issues/9235
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/d2b1e44
Closes #7532
2018-06-04 14:54:20 -07:00
Jorgen Lundman
561ba8d1b1 OpenZFS 9523 - Large alloc in zdb can cause trouble
16MB alloc in zdb_embedded_block() can cause cores in certain
situations (clang, gcc55).

Authored by: Jorgen Lundman <lundman@lundman.net>
Reviewed by: Igor Kozhukhov <igor@dilos.org>
Reviewed by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>

Porting Notes:
* Replaces an equivalent fix previously made for Linux.

OpenZFS-issue: https://illumos.org/issues/9523
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/2c1964a
Closes #7561
2018-05-25 17:24:57 -07:00
Pavel Zakharov
afd2f7b711 OpenZFS 8962 - zdb should work on non-idle pools
Currently `zdb` consistently fails to examine non-idle pools as it
fails during the `spa_load()` process. The main problem seems to be
that `spa_load_verify()` fails as can be seen below:

    $ sudo zdb -d -G dcenter
    zdb: can't open 'dcenter': I/O error

    ZFS_DBGMSG(zdb):
    spa_open_common: opening dcenter
    spa_load(dcenter): LOADING
    disk vdev '/dev/dsk/c4t11d0s0': best uberblock found for spa dcenter. txg 40824950
    spa_load(dcenter): using uberblock with txg=40824950
    spa_load(dcenter): UNLOADING
    spa_load(dcenter): RELOADING
    spa_load(dcenter): LOADING
    disk vdev '/dev/dsk/c3t10d0s0': best uberblock found for spa dcenter. txg 40824952
    spa_load(dcenter): using uberblock with txg=40824952
    spa_load(dcenter): FAILED: spa_load_verify failed [error=5]
    spa_load(dcenter): UNLOADING

This change makes `spa_load_verify()` a dryrun when ran from
`zdb`. This is done by creating a global flag in zfs and then setting
it in `zdb`.

Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andy Stormont <astormont@racktopsystems.com>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>

OpenZFS-issue: https://illumos.org/issues/8962
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/180ad792
Closes #7459
2018-05-08 21:32:57 -07:00
Paul Dagnelie
64c1dcefe3 OpenZFS 9421, 9422 - zdb show possibly leaked objects
9421 zdb should detect and print out the number of "leaked" objects
9422 zfs diff and zdb should explicitly mark objects that are on
     the deleted queue

It is possible for zfs to "leak" objects in such a way that they are not
freed, but are also not accessible via the POSIX interface. As the only
way to know that this is happened is to see one of them directly in a
zdb run, or by noting unaccounted space usage, zdb should be enhanced to
count these objects and return failure if some are detected.

We have access to the delete queue through the zfs_get_deleteq function;
we should call it in dump_znode to determine if the object is on the
delete queue. This is not the most efficient possible method, but it is
the simplest to implement, and should suffice for the common case where
there few objects on the delete queue.

Also zfs diff and zdb currently traverse every single dnode in a dataset
and tries to figure out the path of the object by following it's parent.
When an object is placed on the delete queue, for all practical purposes
it's already discarded, it's parent might not exist anymore, and another
object might now have the object number that belonged to the parent.
While all of the above makes sense, when trying to figure out the path
of an object that is on the delete queue, we can run into issues where
either it is impossible to determine the path because the parent is
gone, or another dnode has taken it's place and thus we are returned a
wrong path.

We should therefore avoid trying to determine the path of an object on
the delete queue and mark the object itself as being on the delete queue
to avoid confusion. To achieve this, we currently have two ideas:

1. When putting an object on the delete queue, change it's parent object
   number to a known constant that means NULL.

2. When displaying objects, first check if it is present on the delete
   queue.

Authored by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Approved by: Matt Ahrens <mahrens@delphix.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>

OpenZFS-issue: https://illumos.org/issues/9421
OpenZFS-issue: https://illumos.org/issues/9422
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45ae0dd9ca
Closes #7500
2018-05-04 10:50:24 -07:00
Matthew Ahrens
9e052db462 OpenZFS 9290 - device removal reduces redundancy of mirrors
Mirrors are supposed to provide redundancy in the face of whole-disk
failure and silent damage (e.g. some data on disk is not right, but ZFS
hasn't detected the whole device as being broken). However, the current
device removal implementation bypasses some of the mirror's redundancy.
Note that in no case is incorrect data returned, but we might get a
checksum error when we should have been able to find the right data.

There are two underlying problems:

1. When we remove a mirror device, we only read one side of the mirror.
Since we can't verify the checksum, this side may be silently bad, but
the good data is on the other side of the mirror (which we didn't read).
This can cause the removal to "bake in" the busted data – all copies of
the data in the new location are the same, busted version, while we left
the good version behind.

The fix for this is to read and copy both sides of the mirror. If the
old and new vdevs are mirrors, we will read both sides of the old
mirror, and write each copy to the corresponding side of the new mirror.
(If the old and new vdevs have a different number of children, we will
do this as best as possible.) Even though we aren't verifying checksums,
this ensures that as long as there's a good copy of the data, we'll have
a good copy after the removal, even if there's silent damage to one side
of the mirror. If we're removing a mirror that has some silent damage,
we'll have exactly the same damage in the new location (assuming that
the new location is also a mirror).

2. When we read from an indirect vdev that points to a mirror vdev, we
only consider one copy of the data. This can lead to reduced effective
redundancy, because we might read a bad copy of the data from one side
of the mirror, and not retry the other, good side of the mirror.

Note that the problem is not with the removal process, but rather after
the removal has completed (having copied correct data to both sides of
the mirror), if one side of the new mirror is silently damaged, we
encounter the problem when reading the relocated data via the indirect
vdev. Also note that the problem doesn't occur when ZFS knows that one
side of the mirror is bad, e.g. when a disk entirely fails or is
offlined.

The impact is that reads (from indirect vdevs that point to mirrors) may
return a checksum error even though the good data exists on one side of
the mirror, and scrub doesn't repair all data on the mirror (if some of
it is pointed to via an indirect vdev).

The fix for this is complicated by "split blocks" - one logical block
may be split into two (or more) pieces with each piece moved to a
different new location. In this case we need to read all versions of
each split (one from each side of the mirror), and figure out which
combination of versions results in the correct checksum, and then repair
the incorrect versions.

This ensures that we supply the same redundancy whether you use device
removal or not. For example, if a mirror has small silent errors on all
of its children, we can still reconstruct the correct data, as long as
those errors are at sufficiently-separated offsets (specifically,
separated by the largest block size - default of 128KB, but up to 16MB).

Porting notes:

* A new indirect vdev check was moved from dsl_scan_needs_resilver_cb()
  to dsl_scan_needs_resilver(), which was added to ZoL as part of the
  sequential scrub work.

* Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t
  parameter.  The extra parameter is unique to ZoL.

* When posting indirect checksum errors the ABD can be passed directly,
  zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS.

Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Tim Chase <tim@chase2k.com>

OpenZFS-issue: https://illumos.org/issues/9290
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591
Closes #6900
2018-04-14 12:21:39 -07:00