Still retaining the struture, for now.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#16209
The skeleton file module/icp/include/generic_impl.c can be used for
iterating over different implementations of algorithms.
It is used by SHA256, SHA512 and BLAKE3 currently.
The Solaris SHA2 implementation got replaced with a version which is
based on public domain code of cppcrypto v0.10.
These assembly files are taken from current openssl master:
- sha256-x86_64.S: x64, SSSE3, AVX, AVX2, SHA-NI (x86_64)
- sha512-x86_64.S: x64, AVX, AVX2 (x86_64)
- sha256-armv7.S: ARMv7, NEON, ARMv8-CE (arm)
- sha512-armv7.S: ARMv7, NEON (arm)
- sha256-armv8.S: ARMv7, NEON, ARMv8-CE (aarch64)
- sha512-armv8.S: ARMv7, ARMv8-CE (aarch64)
- sha256-ppc.S: Generic PPC64 LE/BE (ppc64)
- sha512-ppc.S: Generic PPC64 LE/BE (ppc64)
- sha256-p8.S: Power8 ISA Version 2.07 LE/BE (ppc64)
- sha512-p8.S: Power8 ISA Version 2.07 LE/BE (ppc64)
Tested-by: Rich Ercolani <rincebrain@gmail.com>
Tested-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Closes#13741
Add new macro ASMABI used by Windows to change
calling API to "sysv_abi".
Reviewed-by: Attila Fülöp <attila@fueloep.org>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Closes#14228
This commit adds BLAKE3 checksums to OpenZFS, it has similar
performance to Edon-R, but without the caveats around the latter.
Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3
Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3
Short description of Wikipedia:
BLAKE3 is a cryptographic hash function based on Bao and BLAKE2,
created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and
Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real
World Crypto. BLAKE3 is a single algorithm with many desirable
features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE
and BLAKE2, which are algorithm families with multiple variants.
BLAKE3 has a binary tree structure, so it supports a practically
unlimited degree of parallelism (both SIMD and multithreading) given
enough input. The official Rust and C implementations are
dual-licensed as public domain (CC0) and the Apache License.
Along with adding the BLAKE3 hash into the OpenZFS infrastructure a
new benchmarking file called chksum_bench was introduced. When read
it reports the speed of the available checksum functions.
On Linux: cat /proc/spl/kstat/zfs/chksum_bench
On FreeBSD: sysctl kstat.zfs.misc.chksum_bench
This is an example output of an i3-1005G1 test system with Debian 11:
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 1196 1602 1761 1749 1762 1759 1751
skein-generic 546 591 608 615 619 612 616
sha256-generic 240 300 316 314 304 285 276
sha512-generic 353 441 467 476 472 467 426
blake3-generic 308 313 313 313 312 313 312
blake3-sse2 402 1289 1423 1446 1432 1458 1413
blake3-sse41 427 1470 1625 1704 1679 1607 1629
blake3-avx2 428 1920 3095 3343 3356 3318 3204
blake3-avx512 473 2687 4905 5836 5844 5643 5374
Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X)
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 1840 2458 2665 2719 2711 2723 2693
skein-generic 870 966 996 992 1003 1005 1009
sha256-generic 415 442 453 455 457 457 457
sha512-generic 608 690 711 718 719 720 721
blake3-generic 301 313 311 309 309 310 310
blake3-sse2 343 1865 2124 2188 2180 2181 2186
blake3-sse41 364 2091 2396 2509 2463 2482 2488
blake3-avx2 365 2590 4399 4971 4915 4802 4764
Output on Debian 5.10.0-9-powerpc64le system: (POWER 9)
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 1213 1703 1889 1918 1957 1902 1907
skein-generic 434 492 520 522 511 525 525
sha256-generic 167 183 187 188 188 187 188
sha512-generic 186 216 222 221 225 224 224
blake3-generic 153 152 154 153 151 153 153
blake3-sse2 391 1170 1366 1406 1428 1426 1414
blake3-sse41 352 1049 1212 1174 1262 1258 1259
Output on Debian 5.10.0-11-arm64 system: (Pi400)
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 487 603 629 639 643 641 641
skein-generic 271 299 303 308 309 309 307
sha256-generic 117 127 128 130 130 129 130
sha512-generic 145 165 170 172 173 174 175
blake3-generic 81 29 71 89 89 89 89
blake3-sse2 112 323 368 379 380 371 374
blake3-sse41 101 315 357 368 369 364 360
Structurally, the new code is mainly split into these parts:
- 1x cross platform generic c variant: blake3_generic.c
- 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512)
- 2x assembly for ARMv8 (NEON converted from SSE2)
- 2x assembly for PPC64-LE (POWER8 converted from SSE2)
- one file for switching between the implementations
Note the PPC64 assembly requires the VSX instruction set and the
kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly.
Reviewed-by: Felix Dörre <felix@dogcraft.de>
Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Co-authored-by: Rich Ercolani <rincebrain@gmail.com>
Closes#10058Closes#12918
Thus extracting the final shred of utility
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes#13316
For #13083, curiously, it did not print the actual error, just
that the compile failed with "Error 1".
In theory, this flag should cause it to report errors twice sometimes.
In practice, I'm pretty okay with reporting some twice if it avoids
reporting some never.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Damian Szuberski <szuberskidamian@gmail.com>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes#13086
After progressively folding away null cases, it turns out there's
/literally/ nothing there, even if some things are part of the
Solaris SPARC DDI/DKI or the seventeen module types (some doubled for
32-bit userland), or the entire modctl syscall definition.
Nothing.
Initialisation is handled in illumos-crypto.c,
which calls all the initialisers directly
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Attila Fülöp <attila@fueloep.org>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes#12895Closes#12902
In order for cppcheck to perform a proper analysis it needs to be
aware of how the sources are compiled (source files, include
paths/files, extra defines, etc). All the needed information is
available from the Makefiles and can be leveraged with a generic
cppcheck Makefile target. So let's add one.
Additional minor changes:
* Removing the cppcheck-suppressions.txt file. With cppcheck 2.3
and these changes it appears to no longer be needed. Some inline
suppressions were also removed since they appear not to be
needed. We can add them back if it turns out they're needed
for older versions of cppcheck.
* Added the ax_count_cpus m4 macro to detect at configure time how
many processors are available in order to run multiple cppcheck
jobs. This value is also now used as a replacement for nproc
when executing the kernel interface checks.
* "PHONY =" line moved in to the Rules.am file which is included
at the top of all Makefile.am's. This is just convenient becase
it allows us to use the += syntax to add phony targets.
* One upside of this integration worth mentioning is it now allows
`make cppcheck` to be run in any directory to check that subtree.
* For the moment, cppcheck is not run against the FreeBSD specific
kernel sources. The cppcheck-FreeBSD target will need to be
implemented and testing on FreeBSD to support this.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#11508
libzutil is currently statically linked into libzfs, libzfs_core and
libzpool. Avoid the unnecessary duplication by removing it from libzfs
and libzpool, and adding libzfs_core to libzpool.
Remove a few unnecessary dependencies:
- libuutil from libzfs_core
- libtirpc from libspl
- keep only libcrypto in libzfs, as we don't use any functions from
libssl
- librt is only used for clock_gettime, however on modern systems that's
in libc rather than librt. Add a configure check to see if we actually
need librt
- libdl from raidz_test
Add a few missing dependencies:
- zlib to libefi and libzfs
- libuuid to zpool, and libuuid and libudev to zed
- libnvpair uses assertions, so add assert.c to provide aok and
libspl_assertf
Sort the LDADD for programs so that libraries that satisfy dependencies
come at the end rather than the beginning of the linker command line.
Revamp the configure tests for libaries to use FIND_SYSTEM_LIBRARY
instead. This can take advantage of pkg-config, and it also avoids
polluting LIBS.
List all the required dependencies in the pkgconfig files, and move the
one for libzfs_core into the latter's directory. Install pkgconfig files
in $(libdir)/pkgconfig on linux and $(prefix)/libdata/pkgconfig on
FreeBSD, instead of /usr/share/pkgconfig, as the more correct location
for library .pc files.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Closes#10538
Currently SIMD accelerated AES-GCM performance is limited by two
factors:
a. The need to disable preemption and interrupts and save the FPU
state before using it and to do the reverse when done. Due to the
way the code is organized (see (b) below) we have to pay this price
twice for each 16 byte GCM block processed.
b. Most processing is done in C, operating on single GCM blocks.
The use of SIMD instructions is limited to the AES encryption of the
counter block (AES-NI) and the Galois multiplication (PCLMULQDQ).
This leads to the FPU not being fully utilized for crypto
operations.
To solve (a) we do crypto processing in larger chunks while owning
the FPU. An `icp_gcm_avx_chunk_size` module parameter was introduced
to make this chunk size tweakable. It defaults to 32 KiB. This step
alone roughly doubles performance. (b) is tackled by porting and
using the highly optimized openssl AES-GCM assembler routines, which
do all the processing (CTR, AES, GMULT) in a single routine. Both
steps together result in up to 32x reduction of the time spend in
the en/decryption routines, leading up to approximately 12x
throughput increase for large (128 KiB) blocks.
Lastly, this commit changes the default encryption algorithm from
AES-CCM to AES-GCM when setting the `encryption=on` property.
Reviewed-By: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-By: Jason King <jason.king@joyent.com>
Reviewed-By: Tom Caputi <tcaputi@datto.com>
Reviewed-By: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#9749
Over the years several slightly different approaches were used
in the Makefiles to determine the target architecture. This
change updates both the build system and Makefile to handle
this in a consistent fashion.
TARGET_CPU is set to i386, x86_64, powerpc, aarch6 or sparc64
and made available in the Makefiles to be used as appropriate.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#9848
Factor Linux specific pieces out of libspl.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9336
- Add two new module parameters to icp (icp_aes_impl, icp_gcm_impl)
that control the crypto implementation. At the moment there is a
choice between generic and aesni (on platforms that support it).
- This enables support for AES-NI and PCLMULQDQ-NI on AMD Family
15h (bulldozer) and newer CPUs (zen).
- Modify aes_key_t to track what implementation it was generated
with as key schedules generated with various implementations
are not necessarily interchangable.
Reviewed by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Nathaniel R. Lewis <linux.robotdude@gmail.com>
Closes#7102Closes#7103
When --enable-asan is provided to configure then build all user
space components with fsanitize=address. For kernel support
use the Linux KASAN feature instead.
https://github.com/google/sanitizers/wiki/AddressSanitizer
When using gcc version 4.8 any test case which intentionally
generates a core dump will fail when using --enable-asan.
The default behavior is to disable core dumps and only newer
versions allow this behavior to be controled at run time with
the ASAN_OPTIONS environment variable.
Additionally, this patch includes some build system cleanup.
* Rules.am updated to set the minimum AM_CFLAGS, AM_CPPFLAGS,
and AM_LDFLAGS. Any additional flags should be added on a
per-Makefile basic. The --enable-debug and --enable-asan
options apply to all user space binaries and libraries.
* Compiler checks consolidated in always-compiler-options.m4
and renamed for consistency.
* -fstack-check compiler flag was removed, this functionality
is provided by asan when configured with --enable-asan.
* Split DEBUG_CFLAGS in to DEBUG_CFLAGS, DEBUG_CPPFLAGS, and
DEBUG_LDFLAGS.
* Moved default kernel build flags in to module/Makefile.in and
split in to ZFS_MODULE_CFLAGS and ZFS_MODULE_CPPFLAGS. These
flags are set with the standard ccflags-y kbuild mechanism.
* -Wframe-larger-than checks applied only to binaries or
libraries which include source files which are built in
both user space and kernel space. This restriction is
relaxed for user space only utilities.
* -Wno-unused-but-set-variable applied only to libzfs and
libzpool. The remaining warnings are the result of an
ASSERT using a variable when is always declared.
* -D_POSIX_PTHREAD_SEMANTICS and -D__EXTENSIONS__ dropped
because they are Solaris specific and thus not needed.
* Ensure $GDB is defined as gdb by default in zloop.sh.
Signed-off-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#7027
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#494Closes#5769
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported by: Tony Hutter <hutter2@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/4185
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45818ee
Porting Notes:
This code is ported on top of the Illumos Crypto Framework code:
b5e030c8db
The list of porting changes includes:
- Copied module/icp/include/sha2/sha2.h directly from illumos
- Removed from module/icp/algs/sha2/sha2.c:
#pragma inline(SHA256Init, SHA384Init, SHA512Init)
- Added 'ctx' to lib/libzfs/libzfs_sendrecv.c:zio_checksum_SHA256() since
it now takes in an extra parameter.
- Added CTASSERT() to assert.h from for module/zfs/edonr_zfs.c
- Added skein & edonr to libicp/Makefile.am
- Added sha512.S. It was generated from sha512-x86_64.pl in Illumos.
- Updated ztest.c with new fletcher_4_*() args; used NULL for new CTX argument.
- In icp/algs/edonr/edonr_byteorder.h, Removed the #if defined(__linux) section
to not #include the non-existant endian.h.
- In skein_test.c, renane NULL to 0 in "no test vector" array entries to get
around a compiler warning.
- Fixup test files:
- Rename <sys/varargs.h> -> <varargs.h>, <strings.h> -> <string.h>,
- Remove <note.h> and define NOTE() as NOP.
- Define u_longlong_t
- Rename "#!/usr/bin/ksh" -> "#!/bin/ksh -p"
- Rename NULL to 0 in "no test vector" array entries to get around a
compiler warning.
- Remove "for isa in $($ISAINFO); do" stuff
- Add/update Makefiles
- Add some userspace headers like stdio.h/stdlib.h in places of
sys/types.h.
- EXPORT_SYMBOL *_Init/*_Update/*_Final... routines in ICP modules.
- Update scripts/zfs2zol-patch.sed
- include <sys/sha2.h> in sha2_impl.h
- Add sha2.h to include/sys/Makefile.am
- Add skein and edonr dirs to icp Makefile
- Add new checksums to zpool_get.cfg
- Move checksum switch block from zfs_secpolicy_setprop() to
zfs_check_settable()
- Fix -Wuninitialized error in edonr_byteorder.h on PPC
- Fix stack frame size errors on ARM32
- Don't unroll loops in Skein on 32-bit to save stack space
- Add memory barriers in sha2.c on 32-bit to save stack space
- Add filetest_001_pos.ksh checksum sanity test
- Add option to write psudorandom data in file_write utility
A port of the Illumos Crypto Framework to a Linux kernel module (found
in module/icp). This is needed to do the actual encryption work. We cannot
use the Linux kernel's built in crypto api because it is only exported to
GPL-licensed modules. Having the ICP also means the crypto code can run on
any of the other kernels under OpenZFS. I ended up porting over most of the
internals of the framework, which means that porting over other API calls (if
we need them) should be fairly easy. Specifically, I have ported over the API
functions related to encryption, digests, macs, and crypto templates. The ICP
is able to use assembly-accelerated encryption on amd64 machines and AES-NI
instructions on Intel chips that support it. There are place-holder
directories for similar assembly optimizations for other architectures
(although they have not been written).
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4329