ARC code was many times significantly modified over the years, that
created significant amount of tangled and potentially broken code.
This should make arc_access()/arc_read() code some more readable.
- Decouple prefetch status tracking from b_refcnt. It made sense
originally, but became highly cryptic over the years. Move all the
logic into arc_access(). While there, clean up and comment state
transitions in arc_access(). Some transitions were weird IMO.
- Unify arc_access() calls to arc_read() instead of sometimes calling
it from arc_read_done(). To avoid extra state changes and checks add
one more b_refcnt for ARC_FLAG_IO_IN_PROGRESS.
- Reimplement ARC_FLAG_WAIT in case of ARC_FLAG_IO_IN_PROGRESS with
the same callback mechanism to not falsely account them as hits. Count
those as "iohits", an intermediate between "hits" and "misses". While
there, call read callbacks in original request order, that should be
good for fairness and random speculations/allocations/aggregations.
- Introduce additional statistic counters for prefetch, accounting
predictive vs prescient and hits vs iohits vs misses.
- Remove hash_lock argument from functions not needing it.
- Remove ARC_FLAG_PREDICTIVE_PREFETCH, since it should be opposite
to ARC_FLAG_PRESCIENT_PREFETCH if ARC_FLAG_PREFETCH is set. We may
wish to add ARC_FLAG_PRESCIENT_PREFETCH to few more places.
- Fix few false positive tests found in the process.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#14123
Various module parameters such as `zfs_arc_max` were originally
`uint64_t` on OpenSolaris/Illumos, but were changed to `unsigned long`
for Linux compatibility because Linux's kernel default module parameter
implementation did not support 64-bit types on 32-bit platforms. This
caused problems when porting OpenZFS to Windows because its LLP64 memory
model made `unsigned long` a 32-bit type on 64-bit, which created the
undesireable situation that parameters that should accept 64-bit values
could not on 64-bit Windows.
Upon inspection, it turns out that the Linux kernel module parameter
interface is extensible, such that we are allowed to define our own
types. Rather than maintaining the original type change via hacks to to
continue shrinking module parameters on 32-bit Linux, we implement
support for 64-bit module parameters on Linux.
After doing a review of all 64-bit kernel parameters (found via the man
page and also proposed changes by Andrew Innes), the kernel module
parameters fell into a few groups:
Parameters that were originally 64-bit on Illumos:
* dbuf_cache_max_bytes
* dbuf_metadata_cache_max_bytes
* l2arc_feed_min_ms
* l2arc_feed_secs
* l2arc_headroom
* l2arc_headroom_boost
* l2arc_write_boost
* l2arc_write_max
* metaslab_aliquot
* metaslab_force_ganging
* zfetch_array_rd_sz
* zfs_arc_max
* zfs_arc_meta_limit
* zfs_arc_meta_min
* zfs_arc_min
* zfs_async_block_max_blocks
* zfs_condense_max_obsolete_bytes
* zfs_condense_min_mapping_bytes
* zfs_deadman_checktime_ms
* zfs_deadman_synctime_ms
* zfs_initialize_chunk_size
* zfs_initialize_value
* zfs_lua_max_instrlimit
* zfs_lua_max_memlimit
* zil_slog_bulk
Parameters that were originally 32-bit on Illumos:
* zfs_per_txg_dirty_frees_percent
Parameters that were originally `ssize_t` on Illumos:
* zfs_immediate_write_sz
Note that `ssize_t` is `int32_t` on 32-bit and `int64_t` on 64-bit. It
has been upgraded to 64-bit.
Parameters that were `long`/`unsigned long` because of Linux/FreeBSD
influence:
* l2arc_rebuild_blocks_min_l2size
* zfs_key_max_salt_uses
* zfs_max_log_walking
* zfs_max_logsm_summary_length
* zfs_metaslab_max_size_cache_sec
* zfs_min_metaslabs_to_flush
* zfs_multihost_interval
* zfs_unflushed_log_block_max
* zfs_unflushed_log_block_min
* zfs_unflushed_log_block_pct
* zfs_unflushed_max_mem_amt
* zfs_unflushed_max_mem_ppm
New parameters that do not exist in Illumos:
* l2arc_trim_ahead
* vdev_file_logical_ashift
* vdev_file_physical_ashift
* zfs_arc_dnode_limit
* zfs_arc_dnode_limit_percent
* zfs_arc_dnode_reduce_percent
* zfs_arc_meta_limit_percent
* zfs_arc_sys_free
* zfs_deadman_ziotime_ms
* zfs_delete_blocks
* zfs_history_output_max
* zfs_livelist_max_entries
* zfs_max_async_dedup_frees
* zfs_max_nvlist_src_size
* zfs_rebuild_max_segment
* zfs_rebuild_vdev_limit
* zfs_unflushed_log_txg_max
* zfs_vdev_max_auto_ashift
* zfs_vdev_min_auto_ashift
* zfs_vnops_read_chunk_size
* zvol_max_discard_blocks
Rather than clutter the lists with commentary, the module parameters
that need comments are repeated below.
A few parameters were defined in Linux/FreeBSD specific code, where the
use of ulong/long is not an issue for portability, so we leave them
alone:
* zfs_delete_blocks
* zfs_key_max_salt_uses
* zvol_max_discard_blocks
The documentation for a few parameters was found to be incorrect:
* zfs_deadman_checktime_ms - incorrectly documented as int
* zfs_delete_blocks - not documented as Linux only
* zfs_history_output_max - incorrectly documented as int
* zfs_vnops_read_chunk_size - incorrectly documented as long
* zvol_max_discard_blocks - incorrectly documented as ulong
The documentation for these has been fixed, alongside the changes to
document the switch to fixed width types.
In addition, several kernel module parameters were percentages or held
ashift values, so being 64-bit never made sense for them. They have been
downgraded to 32-bit:
* vdev_file_logical_ashift
* vdev_file_physical_ashift
* zfs_arc_dnode_limit_percent
* zfs_arc_dnode_reduce_percent
* zfs_arc_meta_limit_percent
* zfs_per_txg_dirty_frees_percent
* zfs_unflushed_log_block_pct
* zfs_vdev_max_auto_ashift
* zfs_vdev_min_auto_ashift
Of special note are `zfs_vdev_max_auto_ashift` and
`zfs_vdev_min_auto_ashift`, which were already defined as `uint64_t`,
and passed to the kernel as `ulong`. This is inherently buggy on big
endian 32-bit Linux, since the values would not be written to the
correct locations. 32-bit FreeBSD was unaffected because its sysctl code
correctly treated this as a `uint64_t`.
Lastly, a code comment suggests that `zfs_arc_sys_free` is
Linux-specific, but there is nothing to indicate to me that it is
Linux-specific. Nothing was done about that.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Original-patch-by: Andrew Innes <andrew.c12@gmail.com>
Original-patch-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#13984Closes#14004
- Make prefetch distance adaptive: up to 4MB prefetch doubles for
every, hit same as before, but after that it grows by 1/8 every time
the prefetch read does not complete in time to satisfy the demand.
My tests show that 4MB is sufficient for wide NVMe pool to saturate
single reader thread at 2.5GB/s, while new 64MB maximum allows the
same thread to reach 1.5GB/s on wide HDD pool. Further distance
increase may increase speed even more, but less dramatic and with
higher latency.
- Allow early reuse of inactive prefetch streams: streams that never
saw hits can be reused immediately if there is a demand, while others
can be reused after 1s of inactivity, starting with the oldest. After
2s of inactivity streams are deleted to free resources same as before.
This allows by several times increase strided read performance on HDD
pool in presence of simultaneous random reads, previously filling the
zfetch_max_streams limit for seconds and so blocking most of prefetch.
- Always issue intermediate indirect block reads with SYNC priority.
Each of those reads if delayed for longer may delay up to 1024 other
block prefetches, that may be not good for wide pools.
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes#13452
69 CSTYLED BEGINs remain, appx. 30 of which can be removed if cstyle(1)
had a useful policy regarding
CALL(ARG1,
ARG2,
ARG3);
above 2 lines. As it stands, it spits out *both*
sysctl_os.c: 385: continuation line should be indented by 4 spaces
sysctl_os.c: 385: indent by spaces instead of tabs
which is very cool
Another >10 could be fixed by removing "ulong" &al. handling.
I don't foresee anyone actually using it intentionally
(does it even exist in modern headers? why did it in the first place?).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes#12993
Evaluated every variable that lives in .data (and globals in .rodata)
in the kernel modules, and constified/eliminated/localised them
appropriately. This means that all read-only data is now actually
read-only data, and, if possible, at file scope. A lot of previously-
global-symbols became inlinable (and inlined!) constants. Probably
not in a big Wowee Performance Moment, but hey.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes#12899
refcount_add_many(foo,N) is not the same as
for (i=0; i < N; i++) { refcount_add(foo); }
Unfortunately, this is only actually true with debug kernels and
reference_tracking_enable=1.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes#12589Closes#12602
dmu_zfetch_stream_fini() is missing calls to destroy the refcounts,
leaking them and the mutex inside.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Closes#12294
wmsum was designed exactly for cases like these with many updates
and rare reads. It allows to completely avoid atomic operations on
congested global variables.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes#12172
To make better predictions on parallel workloads dmu_zfetch() should
be called as early as possible to reduce possible request reordering.
In particular, it should be called before dmu_buf_hold_array_by_dnode()
calls dbuf_hold(), which may sleep waiting for indirect blocks, waking
up multiple threads same time on completion, that can significantly
reorder the requests, making the stream look like random. But we
should not issue prefetch requests before the on-demand ones, since
they may get to the disks first despite the I/O scheduler, increasing
on-demand request latency.
This patch splits dmu_zfetch() into two functions: dmu_zfetch_prepare()
and dmu_zfetch_run(). The first can be executed as early as needed.
It only updates statistics and makes predictions without issuing any
I/Os. The I/O issuance is handled by dmu_zfetch_run(), which can be
called later when all on-demand I/Os are already issued. It even
tracks the activity of other concurrent threads, issuing the prefetch
only when _all_ on-demand requests are issued.
For many years it was a big problem for storage servers, handling
deeper request queues from their clients, having to either serialize
consequential reads to make ZFS prefetcher usable, or execute the
incoming requests as-is and get almost no prefetch from ZFS, relying
only on deep enough prefetch by the clients. Benefits of those ways
varied, but neither was perfect. With this patch deeper queue
sequential read benchmarks with CrystalDiskMark from Windows via
iSCSI to FreeBSD target show me much better throughput with almost
100% prefetcher hit rate, comparing to almost zero before.
While there, I also removed per-stream zs_lock as useless, completely
covered by parent zf_lock. Also I reused zs_blocks refcount to track
zf_stream linkage of the stream, since I believe previous zs_fetch ==
NULL check in dmu_zfetch_stream_done() was racy.
Delete prefetch streams when they reach ends of files. It saves up
to 1KB of RAM per file, plus reduces searches through the stream list.
Block data prefetch (speculation and indirect block prefetch is still
done since they are cheaper) if all dbufs of the stream are already
in DMU cache. First cache miss immediately fires all the prefetch
that would be done for the stream by that time. It saves some CPU
time if same files within DMU cache capacity are read over and over.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam Moss <c@yotes.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes#11652
Currently streams are only freed when:
- They have no referencing zfetch and and their I/O references
go to zero.
- They are more than 2s old and a new I/O request comes in on
the same zfetch.
This means that we will leak unreferenced streams when their zfetch
structure is freed.
This change checks the reference count on a stream at zfetch free
time. If it is zero we free it immediately. If it has remaining
references we allow the prefetch callback to free it at I/O
completion time.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam Moss <c@yotes.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11052
FreeBSD had this value tunable before the switch to the new OpenZFS.
The tunable name has changed, breaking legacy compat.
Restore legacy compat for this tunable, properly expose the tunable
with the new name on all platforms, and document it in
zfs-module-parameters(5).
While here, clean up the documentation for zfetch_max_distance a bit.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11038
The current dmu_zfetch code implicitly assumes that I/Os complete
within min_sec_reap seconds. With async dmu and a readonly workload
(and thus no exponential backoff in operations from the "write
throttle") such as L2ARC rebuild it is possible to saturate the drives
with I/O requests. These are then effectively compounded with prefetch
requests.
This change reference counts streams and prevents them from being
recycled after their min_sec_reap timeout if they still have
outstanding I/Os.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10900
Adds ZFS_MODULE_PARAM to abstract module parameter
setting to operating systems other than Linux.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes#9230
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes#9240
The rwlock implementation on linux does not perform as well as mutexes.
We can realize a performance benefit by replacing the zf_rwlock with a
mutex. Local microbenchmarks show ~50% improvement, and over NFS we see
~5% improvement on several of the ZFS Performance Tests cases,
especially randwrite and seq_write.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#9062
Currently, sequential async write workloads spend a lot of time
contending on the dn_struct_rwlock. This lock is responsible for
protecting the entire block tree below it; this naturally results
in some serialization during heavy write workloads. This can be
resolved by having per-dbuf locking, which will allow multiple
writers in the same object at the same time.
We introduce a new rwlock, the db_rwlock. This lock is responsible
for protecting the contents of the dbuf that it is a part of; when
reading a block pointer from a dbuf, you hold the lock as a reader.
When writing data to a dbuf, you hold it as a writer. This allows
multiple threads to write to different parts of a file at the same
time.
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Matt Ahrens matt@delphix.com
Reviewed by: George Wilson george.wilson@delphix.com
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
External-issue: DLPX-52564
External-issue: DLPX-53085
External-issue: DLPX-57384
Closes#8946
Commit torvalds/linux@46ad0840b has removed the architecture specific
rwsem source and headers leaving only the generic version. As part
of this change the RWSEM_ACTIVE_READ_BIAS and RWSEM_ACTIVE_WRITE_BIAS
macros were moved to the private kernel/locking/rwsem.h header.
This results in a build failure because these macros were required
to implement the rw_tryupgrade() compatibility function.
In practice, this isn't a major problem because there are only a
few consumers of rw_tryupgrade() and because consumers of rw_tryupgrade
should be written to retry using rw_enter(RW_WRITER).
After auditing all of the callers only dmu_zfetch() was determined
not to perform a retry. It has been updated in this commit to
resolve this issue.
That said, the rw_tryupgrade() functionality should be considered
for possible removal in a future release due to the difficultly
in supporting the interface.
Reviewed-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Reviewed-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8730
Minimal changes required to integrate the SPL sources in to the
ZFS repository build infrastructure and packaging.
Build system and packaging:
* Renamed SPL_* autoconf m4 macros to ZFS_*.
* Removed redundant SPL_* autoconf m4 macros.
* Updated the RPM spec files to remove SPL package dependency.
* The zfs package obsoletes the spl package, and the zfs-kmod
package obsoletes the spl-kmod package.
* The zfs-kmod-devel* packages were updated to add compatibility
symlinks under /usr/src/spl-x.y.z until all dependent packages
can be updated. They will be removed in a future release.
* Updated copy-builtin script for in-kernel builds.
* Updated DKMS package to include the spl.ko.
* Updated stale AUTHORS file to include all contributors.
* Updated stale COPYRIGHT and included the SPL as an exception.
* Renamed README.markdown to README.md
* Renamed OPENSOLARIS.LICENSE to LICENSE.
* Renamed DISCLAIMER to NOTICE.
Required code changes:
* Removed redundant HAVE_SPL macro.
* Removed _BOOT from nvpairs since it doesn't apply for Linux.
* Initial header cleanup (removal of empty headers, refactoring).
* Remove SPL repository clone/build from zimport.sh.
* Use of DEFINE_RATELIMIT_STATE and DEFINE_SPINLOCK removed due
to build issues when forcing C99 compilation.
* Replaced legacy ACCESS_ONCE with READ_ONCE.
* Include needed headers for `current` and `EXPORT_SYMBOL`.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
TEST_ZIMPORT_SKIP="yes"
Closes#7556
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1ebCloses#6900
In case of misaligned I/O sequential requests are not detected as such
due to overlaps in logical block sequence:
dmu_zfetch(fffff80198dd0ae0, 27347, 9, 1)
dmu_zfetch(fffff80198dd0ae0, 27355, 9, 1)
dmu_zfetch(fffff80198dd0ae0, 27363, 9, 1)
dmu_zfetch(fffff80198dd0ae0, 27371, 9, 1)
dmu_zfetch(fffff80198dd0ae0, 27379, 9, 1)
dmu_zfetch(fffff80198dd0ae0, 27387, 9, 1)
This patch makes single block overlap to be counted as a stream hit,
improving performance up to several times.
Authored by: Alexander Motin <mav@FreeBSD.org>
Approved by: Gordon Ross <gwr@nexenta.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Allan Jude <allanjude@freebsd.org>
Reviewed by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed by: George Melikov <mail@gmelikov.ru>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/8835
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/aab6dd482aCloses#7062
With PR 5756 the zfs module now supports c99 and the
remaining past c89 workarounds can be undone.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#6816
Enable picky cstyle checks and resolve the new warnings. The vast
majority of the changes needed were to handle minor issues with
whitespace formatting. This patch contains no functional changes.
Non-whitespace changes are as follows:
* 8 times ; to { } in for/while loop
* fix missing ; in cmd/zed/agents/zfs_diagnosis.c
* comment (confim -> confirm)
* change endline , to ; in cmd/zpool/zpool_main.c
* a number of /* BEGIN CSTYLED */ /* END CSTYLED */ blocks
* /* CSTYLED */ markers
* change == 0 to !
* ulong to unsigned long in module/zfs/dsl_scan.c
* rearrangement of module_param lines in module/zfs/metaslab.c
* add { } block around statement after for_each_online_node
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#5465
For quite some time I was thinking about possibility to prefetch
ZFS indirection tables while doing sequential reads or writes.
Recent changes in predictive prefetcher made that much easier to
do. My tests on zvol with 16KB block size on 5x striped and 2x
mirrored pool of 10 disks show almost double throughput on sequential
read, and almost tripple on sequential rewrite. While for read alike
effect can be received from increasing maximal prefetch distance
(though at higher memory cost), for rewrite there is no other
solution so far.
Authored by: Alexander Motin <mav@freebsd.org>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: kernelOfTruth kerneloftruth@gmail.com
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/6322
OpenZFS-commit: https://github.com/illumos/illumos-gate/commit/cb92f413Closes#5040
Porting notes:
- Change from upstream in module/zfs/dbuf.c in 'int dbuf_read' due
to commit 5f6d0b6 'Handle block pointers with a corrupt logical size'
- Difference from upstream in module/zfs/dmu_zfetch.c,
uint32_t zfetch_max_idistance -> unsigned int zfetch_max_idistance
- Variables have been initialized at the beginning of the function
(void dmu_zfetch) to resemble the order of occurrence and account
for C99, C11 mode errors.
By marking DMU transaction processing contexts with PF_FSTRANS
we can revert the KM_PUSHPAGE -> KM_SLEEP changes. This brings
us back in line with upstream. In some cases this means simply
swapping the flags back. For others fnvlist_alloc() was replaced
by nvlist_alloc(..., KM_PUSHPAGE) and must be reverted back to
fnvlist_alloc() which assumes KM_SLEEP.
The one place KM_PUSHPAGE is kept is when allocating ARC buffers
which allows us to dip in to reserved memory. This is again the
same as upstream.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The vast majority of these changes are in Linux specific code.
They are the result of not having an automated style checker to
validate the code when it was originally written. Others were
caused when the common code was slightly adjusted for Linux.
This patch contains no functional changes. It only refreshes
the code to conform to style guide.
Everyone submitting patches for inclusion upstream should now
run 'make checkstyle' and resolve any warning prior to opening
a pull request. The automated builders have been updated to
fail a build if when 'make checkstyle' detects an issue.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1821
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045illumos/illumos-gate@69962b5647
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1913
3741 zfs needs better comments
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Approved by: Christopher Siden <christopher.siden@delphix.com>
References:
https://www.illumos.org/issues/3741illumos/illumos-gate@3e30c24aee
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1775
Differences between how paging is done on Solaris and Linux can cause
deadlocks if KM_SLEEP is used in any the following contexts.
* The txg_sync thread
* The zvol write/discard threads
* The zpl_putpage() VFS callback
This is because KM_SLEEP will allow for direct reclaim which may result
in the VM calling back in to the filesystem or block layer to write out
pages. If a lock is held over this operation the potential exists to
deadlock the system. To ensure forward progress all memory allocations
in these contexts must us KM_PUSHPAGE which disables performing any I/O
to accomplish the memory allocation.
Previously, this behavior was acheived by setting PF_MEMALLOC on the
thread. However, that resulted in unexpected side effects such as the
exhaustion of pages in ZONE_DMA. This approach touchs more of the zfs
code, but it is more consistent with the right way to handle these cases
under Linux.
This is patch lays the ground work for being able to safely revert the
following commits which used PF_MEMALLOC:
21ade34 Disable direct reclaim for z_wr_* threads
cfc9a5c Fix zpl_writepage() deadlock
eec8164 Fix ASSERTION(!dsl_pool_sync_context(tx->tx_pool))
Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #726
This commit adds module options for all existing zfs tunables.
Ideally the average user should never need to modify any of these
values. However, in practice sometimes you do need to tweak these
values for one reason or another. In those cases it's nice not to
have to resort to rebuilding from source. All tunables are visable
to modinfo and the list is as follows:
$ modinfo module/zfs/zfs.ko
filename: module/zfs/zfs.ko
license: CDDL
author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory
description: ZFS
srcversion: 8EAB1D71DACE05B5AA61567
depends: spl,znvpair,zcommon,zunicode,zavl
vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions
parm: zvol_major:Major number for zvol device (uint)
parm: zvol_threads:Number of threads for zvol device (uint)
parm: zio_injection_enabled:Enable fault injection (int)
parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int)
parm: zio_delay_max:Max zio millisec delay before posting event (int)
parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool)
parm: zil_replay_disable:Disable intent logging replay (int)
parm: zfs_nocacheflush:Disable cache flushes (bool)
parm: zfs_read_chunk_size:Bytes to read per chunk (long)
parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int)
parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int)
parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int)
parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int)
parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int)
parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int)
parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int)
parm: zfs_vdev_scheduler:I/O scheduler (charp)
parm: zfs_vdev_cache_max:Inflate reads small than max (int)
parm: zfs_vdev_cache_size:Total size of the per-disk cache (int)
parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int)
parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int)
parm: zfs_recover:Set to attempt to recover from fatal errors (int)
parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp)
parm: zfs_zevent_len_max:Max event queue length (int)
parm: zfs_zevent_cols:Max event column width (int)
parm: zfs_zevent_console:Log events to the console (int)
parm: zfs_top_maxinflight:Max I/Os per top-level (int)
parm: zfs_resilver_delay:Number of ticks to delay resilver (int)
parm: zfs_scrub_delay:Number of ticks to delay scrub (int)
parm: zfs_scan_idle:Idle window in clock ticks (int)
parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int)
parm: zfs_free_min_time_ms:Min millisecs to free per txg (int)
parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int)
parm: zfs_no_scrub_io:Set to disable scrub I/O (bool)
parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool)
parm: zfs_txg_timeout:Max seconds worth of delta per txg (int)
parm: zfs_no_write_throttle:Disable write throttling (int)
parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int)
parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int)
parm: zfs_write_limit_min:Min tgx write limit (ulong)
parm: zfs_write_limit_max:Max tgx write limit (ulong)
parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong)
parm: zfs_write_limit_override:Override tgx write limit (ulong)
parm: zfs_prefetch_disable:Disable all ZFS prefetching (int)
parm: zfetch_max_streams:Max number of streams per zfetch (uint)
parm: zfetch_min_sec_reap:Min time before stream reclaim (uint)
parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint)
parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong)
parm: zfs_pd_blks_max:Max number of blocks to prefetch (int)
parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int)
parm: zfs_arc_min:Min arc size (ulong)
parm: zfs_arc_max:Max arc size (ulong)
parm: zfs_arc_meta_limit:Meta limit for arc size (ulong)
parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int)
parm: zfs_arc_grow_retry:Seconds before growing arc size (int)
parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int)
parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)