This patch implements the taskq_dispatch_prealloc() interface which
was introduced by the following illumos-gate commit. It allows for
a preallocated taskq_ent_t to be used when dispatching items to a
taskq. This eliminates a memory allocation which helps minimize
lock contention in the taskq when dispatching functions.
commit 5aeb94743e3be0c51e86f73096334611ae3a058e
Author: Garrett D'Amore <garrett@nexenta.com>
Date: Wed Jul 27 07:13:44 2011 -0700
734 taskq_dispatch_prealloc() desired
943 zio_interrupt ends up calling taskq_dispatch with TQ_SLEEP
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #65
To lay the ground work for introducing the taskq_dispatch_prealloc()
interface, the tq_work_list and tq_threads fields had to be replaced
with new alternatives in the taskq_t structure.
The tq_threads field was replaced with tq_thread_list. Rather than
storing the pointers to the taskq's kernel threads in an array, they are
now stored as a list. In addition to laying the ground work for the
taskq_dispatch_prealloc() interface, this change could also enable taskq
threads to be dynamically created and destroyed as threads can now be
added and removed to this list relatively easily.
The tq_work_list field was replaced with tq_active_list. Instead of
keeping a list of taskq_ent_t's which are currently being serviced, a
list of taskq_threads currently servicing a taskq_ent_t is kept. This
frees up the taskq_ent_t's tqent_list field when it is being serviced
(i.e. now when a taskq_ent_t is being serviced, it's tqent_list field
will be empty).
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #65
The spl_task structure was renamed to taskq_ent, and all of
its fields were renamed to have a prefix of 'tqent' rather
than 't'. This was to align with the naming convention which
the ZFS code assumes. Previously these fields were private
so the name never mattered.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #65
It has become necessary to be able to optionally disable
direct memory reclaim for certain taskqs. To support
this the TASKQ_NORECLAIM flags has been added which sets
the PF_MEMALLOC bit for all threads in the taskq.
When TQ_SLEEP is used, taskq_dispatch() should always succeed even if the
number of pending tasks is above tq->tq_maxalloc. This semantic is similar
to KM_SLEEP in kmem allocations, which also always succeed.
However, we cannot block forever otherwise there is a risk of deadlock.
Therefore, we still allow the number of pending tasks to go above
tq->tq_maxalloc with TQ_SLEEP, but we may sleep up to 1 second per task
dispatch, thereby throttling the task dispatch rate.
One of the existing splat tests was also augmented to test for this scenario.
The test would fail with the previous implementation but now it succeeds.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
To avoid conflicts with symbols defined by dependent packages
all debugging symbols have been prefixed with a 'S' for SPL.
Any dependent package needing to integrate with the SPL debug
should include the spl-debug.h header and use the 'S' prefixed
macros. They must also build with DEBUG defined.
To avoid symbol conflicts with dependent packages the debug
header must be split in to several parts. The <sys/debug.h>
header now only contains the Solaris macro's such as ASSERT
and VERIFY. The spl-debug.h header contain the spl specific
debugging infrastructure and should be included by any package
which needs to use the spl logging. Finally the spl-trace.h
header contains internal data structures only used for the log
facility and should not be included by anythign by spl-debug.c.
This way dependent packages can include the standard Solaris
headers without picking up any SPL debug macros. However, if
the dependant package want to integrate with the SPL debugging
subsystem they can then explicitly include spl-debug.h.
Along with this change I have dropped the CHECK_STACK macros
because the upstream Linux kernel now has much better stack
depth checking built in and we don't need this complexity.
Additionally SBUG has been replaced with PANIC and provided as
part of the Solaris macro set. While the Solaris version is
really panic() that conflicts with the Linux kernel so we'll
just have to make due to PANIC. It should rarely be called
directly, the prefered usage would be an ASSERT or VERIFY.
There's lots of change here but this cleanup was overdue.
Adds a task queue to receive tasks dispatched with TQ_FRONT. Worker
threads pull tasks from this high priority queue before the default
pending queue.
Executing tasks out of FIFO order potentially breaks taskq_lowest_id()
if we do not preserve the ordering of the work list by taskqid.
Therefore, instead of always appending to the work list, we search for
the appropriate place to insert a task. The common case is to append
to the list, so we make this operation efficient by searching the work
list in reverse order.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Updated AUTHORS, COPYING, DISCLAIMER, and INSTALL files. Added
standardized headers to all source file to clearly indicate the
copyright, license, and to give credit where credit is due.
In the initial version of taskq_lowest_id() the entire pending and
work list was locked under the tq->tq_lock to determine the lowest
outstanding taskqid. At the time this done because I was rushed
and wanted to make sure it was right... fast was secondary. Well now
fast is important too so I carefully thought through the pending
and work list management and convinced myself it is safe and correct
to simply check the first entry. I added a large comment to the source
to explain this. But basically as long as we are careful to ensure the
pending and work list stay sorted this is safe and fast.
The motivation for this chance was that I was observing as much as
10% of the total CPU time go to waiting on the tq->tq_lock when the
pending list was long. This resolves that problems and frees up
that CPU time for something useful.
used to scale the number of threads based on the number of online
CPUs. As CPUs are added/removed we should rescale the thread
count appropriately, but currently this is only done at create.
I'm very surprised this has not surfaced until now. But the taskq_wait()
implementation work only wait successfully the first time it was called.
Subsequent usage of taskq_wait() on the taskq would not wait.
The issue was caused by tq->tq_lowest_id being set to MAX_INT after the
first wait completed. This caused subsequent waits which check that the
waiting id is less than the lowest taskq id to always succeed. The fix
is to ensure that tq->tq_lowest_id is never set larger than tq->tq_next.id.
Additional fixes which were added to this patch include:
1) Fix a race by placing the taskq_wait_check() in the tq->tq_lock spinlock.
2) taskq_wait() should wait for the largest outstanding id.
3) Multiple spelling corrections.
4) Added taskq wait regression test to validate correct behavior.