The recently merged f58e513f74 was
intended to zero sensitive data before exit from encryption
functions to harden the code against theoretical information
leaks. Unfortunately, the method by which it did that is
optimized away by the compiler, so some information still leaks. This
was confirmed by counting function calls in disassembly.
After studying how the OpenBSD, FreeBSD and Linux kernels handle this,
and looking at our disassembly, I decided on a two-factor approach to
protect us from compiler dead store elimination passes.
The first factor is to stop trying to inline gcm_clear_ctx(). GCC does
not actually inline it in the first place, and testing suggests that
dead store elimination passes appear to become more powerful in a bad
way when inlining is forced, so we recognize that and move
gcm_clear_ctx() to a C file.
The second factor is to implement an explicit_memset() function based on
the technique used by `secure_zero_memory()` in FreeBSD's blake2
implementation, which coincidentally is functionally identical to the
one used by Linux. The source for this appears to be a LLVM bug:
https://llvm.org/bugs/show_bug.cgi?id=15495
Unlike both FreeBSD and Linux, we explicitly avoid the inline keyword,
based on my observations that GCC's dead store elimination pass becomes
more powerful when inlining is forced, under the assumption that it will
be equally powerful when the compiler does decide to inline function
calls.
Disassembly of GCC's output confirms that all 6 memset() calls are
executed with this patch applied.
Reviewed-by: Attila Fülöp <attila@fueloep.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#14544
Currently the temporary buffer in which decryption takes place
isn't cleared on context destruction. Further in some routines we
fail to call gcm_clear_ctx() on error exit. Both flaws may result
in leaking sensitive data.
We follow best practices and zero out the plaintext buffer before
freeing the memory holding it. Also move all cleanup into
gcm_clear_ctx() and call it on any context destruction.
The performance impact should be negligible.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rob Norris <robn@despairlabs.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#14528
While evaluating other assembler implementations it turns out that
the precomputed hash subkey tables vary in size, from 8*16 bytes
(avx2/avx512) up to 48*16 bytes (avx512-vaes), depending on the
implementation.
To be able to handle the size differences later, allocate
`gcm_Htable` dynamically rather then having a fixed size array, and
adapt consumers.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#11102
There are a couple of x86_64 architectures which support all needed
features to make the accelerated GCM implementation work but the
MOVBE instruction. Those are mainly Intel Sandy- and Ivy-Bridge
and AMD Bulldozer, Piledriver, and Steamroller.
By using MOVBE only if available and replacing it with a MOV
followed by a BSWAP if not, those architectures now benefit from
the new GCM routines and performance is considerably better
compared to the original implementation.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam D. Moss <c@yotes.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Followup #9749Closes#10029
Currently SIMD accelerated AES-GCM performance is limited by two
factors:
a. The need to disable preemption and interrupts and save the FPU
state before using it and to do the reverse when done. Due to the
way the code is organized (see (b) below) we have to pay this price
twice for each 16 byte GCM block processed.
b. Most processing is done in C, operating on single GCM blocks.
The use of SIMD instructions is limited to the AES encryption of the
counter block (AES-NI) and the Galois multiplication (PCLMULQDQ).
This leads to the FPU not being fully utilized for crypto
operations.
To solve (a) we do crypto processing in larger chunks while owning
the FPU. An `icp_gcm_avx_chunk_size` module parameter was introduced
to make this chunk size tweakable. It defaults to 32 KiB. This step
alone roughly doubles performance. (b) is tackled by porting and
using the highly optimized openssl AES-GCM assembler routines, which
do all the processing (CTR, AES, GMULT) in a single routine. Both
steps together result in up to 32x reduction of the time spend in
the en/decryption routines, leading up to approximately 12x
throughput increase for large (128 KiB) blocks.
Lastly, this commit changes the default encryption algorithm from
AES-CCM to AES-GCM when setting the `encryption=on` property.
Reviewed-By: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-By: Jason King <jason.king@joyent.com>
Reviewed-By: Tom Caputi <tcaputi@datto.com>
Reviewed-By: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#9749
A port of the Illumos Crypto Framework to a Linux kernel module (found
in module/icp). This is needed to do the actual encryption work. We cannot
use the Linux kernel's built in crypto api because it is only exported to
GPL-licensed modules. Having the ICP also means the crypto code can run on
any of the other kernels under OpenZFS. I ended up porting over most of the
internals of the framework, which means that porting over other API calls (if
we need them) should be fairly easy. Specifically, I have ported over the API
functions related to encryption, digests, macs, and crypto templates. The ICP
is able to use assembly-accelerated encryption on amd64 machines and AES-NI
instructions on Intel chips that support it. There are place-holder
directories for similar assembly optimizations for other architectures
(although they have not been written).
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4329