Resolve straight-line speculation warnings reported by objtool
for x86_64 assembly on Linux when CONFIG_SLS is set. See the
following LWN article for the complete details.
https://lwn.net/Articles/877845/
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#13528Closes#13575
While evaluating other assembler implementations it turns out that
the precomputed hash subkey tables vary in size, from 8*16 bytes
(avx2/avx512) up to 48*16 bytes (avx512-vaes), depending on the
implementation.
To be able to handle the size differences later, allocate
`gcm_Htable` dynamically rather then having a fixed size array, and
adapt consumers.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#11102
While preparing #9749 some .cfi_{start,end}proc directives
were missed. Add the missing ones.
See upstream https://github.com/openssl/openssl/commit/275a048f
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#11101
There are a couple of x86_64 architectures which support all needed
features to make the accelerated GCM implementation work but the
MOVBE instruction. Those are mainly Intel Sandy- and Ivy-Bridge
and AMD Bulldozer, Piledriver, and Steamroller.
By using MOVBE only if available and replacing it with a MOV
followed by a BSWAP if not, those architectures now benefit from
the new GCM routines and performance is considerably better
compared to the original implementation.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam D. Moss <c@yotes.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Followup #9749Closes#10029
Currently SIMD accelerated AES-GCM performance is limited by two
factors:
a. The need to disable preemption and interrupts and save the FPU
state before using it and to do the reverse when done. Due to the
way the code is organized (see (b) below) we have to pay this price
twice for each 16 byte GCM block processed.
b. Most processing is done in C, operating on single GCM blocks.
The use of SIMD instructions is limited to the AES encryption of the
counter block (AES-NI) and the Galois multiplication (PCLMULQDQ).
This leads to the FPU not being fully utilized for crypto
operations.
To solve (a) we do crypto processing in larger chunks while owning
the FPU. An `icp_gcm_avx_chunk_size` module parameter was introduced
to make this chunk size tweakable. It defaults to 32 KiB. This step
alone roughly doubles performance. (b) is tackled by porting and
using the highly optimized openssl AES-GCM assembler routines, which
do all the processing (CTR, AES, GMULT) in a single routine. Both
steps together result in up to 32x reduction of the time spend in
the en/decryption routines, leading up to approximately 12x
throughput increase for large (128 KiB) blocks.
Lastly, this commit changes the default encryption algorithm from
AES-CCM to AES-GCM when setting the `encryption=on` property.
Reviewed-By: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-By: Jason King <jason.king@joyent.com>
Reviewed-By: Tom Caputi <tcaputi@datto.com>
Reviewed-By: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#9749