This commit partially reverts changes to multilists in PR 7968
(multi-threaded spa-sync()) and adds some cache line alignments to
separate read-only multilists and heavily modified refcount's to different
cache lines.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-by: iXsystems, Inc.
Closes#12158
The performance of `zfs receive` can be bottlenecked on the CPU consumed
by the `receive_writer` thread, especially when receiving streams with
small compressed block sizes. Much of the CPU is spent creating and
destroying dbuf's and arc buf's, one for each `WRITE` record in the send
stream.
This commit introduces the concept of "lightweight writes", which allows
`zfs receive` to write to the DMU by providing an ABD, and instantiating
only a new type of `dbuf_dirty_record_t`. The dbuf and arc buf for this
"dirty leaf block" are not instantiated.
Because there is no dbuf with the dirty data, this mechanism doesn't
support reading from "lightweight-dirty" blocks (they would see the
on-disk state rather than the dirty data). Since the dedup-receive code
has been removed, `zfs receive` is write-only, so this works fine.
Because there are no arc bufs for the received data, the received data
is no longer cached in the ARC.
Testing a receive of a stream with average compressed block size of 4KB,
this commit improves performance by 50%, while also reducing CPU usage
by 50% of a CPU. On a per-block basis, CPU consumed by receive_writer()
and dbuf_evict() is now 1/7th (14%) of what it was.
Baseline: 450MB/s, CPU in receive_writer() 40% + dbuf_evict() 35%
New: 670MB/s, CPU in receive_writer() 17% + dbuf_evict() 0%
The code is also restructured in a few ways:
Added a `dr_dnode` field to the dbuf_dirty_record_t. This simplifies
some existing code that no longer needs `DB_DNODE_ENTER()` and related
routines. The new field is needed by the lightweight-type dirty record.
To ensure that the `dr_dnode` field remains valid until the dirty record
is freed, we have to ensure that the `dnode_move()` doesn't relocate the
dnode_t. To do this we keep a hold on the dnode until it's zio's have
completed. This is already done by the user-accounting code
(`userquota_updates_task()`), this commit extends that so that it always
keeps the dnode hold until zio completion (see `dnode_rele_task()`).
`dn_dirty_txg` was previously zeroed when the dnode was synced. This
was not necessary, since its meaning can be "when was this dnode last
dirtied". This change simplifies the new `dnode_rele_task()` code.
Removed some dead code related to `DRR_WRITE_BYREF` (dedup receive).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11105
For encrypted receives, where user accounting is initially disabled on
creation, both 'zfs userspace' and 'zfs groupspace' fails with
EOPNOTSUPP: this is because dmu_objset_id_quota_upgrade_cb() forgets to
set OBJSET_FLAG_USERACCOUNTING_COMPLETE on the objset flags after a
successful dmu_objset_space_upgrade().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#9501Closes#9596
This PR adds two new compression types, based on ZStandard:
- zstd: A basic ZStandard compression algorithm Available compression.
Levels for zstd are zstd-1 through zstd-19, where the compression
increases with every level, but speed decreases.
- zstd-fast: A faster version of the ZStandard compression algorithm
zstd-fast is basically a "negative" level of zstd. The compression
decreases with every level, but speed increases.
Available compression levels for zstd-fast:
- zstd-fast-1 through zstd-fast-10
- zstd-fast-20 through zstd-fast-100 (in increments of 10)
- zstd-fast-500 and zstd-fast-1000
For more information check the man page.
Implementation details:
Rather than treat each level of zstd as a different algorithm (as was
done historically with gzip), the block pointer `enum zio_compress`
value is simply zstd for all levels, including zstd-fast, since they all
use the same decompression function.
The compress= property (a 64bit unsigned integer) uses the lower 7 bits
to store the compression algorithm (matching the number of bits used in
a block pointer, as the 8th bit was borrowed for embedded block
pointers). The upper bits are used to store the compression level.
It is necessary to be able to determine what compression level was used
when later reading a block back, so the concept used in LZ4, where the
first 32bits of the on-disk value are the size of the compressed data
(since the allocation is rounded up to the nearest ashift), was
extended, and we store the version of ZSTD and the level as well as the
compressed size. This value is returned when decompressing a block, so
that if the block needs to be recompressed (L2ARC, nop-write, etc), that
the same parameters will be used to result in the matching checksum.
All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`,
`zio_prop_t`, etc.) uses the separated _compress and _complevel
variables. Only the properties ZAP contains the combined/bit-shifted
value. The combined value is split when the compression_changed_cb()
callback is called, and sets both objset members (os_compress and
os_complevel).
The userspace tools all use the combined/bit-shifted value.
Additional notes:
zdb can now also decode the ZSTD compression header (flag -Z) and
inspect the size, version and compression level saved in that header.
For each record, if it is ZSTD compressed, the parameters of the decoded
compression header get printed.
ZSTD is included with all current tests and new tests are added
as-needed.
Per-dataset feature flags now get activated when the property is set.
If a compression algorithm requires a feature flag, zfs activates the
feature when the property is set, rather than waiting for the first
block to be born. This is currently only used by zstd but can be
extended as needed.
Portions-Sponsored-By: The FreeBSD Foundation
Co-authored-by: Allan Jude <allanjude@freebsd.org>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Co-authored-by: Michael Niewöhner <foss@mniewoehner.de>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
Closes#6247Closes#9024Closes#10277Closes#10278
Background:
By increasing the recordsize property above the default of 128KB, a
filesystem may have "large" blocks. By default, a send stream of such a
filesystem does not contain large WRITE records, instead it decreases
objects' block sizes to 128KB and splits the large blocks into 128KB
blocks, allowing the large-block filesystem to be received by a system
that does not support the `large_blocks` feature. A send stream
generated by `zfs send -L` (or `--large-block`) preserves the large
block size on the receiving system, by using large WRITE records.
When receiving an incremental send stream for a filesystem with large
blocks, if the send stream's -L flag was toggled, a bug is encountered
in which the file's contents are incorrectly zeroed out. The contents
of any blocks that were not modified by this send stream will be lost.
"Toggled" means that the previous send used `-L`, but this incremental
does not use `-L` (-L to no-L); or that the previous send did not use
`-L`, but this incremental does use `-L` (no-L to -L).
Changes:
This commit addresses the problem with several changes to the semantics
of zfs send/receive:
1. "-L to no-L" incrementals are rejected. If the previous send used
`-L`, but this incremental does not use `-L`, the `zfs receive` will
fail with this error message:
incremental send stream requires -L (--large-block), to match
previous receive.
2. "no-L to -L" incrementals are handled correctly, preserving the
smaller (128KB) block size of any already-received files that used large
blocks on the sending system but were split by `zfs send` without the
`-L` flag.
3. A new send stream format flag is added, `SWITCH_TO_LARGE_BLOCKS`.
This feature indicates that we can correctly handle "no-L to -L"
incrementals. This flag is currently not set on any send streams. In
the future, we intend for incremental send streams of snapshots that
have large blocks to use `-L` by default, and these streams will also
have the `SWITCH_TO_LARGE_BLOCKS` feature set. This ensures that streams
from the default use of `zfs send` won't encounter the bug mentioned
above, because they can't be received by software with the bug.
Implementation notes:
To facilitate accessing the ZPL's generation number,
`zfs_space_delta_cb()` has been renamed to `zpl_get_file_info()` and
restructured to fill in a struct with ZPL-specific info including owner
and generation.
In the "no-L to -L" case, if this is a compressed send stream (from
`zfs send -cL`), large WRITE records that are being written to small
(128KB) blocksize files need to be decompressed so that they can be
written split up into multiple blocks. The zio pipeline will recompress
each smaller block individually.
A new test case, `send-L_toggle`, is added, which tests the "no-L to -L"
case and verifies that we get an error for the "-L to no-L" case.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#6224Closes#10383
Deleting a clone requires finding blocks are clone-only, not shared
with the snapshot. This was done by traversing the entire block tree
which results in a large performance penalty for sparsely
written clones.
This is new method keeps track of clone blocks when they are
modified in a "Livelist" so that, when it’s time to delete,
the clone-specific blocks are already at hand.
We see performance improvements because now deletion work is
proportional to the number of clone-modified blocks, not the size
of the original dataset.
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Sara Hartse <sara.hartse@delphix.com>
Closes#8416
Allocation Classes add the ability to have allocation classes in a
pool that are dedicated to serving specific block categories, such
as DDT data, metadata, and small file blocks. A pool can opt-in to
this feature by adding a 'special' or 'dedup' top-level VDEV.
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Reviewed-by: Andreas Dilger <andreas.dilger@chamcloud.com>
Reviewed-by: DHE <git@dehacked.net>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Gregor Kopka <gregor@kopka.net>
Reviewed-by: Kash Pande <kash@tripleback.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#5182
This project's goal is to make read-heavy channel programs and zfs(1m)
administrative commands faster by caching all the metadata that they will
need in the dbuf layer. This will prevent the data from being evicted, so
that any future call to i.e. zfs get all won't have to go to disk (very
much). There are two parts:
The dbuf_metadata_cache. We identify what to put into the cache based on
the object type of each dbuf. Caching objset properties os
{version,normalization,utf8only,casesensitivity} in the objset_t. The reason
these needed to be cached is that although they are queried frequently,
they aren't stored in a dbuf type which we can easily recognize and cache in
the dbuf layer; instead, we have to explicitly store them. There's already
existing infrastructure for maintaining cached properties in the objset
setup code, so I simply used that.
Performance Testing:
- Disabled kmem_flags
- Tuned dbuf_cache_max_bytes very low (128K)
- Tuned zfs_arc_max very low (64M)
Created test pool with 400 filesystems, and 100 snapshots per filesystem.
Later on in testing, added 600 more filesystems (with no snapshots) to make
sure scaling didn't look different between snapshots and filesystems.
Results:
| Test | Time (trunk / diff) | I/Os (trunk / diff) |
+------------------------+---------------------+---------------------+
| zpool import | 0:05 / 0:06 | 12.9k / 12.9k |
| zfs get all (uncached) | 1:36 / 0:53 | 16.7k / 5.7k |
| zfs get all (cached) | 1:36 / 0:51 | 16.0k / 6.0k |
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Thomas Caputi <tcaputi@datto.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Alek Pinchuk <apinchuk@datto.com>
Signed-off-by: Alek Pinchuk <apinchuk@datto.com>
OpenZFS-issue: https://illumos.org/issues/9337
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7dec52fCloses#7668
Commit torvalds/linux@95582b0 changes the inode i_atime, i_mtime,
and i_ctime members form timespec's to timespec64's to make them
2038 safe. As part of this change the current_time() function was
also updated to return the timespec64 type.
Resolve this issue by introducing a new inode_timespec_t type which
is defined to match the timespec type used by the inode. It should
be used when working with inode timestamps to ensure matching types.
The timestruc_t type under Illumos was used in a similar fashion but
was specified to always be a timespec_t. Rather than incorrectly
define this type all timespec_t types have been replaced by the new
inode_timespec_t type.
Finally, the kernel and user space 'sys/time.h' headers were aligned
with each other. They define as appropriate for the context several
constants as macros and include static inline implementation of
gethrestime(), gethrestime_sec(), and gethrtime().
Reviewed-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#7643
In the existing code, when doing a raw (encrypted) zfs receive,
we call arc_convert_to_raw() from open context. This creates a
race condition between arc_release()/arc_change_state() and
writing out the block from syncing context (arc_write_ready/done()).
This change makes it so that when we are doing a raw (encrypted)
zfs receive, we save the crypt parameters (salt, iv, mac) of dnode
blocks in the dbuf_dirty_record_t, and call arc_convert_to_raw()
from syncing context when writing out the block of dnodes.
Additionally, we can eliminate dr_raw and associated setters, and
instead know that dnode blocks are always raw when doing a zfs
receive (see the new field os_raw_receive).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#7424Closes#7429
Authored by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Don Brady <don.brady@delphix.com>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Porting Notes:
* Re-enabled and tweaked the zpool_upgrade_007_pos test case
to successfully run in under 5 minutes.
OpenZFS-issue: https://www.illumos.org/issues/9164
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/0e776dc06aCloses#6112Closes#7336
This patch adds some comments describing the purpose of "portable"
dnode and objset flags so that it is clear when new flags should
be added to the repective flag masks. This patch includes no
functional changes.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7313
Project quota is a new ZFS system space/object usage accounting
and enforcement mechanism. Similar as user/group quota, project
quota is another dimension of system quota. It bases on the new
object attribute - project ID.
Project ID is a numerical value to indicate to which project an
object belongs. An object only can belong to one project though
you (the object owner or privileged user) can change the object
project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly.
The object also can inherit the project ID from its parent when
created if the parent has the project inherit flag (that can be
set via 'chattr +P' or 'zfs project -s [-p]').
By accounting the spaces/objects belong to the same project, we
can know how many spaces/objects used by the project. And if we
set the upper limit then we can control the spaces/objects that
are consumed by such project. It is useful when multiple groups
and users cooperate for the same project, or a user/group needs
to participate in multiple projects.
Support the following commands and functionalities:
zfs set projectquota@project
zfs set projectobjquota@project
zfs get projectquota@project
zfs get projectobjquota@project
zfs get projectused@project
zfs get projectobjused@project
zfs projectspace
zfs allow projectquota
zfs allow projectobjquota
zfs allow projectused
zfs allow projectobjused
zfs unallow projectquota
zfs unallow projectobjquota
zfs unallow projectused
zfs unallow projectobjused
chattr +/-P
chattr -p project_id
lsattr -p
This patch also supports tree quota based on the project quota via
"zfs project" commands set as following:
zfs project [-d|-r] <file|directory ...>
zfs project -C [-k] [-r] <file|directory ...>
zfs project -c [-0] [-d|-r] [-p id] <file|directory ...>
zfs project [-p id] [-r] [-s] <file|directory ...>
For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on
the $DIR, then the proejct [obj]quota and [obj]used values for the
$DIR's project ID will be shown as the total/free (avail) resource.
Keep the same behavior as EXT4/XFS does.
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by Ned Bass <bass6@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Fan Yong <fan.yong@intel.com>
TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master"
Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c
Closes#6290
Currently, os_next_write_raw is a single boolean used for determining
whether or not the next call to dmu_objset_sync() should write out
the objset_phys_t as a raw buffer. Since the boolean is not associated
with a txg, the work simply happens during the next txg, which is not
necessarily the correct one. In the current implementation this issue
was misdiagnosed, resulting in a small hack in dmu_objset_sync() which
seemed to resolve the problem.
This patch changes os_next_write_raw to be an array of booleans, one
for each txg in TXG_OFF and removes the hack.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#6864
The on-disk format for encrypted datasets protects not only
the encrypted and authenticated blocks themselves, but also
the order and interpretation of these blocks. In order to
make this work while maintaining the ability to do raw
sends, the indirect bps maintain a secure checksum of all
the MACs in the block below it along with a few other
fields that determine how the data is interpreted.
Unfortunately, the current on-disk format erroneously
includes some fields which are not portable and thus cannot
support raw sends. It is not possible to easily work around
this issue due to a separate and much smaller bug which
causes indirect blocks for encrypted dnodes to not be
compressed, which conflicts with the previous bug. In
addition, the current code generates incompatible on-disk
formats on big endian and little endian systems due to an
issue with how block pointers are authenticated. Finally,
raw send streams do not currently include dn_maxblkid when
sending both the metadnode and normal dnodes which are
needed in order to ensure that we are correctly maintaining
the portable objset MAC.
This patch zero's out the offending fields when computing
the bp MAC and ensures that these MACs are always
calculated in little endian order (regardless of the host
system's byte order). This patch also registers an errata
for the old on-disk format, which we detect by adding a
"version" field to newly created DSL Crypto Keys. We allow
datasets without a version (version 0) to only be mounted
for read so that they can easily be migrated. We also now
include dn_maxblkid in raw send streams to ensure the MAC
can be maintained correctly.
This patch also contains minor bug fixes and cleanups.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#6845Closes#6864Closes#7052
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#494Closes#5769
dmu_object_alloc() is single-threaded, so when multiple threads are
creating files in a single filesystem, they spend a lot of time waiting
for the os_obj_lock. To improve performance of multi-threaded file
creation, we must make dmu_object_alloc() typically not grab any
filesystem-wide locks.
The solution is to have a "next object to allocate" for each CPU. Each
of these "next object"s is in a different block of the dnode object, so
that concurrent allocation holds dnodes in different dbufs. When a
thread's "next object" reaches the end of a chunk of objects (by default
4 blocks worth -- 128 dnodes), it will be reset to the per-objset
os_obj_next, which will be increased by a chunk of objects (128). Only
when manipulating the os_obj_next will we need to grab the os_obj_lock.
This decreases lock contention dramatically, because each thread only
needs to grab the os_obj_lock briefly, once per 128 allocations.
This results in a 70% performance improvement to multi-threaded object
creation (where each thread is creating objects in its own directory),
from 67,000/sec to 115,000/sec, with 8 CPUs.
Work sponsored by Intel Corp.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Ned Bass <bass6@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
OpenZFS-issue: https://www.illumos.org/issues/8199
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/374Closes#4703Closes#6117
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Matthew Ahrens <mahrens@delphix.com>
spa_sync() iterates over all the dirty dnodes and processes each of them
by calling dnode_sync(). If there are many dirty dnodes (e.g. because we
created or removed a lot of files), the single thread of spa_sync()
calling dnode_sync() can become a bottleneck. Additionally, if many
dnodes are dirtied concurrently in open context (e.g. due to concurrent
file creation), the os_lock will experience lock contention via
dnode_setdirty().
The solution is to track dirty dnodes on a multilist_t, and for
spa_sync() to use separate threads to process each of the sublists in
the multilist.
OpenZFS-issue: https://www.illumos.org/issues/7968
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4a2a54cCloses#5752
Reviewed by: Steve Gonczi <steve.gonczi@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Background information: This assertion about tx_space_* verifies that we
are not dirtying more stuff than we thought we would. We “need” to know
how much we will dirty so that we can check if we should fail this
transaction with ENOSPC/EDQUOT, in dmu_tx_assign(). While the
transaction is open (i.e. between dmu_tx_assign() and dmu_tx_commit() —
typically less than a millisecond), we call dbuf_dirty() on the exact
blocks that will be modified. Once this happens, the temporary
accounting in tx_space_* is unnecessary, because we know exactly what
blocks are newly dirtied; we call dnode_willuse_space() to track this
more exact accounting.
The fundamental problem causing this bug is that dmu_tx_hold_*() relies
on the current state in the DMU (e.g. dn_nlevels) to predict how much
will be dirtied by this transaction, but this state can change before we
actually perform the transaction (i.e. call dbuf_dirty()).
This bug will be fixed by removing the assertion that the tx_space_*
accounting is perfectly accurate (i.e. we never dirty more than was
predicted by dmu_tx_hold_*()). By removing the requirement that this
accounting be perfectly accurate, we can also vastly simplify it, e.g.
removing most of the logic in dmu_tx_count_*().
The new tx space accounting will be very approximate, and may be more or
less than what is actually dirtied. It will still be used to determine
if this transaction will put us over quota. Transactions that are marked
by dmu_tx_mark_netfree() will be excepted from this check. We won’t make
an attempt to determine how much space will be freed by the transaction
— this was rarely accurate enough to determine if a transaction should
be permitted when we are over quota, which is why dmu_tx_mark_netfree()
was introduced in 2014.
We also won’t attempt to give “credit” when overwriting existing blocks,
if those blocks may be freed. This allows us to remove the
do_free_accounting logic in dbuf_dirty(), and associated routines. This
logic attempted to predict what will be on disk when this txg syncs, to
know if the overwritten block will be freed (i.e. exists, and has no
snapshots).
OpenZFS-issue: https://www.illumos.org/issues/7793
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3704e0a
Upstream bugs: DLPX-32883a
Closes#5804
Porting notes:
- DNODE_SIZE replaced with DNODE_MIN_SIZE in dmu_tx_count_dnode(),
Using the default dnode size would be slightly better.
- DEBUG_DMU_TX wrappers and configure option removed.
- Resolved _by_dnode() conflicts these changes have not yet been
applied to OpenZFS.
It's used by Lustre to determine if the objset can be upgraded.
The inline version doesn't work because dmu_objset_is_snapshot()
is not exported.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Closes#5385
'zfs recv' could disown a living objset without calling
dmu_objset_disown(). This will cause the problem that the objset
would be released while the upgrading thread is still running.
This patch avoids the problem by checking if a dataset is a snapshot
before calling dmu_objset_userobjspace_upgrade(). Snapshots
are immutable and therefore it doesn't make sense to update them.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Closes#5295Closes#5328
This patch tracks dnode usage for each user/group in the
DMU_USER/GROUPUSED_OBJECT ZAPs. ZAP entries dedicated to dnode
accounting have the key prefixed with "obj-" followed by the UID/GID
in string format (as done for the block accounting).
A new SPA feature has been added for dnode accounting as well as
a new ZPL version. The SPA feature must be enabled in the pool
before upgrading the zfs filesystem. During the zfs version upgrade,
a "quotacheck" will be executed by marking all dnode as dirty.
ZoL-bug-id: https://github.com/zfsonlinux/zfs/issues/3500
Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Signed-off-by: Johann Lombardi <johann.lombardi@intel.com>
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3542
Only attempt to backfill lower metadnode object numbers if at least
4096 objects have been freed since the last rescan, and at most once
per transaction group. This avoids a pathology in dmu_object_alloc()
that caused O(N^2) behavior for create-heavy workloads and
substantially improves object creation rates. As summarized by
@mahrens in #4636:
"Normally, the object allocator simply checks to see if the next
object is available. The slow calls happened when dmu_object_alloc()
checks to see if it can backfill lower object numbers. This happens
every time we move on to a new L1 indirect block (i.e. every 32 *
128 = 4096 objects). When re-checking lower object numbers, we use
the on-disk fill count (blkptr_t:blk_fill) to quickly skip over
indirect blocks that don’t have enough free dnodes (defined as an L2
with at least 393,216 of 524,288 dnodes free). Therefore, we may
find that a block of dnodes has a low (or zero) fill count, and yet
we can’t allocate any of its dnodes, because they've been allocated
in memory but not yet written to disk. In this case we have to hold
each of the dnodes and then notice that it has been allocated in
memory.
The end result is that allocating N objects in the same TXG can
require CPU usage proportional to N^2."
Add a tunable dmu_rescan_dnode_threshold to define the number of
objects that must be freed before a rescan is performed. Don't bother
to export this as a module option because testing doesn't show a
compelling reason to change it. The vast majority of the performance
gain comes from limit the rescan to at most once per TXG.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
5269 zpool import slow
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5269https://github.com/illumos/illumos-gate/commit/12380e1e
Ported-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3396
5027 zfs large block support
Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5027https://github.com/illumos/illumos-gate/commit/b515258
Porting Notes:
* Included in this patch is a tiny ISP2() cleanup in zio_init() from
Illumos 5255.
* Unlike the upstream Illumos commit this patch does not impose an
arbitrary 128K block size limit on volumes. Volumes, like filesystems,
are limited by the zfs_max_recordsize=1M module option.
* By default the maximum record size is limited to 1M by the module
option zfs_max_recordsize. This value may be safely increased up to
16M which is the largest block size supported by the on-disk format.
At the moment, 1M blocks clearly offer a significant performance
improvement but the benefits of going beyond this for the majority
of workloads are less clear.
* The illumos version of this patch increased DMU_MAX_ACCESS to 32M.
This was determined not to be large enough when using 16M blocks
because the zfs_make_xattrdir() function will fail (EFBIG) when
assigning a TX. This was immediately observed under Linux because
all newly created files must have a security xattr created and
that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M.
* On 32-bit platforms a hard limit of 1M is set for blocks due
to the limited virtual address space. We should be able to relax
this one the ABD patches are merged.
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#354
5056 ZFS deadlock on db_mtx and dn_holds
Author: Justin Gibbs <justing@spectralogic.com>
Reviewed by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5056https://github.com/illumos/illumos-gate/commit/bc9014e
Porting Notes:
sa_handle_get_from_db():
- the original patch includes an otherwise unmentioned fix for a
possible usage of an uninitialised variable
dmu_objset_open_impl():
- Under Illumos list_link_init() is the same as filling a list_node_t
with NULLs, so they don't notice if they miss doing list_link_init()
on a zero'd containing structure (e.g. allocated with kmem_zalloc as
here). Under Linux, not so much: an uninitialised list_node_t goes
"Boom!" some time later when it's used or destroyed.
dmu_objset_evict_dbufs():
- reduce stack usage using kmem_alloc()
Ported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
Description from Matt Ahrens's bug report at Delphix:
Add a new zfs property, "redundant_metadata" which can have values
"all" or "most". The default will be "all", which is the current
behavior. Setting to "most" will cause us to only store 1 copy of
level-1 indirect blocks of user data files.
Additional notes:
The new man page section for this property states
"The exact behavior of which metadata blocks
are stored redundantly may change in future releases."
and:
"When set to most, ZFS stores an extra copy of most types of
metadata. This can improve performance of random writes,
because less metadata must be written."
The current implementation is as described above in Matt's blog.
It is controlled by a new global integer
"zfs_redundant_metadata_most_ditto_level", currently initialized
to 2. When "redundant_metadata" is set to "most", only indirect
blocks of the specified level and higher will have additional ditto
blocks created.
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2542
3875 panic in zfs_root() after failed rollback
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Gordon Ross <gwr@nexenta.com>
References:
https://www.illumos.org/issues/3875illumos/illumos-gate@91948b51b8
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1775
2882 implement libzfs_core
2883 changing "canmount" property to "on" should not always remount dataset
2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Chris Siden <christopher.siden@delphix.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Reviewed by: Bill Pijewski <wdp@joyent.com>
Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com>
Approved by: Eric Schrock <Eric.Schrock@delphix.com>
References:
https://www.illumos.org/issues/2882https://www.illumos.org/issues/2883https://www.illumos.org/issues/2900illumos/illumos-gate@4445fffbbb
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1293
Porting notes:
WARNING: This patch changes the user/kernel ABI. That means that
the zfs/zpool utilities built from master are NOT compatible with
the 0.6.2 kernel modules. Ensure you load the matching kernel
modules from master after updating the utilities. Otherwise the
zfs/zpool commands will be unable to interact with your pool and
you will see errors similar to the following:
$ zpool list
failed to read pool configuration: bad address
no pools available
$ zfs list
no datasets available
Add zvol minor device creation to the new zfs_snapshot_nvl function.
Remove the logging of the "release" operation in
dsl_dataset_user_release_sync(). The logging caused a null dereference
because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the
logging functions try to get the ds name via the dsl_dataset_name()
function. I've got no idea why this particular code would have worked
in Illumos. This code has subsequently been completely reworked in
Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring).
Squash some "may be used uninitialized" warning/erorrs.
Fix some printf format warnings for %lld and %llu.
Apply a few spa_writeable() changes that were made to Illumos in
illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and
3115 fixes.
Add a missing call to fnvlist_free(nvl) in log_internal() that was added
in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time
(zfsonlinux/zfs@9e11c73) because it depended on future work.
3137 L2ARC compression
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Dan McDonald <danmcd@nexenta.com>
References:
illumos/illumos-gate@aad02571bchttps://www.illumos.org/issues/3137http://wiki.illumos.org/display/illumos/L2ARC+Compression
Notes for Linux port:
A l2arc_nocompress module option was added to prevent the
compression of l2arc buffers regardless of how a dataset's
compression property is set. This allows the legacy behavior
to be preserved.
Ported by: James H <james@kagisoft.co.uk>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1379
illumos/illumos-gate@2e2c135528
Illumos changeset: 13780:6da32a929222
3100 zvol rename fails with EBUSY when dirty
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Reviewed by: Adam H. Leventhal <ahl@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Approved by: Eric Schrock <eric.schrock@delphix.com>
Ported-by: Etienne Dechamps <etienne.dechamps@ovh.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#995
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory. The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.
For example, this project is designed to work on various different
Linux distributions each of which work slightly differently. This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.
Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution. When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.
wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz
tar -xzf zfs-x.y.z.tar.gz
cd zfs-x-y-z
------------------------- run concurrently ----------------------
<ubuntu system> <fedora system> <debian system> <rhel6 system>
mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6
cd ubuntu cd fedora cd debian cd rhel6
../configure ../configure ../configure ../configure
make make make make
make check make check make check make check
This change also moves many of the include headers from individual
incude/sys directories under the modules directory in to a single
top level include directory. This has the advantage of making
the build rules cleaner and logically it makes a bit more sense.