Commit Graph

159 Commits

Author SHA1 Message Date
Alexander Motin
800d59d577
Some improvements to metaslabs eviction
- Add old eviction for special and dedup metaslab classes. Those
vdevs may be potentially big and fragmented with large metaslabs,
while their asynchronous write pattern is not really different
from normal class. It seems an omission to not evict old metaslabs
from them.
 - If we have metaslab preload enabled, which means we are not too
low on memory, do not evict active metaslabs even if they are not
used for some time.  Eviction of active metaslabs means we won't
be able to write anything until we load them, that may take some
time, that is straight opposite to metaslab preload goals.  For
small systems the memory saving should be less important after
recent reduction in number of allocators and so open metaslabs.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #16214
2024-05-29 08:53:31 -07:00
chenqiuhao1997
41ae864b69
Replace P2ALIGN with P2ALIGN_TYPED and delete P2ALIGN.
In P2ALIGN, the result would be incorrect when align is unsigned
integer and x is larger than max value of the type of align.
In that case, -(align) would be a positive integer, which means
high bits would be zero and finally stay zero after '&' when
align is converted to a larger integer type.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Youzhong Yang <yyang@mathworks.com>
Signed-off-by: Qiuhao Chen <chenqiuhao1997@gmail.com>
Closes #15940
2024-05-10 08:47:21 -07:00
Alexander Motin
997f85b4d3
L2ARC: Relax locking during write
Previous code held ARC state sublist lock throughout all L2ARC
write process, which included number of allocations and even ZIO
issues.  Being blocked in any of those places the code could also
block ARC eviction, that could cause OOM activation or even dead-
lock if system is low on memory or one is too fragmented.

Fix it by dropping the lock as soon as we see a block eligible
for L2ARC writing and pick it up later using earlier inserted
marker.  While there, also reduce scope of hash lock, moving
ZIO allocation and other operations not requiring header access
out of it.  All operations requiring header access move under
hash lock, since L2_WRITING flag does not prevent header eviction
only transition to arc_l2c_only state with L1 header.

To be able to manipulate sublist lock and marker as needed add few
more multilist functions and modify one.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #16040
2024-04-09 16:23:19 -07:00
George Wilson
493fcce9be
Provide macros for setting and getting blkptr birth times
There exist a couple of macros that are used to update the blkptr birth
times but they can often be confusing. For example, the
BP_PHYSICAL_BIRTH() macro will provide either the physical birth time
if it is set or else return back the logical birth time. The
complement to this macro is BP_SET_BIRTH() which will set the logical
birth time and set the physical birth time if they are not the same.
Consumers may get confused when they are trying to get the physical
birth time and use the BP_PHYSICAL_BIRTH() macro only to find out that
the logical birth time is what is actually returned.

This change cleans up these macros and makes them symmetrical. The same
functionally is preserved but the name is changed. Instead of calling
BP_PHYSICAL_BIRTH(), consumer can now call BP_GET_BIRTH(). In
additional to cleaning up this naming conventions, two new sets of
macros are introduced -- BP_[SET|GET]_LOGICAL_BIRTH() and
BP_[SET|GET]_PHYSICAL_BIRTH.  These new macros allow the consumer to
get and set the specific birth time.

As part of the cleanup, the unused GRID macros have been removed and
that portion of the blkptr are currently unused.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: George Wilson <gwilson@delphix.com>
Closes #15962
2024-03-25 15:01:54 -07:00
Paul Dagnelie
8161b73272
Don't assert mg_initialized due to device addition race
During device removal stress tests, we noticed that we were tripping 
the assertion that mg_initialized was true. After investigation, it was 
determined that the mg in question was the embedded log metaslab 
group for a newly added vdev; the normal mg had been initialized (by 
metaslab_sync_reassess, via vdev_sync_done). However, because the spa 
config alloc lock is not held as writer across both calls to 
metaslab_sync_reassess, it is possible for an allocation to happen 
between the two metaslab_groups being initialized. Because the metaslab 
code doesn't check the group in question, just the vdev's main mg, it 
is possible to get past the initial check in vdev_allocatable and 
later fail due to the assertion.

We simply remove the assertions. We could also consider locking the 
ALLOC lock around the reassess calls in vdev_sync_done, but that risks 
deadlocks. We could check the actual target mg in vdev_allocatable, 
but that risks racing with a passivation that comes in after that 
check but before the assertion. We still won't be able to actually 
allocate from the metaslab group if no metaslabs are ready, so this 
change shouldn't break anything.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #15818
2024-01-29 10:36:42 -08:00
Don Brady
5caeef02fa
RAID-Z expansion feature
This feature allows disks to be added one at a time to a RAID-Z group,
expanding its capacity incrementally.  This feature is especially useful
for small pools (typically with only one RAID-Z group), where there
isn't sufficient hardware to add capacity by adding a whole new RAID-Z
group (typically doubling the number of disks).

== Initiating expansion ==

A new device (disk) can be attached to an existing RAIDZ vdev, by
running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank
raidz2-0 sda`.  The new device will become part of the RAIDZ group.  A
"raidz expansion" will be initiated, and the new device will contribute
additional space to the RAIDZ group once the expansion completes.

The `feature@raidz_expansion` on-disk feature flag must be `enabled` to
initiate an expansion, and it remains `active` for the life of the pool.
In other words, pools with expanded RAIDZ vdevs can not be imported by
older releases of the ZFS software.

== During expansion ==

The expansion entails reading all allocated space from existing disks in
the RAIDZ group, and rewriting it to the new disks in the RAIDZ group
(including the newly added device).

The expansion progress can be monitored with `zpool status`.

Data redundancy is maintained during (and after) the expansion.  If a
disk fails while the expansion is in progress, the expansion pauses
until the health of the RAIDZ vdev is restored (e.g. by replacing the
failed disk and waiting for reconstruction to complete).

The pool remains accessible during expansion.  Following a reboot or
export/import, the expansion resumes where it left off.

== After expansion ==

When the expansion completes, the additional space is available for use,
and is reflected in the `available` zfs property (as seen in `zfs list`,
`df`, etc).

Expansion does not change the number of failures that can be tolerated
without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after
expansion).

A RAIDZ vdev can be expanded multiple times.

After the expansion completes, old blocks remain with their old
data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but
distributed among the larger set of disks.  New blocks will be written
with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been
expanded once to 6-wide, has 4 data to 2 parity).  However, the RAIDZ
vdev's "assumed parity ratio" does not change, so slightly less space
than is expected may be reported for newly-written blocks, according to
`zfs list`, `df`, `ls -s`, and similar tools.

Sponsored-by: The FreeBSD Foundation
Sponsored-by: iXsystems, Inc.
Sponsored-by: vStack
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Authored-by: Matthew Ahrens <mahrens@delphix.com>
Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com>
Contributions-by: Stuart Maybee <stuart.maybee@comcast.net>
Contributions-by: Thorsten Behrens <tbehrens@outlook.com>
Contributions-by: Fmstrat <nospam@nowsci.com>
Contributions-by: Don Brady <dev.fs.zfs@gmail.com>
Signed-off-by: Don Brady <dev.fs.zfs@gmail.com>
Closes #15022
2023-11-08 10:19:41 -08:00
Alexander Motin
342357cd9e
Reduce number of metaslab preload taskq threads.
Before this change ZFS created threads for 50% of CPUs for each top-
level vdev.  Plus it created the same number of threads for embedded
log groups (that have only one metaslab and don't need any preload).
As result, on system with 80 CPUs and pool of 60 vdevs this resulted
in 4800 metaslab preload threads, that is absolutely insane.

This patch changes the preload threads to 50% of CPUs in one taskq
per pool, so on the mentioned system it will be only 40 threads.

Among other things this fixes zdb on the mentioned system and pool
on FreeBSD, that failed to create so many threads in one process.

Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #15319
2023-10-06 09:04:00 -07:00
Paul Dagnelie
5551dcd762
Don't allocate from new metaslabs
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #15307
Closes #15308
2023-09-28 14:08:52 -07:00
ednadolski-ix
95f71c019d
Selectable block allocators
ZFS historically has had several space allocators that were
dynamically selectable.  While these have been retained in 
OpenZFS, only a single allocator has been statically compiled 
in. This patch compiles all allocators for OpenZFS and provides 
a module parameter to allow for manual selection between them.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ameer Hamza <ahamza@ixsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Edmund Nadolski <edmund.nadolski@ixsystems.com>
Closes #15218
2023-09-01 18:00:30 -07:00
Mateusz Piotrowski
a97b8fc2dd
Fix some typos
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Mateusz Piotrowski <0mp@FreeBSD.org>
Closes #15141
2023-08-07 13:53:59 -07:00
Alexander Motin
b22bab2547
Remove fastwrite mechanism.
Fastwrite was introduced many years ago to improve ZIL writes spread
between multiple top-level vdevs by tracking number of allocated but
not written blocks and choosing vdev with smaller count.  It suposed
to reduce ZIL knowledge about allocation, but actually made ZIL to
even more actively report allocation code about the allocations,
complicating both ZIL and metaslabs code.

On top of that, it seems ZIO_FLAG_FASTWRITE setting in dmu_sync()
was lost many years ago, that was one of the declared benefits. Plus
introduction of embedded log metaslab class solved another problem
with allocation rotor accounting both normal and log allocations,
since in most cases those are now in different metaslab classes.

After all that, I'd prefer to simplify already too complicated ZIL,
ZIO and metaslab code if the benefit of complexity is not obvious.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #15107
2023-07-28 13:30:33 -07:00
Rob N
46adb2820a
metaslab: tuneable to better control force ganging
metaslab_force_ganging isn't enough to actually force ganging, because
it still only forces 3% of the time. This adds
metaslab_force_ganging_pct so we can configure how often to force
ganging.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Closes #15088
2023-07-21 11:52:32 -07:00
Alexander Motin
5ba4025a8d
Introduce zfs_refcount_(add|remove)_few().
There are two places where we need to add/remove several references
with semantics of zfs_refcount_(add|remove). But when debug/tracing
is disabled, it is a crime to run multiple atomic_inc() in a loop,
especially under congested pool-wide allocator lock.

Introduced new functions implement the same semantics as the loop,
but without overhead in production builds.

Reviewed-by: Rich Ercolani <rincebrain@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #14934
2023-06-05 11:51:44 -07:00
Richard Yao
677c6f8457
btree: Implement faster binary search algorithm
This implements a binary search algorithm for B-Trees that reduces
branching to the absolute minimum necessary for a binary search
algorithm. It also enables the compiler to inline the comparator to
ensure that the only slowdown when doing binary search is from waiting
for memory accesses. Additionally, it instructs the compiler to unroll
the loop, which gives an additional 40% improve with Clang and 8%
improvement with GCC.

Consumers must opt into using the faster algorithm. At present, only
B-Trees used inside kernel code have been modified to use the faster
algorithm.

Micro-benchmarks suggest that this can improve binary search performance
by up to 3.5 times when compiling with Clang 16 and up to 1.9 times when
compiling with GCC 12.2.

Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #14866
2023-05-26 10:03:12 -07:00
Serapheim Dimitropoulos
7bf4c97a36
Bypass metaslab throttle for removal allocations
Context:
We recently had a scenario where a customer with 2x10TB disks at 95+%
fragmentation and capacity, wanted to migrate their disks to a 2x20TB
setup. So they added the 2 new disks and submitted the removal of the
first 10TB disk.  The removal took a lot more than expected (order of
more than a week to 2 weeks vs a couple of days) and once it was done it
generated a huge indirect mappign table in RAM (~16GB vs expected ~1GB).

Root-Cause:
The removal code calls `metaslab_alloc_dva()` to allocate a new block
for each evacuating block in the removing device and it tries to batch
them into 16MB segments. If it can't find such a segment it tries for
8MBs, 4MBs, all the way down to 512 bytes.

In our scenario what would happen is that `metaslab_alloc_dva()` from
the removal thread pick the new devices initially but wouldn't allocate
from them because of throttling in their metaslab allocation queue's
depth (see `metaslab_group_allocatable()`) as these devices are new and
favored for most types of allocations because of their free space. So
then the removal thread would look at the old fragmented disk for
allocations and wouldn't find any contiguous space and finally retry
with a smaller allocation size until it would to the low KB range. This
caused a lot of small mappings to be generated blowing up the size of
the indirect table. It also wasted a lot of CPU while the removal was
active making everything slow.

This patch:
Make all allocations coming from the device removal thread bypass the
throttle checks. These allocations are not even counted in the metaslab
allocation queues anyway so why check them?

Side-Fix:
Allocations with METASLAB_DONT_THROTTLE in their flags would not be
accounted at the throttle queues but they'd still abide by the
throttling rules which seems wrong. This patch fixes this by checking
for that flag in `metaslab_group_allocatable()`. I did a quick check to
see where else this flag is used and it doesn't seem like this change
would cause issues.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #14159
2022-12-09 10:48:33 -08:00
Richard Yao
ef55679a75 Cleanup: metaslab_alloc_dva() should not NULL check mg->mg_next
This is a circularly linked list. mg->mg_next can never be NULL.

This caused 3 defect reports in Coverity.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #14042
2022-10-18 15:39:40 -07:00
Richard Yao
ab8d9c1783 Cleanup: 64-bit kernel module parameters should use fixed width types
Various module parameters such as `zfs_arc_max` were originally
`uint64_t` on OpenSolaris/Illumos, but were changed to `unsigned long`
for Linux compatibility because Linux's kernel default module parameter
implementation did not support 64-bit types on 32-bit platforms. This
caused problems when porting OpenZFS to Windows because its LLP64 memory
model made `unsigned long` a 32-bit type on 64-bit, which created the
undesireable situation that parameters that should accept 64-bit values
could not on 64-bit Windows.

Upon inspection, it turns out that the Linux kernel module parameter
interface is extensible, such that we are allowed to define our own
types. Rather than maintaining the original type change via hacks to to
continue shrinking module parameters on 32-bit Linux, we implement
support for 64-bit module parameters on Linux.

After doing a review of all 64-bit kernel parameters (found via the man
page and also proposed changes by Andrew Innes), the kernel module
parameters fell into a few groups:

Parameters that were originally 64-bit on Illumos:

 * dbuf_cache_max_bytes
 * dbuf_metadata_cache_max_bytes
 * l2arc_feed_min_ms
 * l2arc_feed_secs
 * l2arc_headroom
 * l2arc_headroom_boost
 * l2arc_write_boost
 * l2arc_write_max
 * metaslab_aliquot
 * metaslab_force_ganging
 * zfetch_array_rd_sz
 * zfs_arc_max
 * zfs_arc_meta_limit
 * zfs_arc_meta_min
 * zfs_arc_min
 * zfs_async_block_max_blocks
 * zfs_condense_max_obsolete_bytes
 * zfs_condense_min_mapping_bytes
 * zfs_deadman_checktime_ms
 * zfs_deadman_synctime_ms
 * zfs_initialize_chunk_size
 * zfs_initialize_value
 * zfs_lua_max_instrlimit
 * zfs_lua_max_memlimit
 * zil_slog_bulk

Parameters that were originally 32-bit on Illumos:

 * zfs_per_txg_dirty_frees_percent

Parameters that were originally `ssize_t` on Illumos:

 * zfs_immediate_write_sz

Note that `ssize_t` is `int32_t` on 32-bit and `int64_t` on 64-bit. It
has been upgraded to 64-bit.

Parameters that were `long`/`unsigned long` because of Linux/FreeBSD
influence:

 * l2arc_rebuild_blocks_min_l2size
 * zfs_key_max_salt_uses
 * zfs_max_log_walking
 * zfs_max_logsm_summary_length
 * zfs_metaslab_max_size_cache_sec
 * zfs_min_metaslabs_to_flush
 * zfs_multihost_interval
 * zfs_unflushed_log_block_max
 * zfs_unflushed_log_block_min
 * zfs_unflushed_log_block_pct
 * zfs_unflushed_max_mem_amt
 * zfs_unflushed_max_mem_ppm

New parameters that do not exist in Illumos:

 * l2arc_trim_ahead
 * vdev_file_logical_ashift
 * vdev_file_physical_ashift
 * zfs_arc_dnode_limit
 * zfs_arc_dnode_limit_percent
 * zfs_arc_dnode_reduce_percent
 * zfs_arc_meta_limit_percent
 * zfs_arc_sys_free
 * zfs_deadman_ziotime_ms
 * zfs_delete_blocks
 * zfs_history_output_max
 * zfs_livelist_max_entries
 * zfs_max_async_dedup_frees
 * zfs_max_nvlist_src_size
 * zfs_rebuild_max_segment
 * zfs_rebuild_vdev_limit
 * zfs_unflushed_log_txg_max
 * zfs_vdev_max_auto_ashift
 * zfs_vdev_min_auto_ashift
 * zfs_vnops_read_chunk_size
 * zvol_max_discard_blocks

Rather than clutter the lists with commentary, the module parameters
that need comments are repeated below.

A few parameters were defined in Linux/FreeBSD specific code, where the
use of ulong/long is not an issue for portability, so we leave them
alone:

 * zfs_delete_blocks
 * zfs_key_max_salt_uses
 * zvol_max_discard_blocks

The documentation for a few parameters was found to be incorrect:

 * zfs_deadman_checktime_ms - incorrectly documented as int
 * zfs_delete_blocks - not documented as Linux only
 * zfs_history_output_max - incorrectly documented as int
 * zfs_vnops_read_chunk_size - incorrectly documented as long
 * zvol_max_discard_blocks - incorrectly documented as ulong

The documentation for these has been fixed, alongside the changes to
document the switch to fixed width types.

In addition, several kernel module parameters were percentages or held
ashift values, so being 64-bit never made sense for them. They have been
downgraded to 32-bit:

 * vdev_file_logical_ashift
 * vdev_file_physical_ashift
 * zfs_arc_dnode_limit_percent
 * zfs_arc_dnode_reduce_percent
 * zfs_arc_meta_limit_percent
 * zfs_per_txg_dirty_frees_percent
 * zfs_unflushed_log_block_pct
 * zfs_vdev_max_auto_ashift
 * zfs_vdev_min_auto_ashift

Of special note are `zfs_vdev_max_auto_ashift` and
`zfs_vdev_min_auto_ashift`, which were already defined as `uint64_t`,
and passed to the kernel as `ulong`. This is inherently buggy on big
endian 32-bit Linux, since the values would not be written to the
correct locations. 32-bit FreeBSD was unaffected because its sysctl code
correctly treated this as a `uint64_t`.

Lastly, a code comment suggests that `zfs_arc_sys_free` is
Linux-specific, but there is nothing to indicate to me that it is
Linux-specific. Nothing was done about that.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Original-patch-by: Andrew Innes <andrew.c12@gmail.com>
Original-patch-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #13984
Closes #14004
2022-10-13 10:03:29 -07:00
Serapheim Dimitropoulos
4dcc2bde9c
Stop ganging due to past vdev write errors
= Problem

While examining a customer's system we noticed unreasonable space
usage from a few snapshots due to gang blocks. Under some further
analysis we discovered that the pool would create gang blocks because
all its disks had non-zero write error counts and they'd be skipped
for normal metaslab allocations due to the following if-clause in
`metaslab_alloc_dva()`:
```
	/*
	 * Avoid writing single-copy data to a failing,
	 * non-redundant vdev, unless we've already tried all
	 * other vdevs.
	 */
	if ((vd->vdev_stat.vs_write_errors > 0 ||
	    vd->vdev_state < VDEV_STATE_HEALTHY) &&
	    d == 0 && !try_hard && vd->vdev_children == 0) {
		metaslab_trace_add(zal, mg, NULL, psize, d,
		    TRACE_VDEV_ERROR, allocator);
		goto next;
	}
```

= Proposed Solution

Get rid of the predicate in the if-clause that checks the past
write errors of the selected vdev. We still try to allocate from
HEALTHY vdevs anyway by checking vdev_state so the past write
errors doesn't seem to help us (quite the opposite - it can cause
issues in long-lived pools like the one from our customer).

= Testing

I first created a pool with 3 vdevs:
```
$ zpool list -v volpool
NAME        SIZE  ALLOC   FREE
volpool    22.5G   117M  22.4G
  xvdb     7.99G  40.2M  7.46G
  xvdc     7.99G  39.1M  7.46G
  xvdd     7.99G  37.8M  7.46G
```

And used `zinject` like so with each one of them:
```
$ sudo zinject -d xvdb -e io -T write -f 0.1 volpool
```

And got the vdevs to the following state:
```
$ zpool status volpool
  pool: volpool
 state: ONLINE
status: One or more devices has experienced an unrecoverable error.
...<cropped>..
action: Determine if the device needs to be replaced, and clear the
...<cropped>..
config:

	NAME        STATE     READ WRITE CKSUM
	volpool     ONLINE       0     0     0
	  xvdb      ONLINE       0     1     0
	  xvdc      ONLINE       0     1     0
	  xvdd      ONLINE       0     4     0

```

I also double-checked their write error counters with sdb:
```
sdb> spa volpool | vdev | member vdev_stat.vs_write_errors
(uint64_t)0  # <---- this is the root vdev
(uint64_t)2
(uint64_t)1
(uint64_t)1
```

Then I checked that I the problem was reproduced in my VM as I the
gang count was growing in zdb as I was writting more data:
```
$ sudo zdb volpool | grep gang
        ganged count:              1384

$ sudo zdb volpool | grep gang
        ganged count:              1393

$ sudo zdb volpool | grep gang
        ganged count:              1402

$ sudo zdb volpool | grep gang
        ganged count:              1414
```

Then I updated my bits with this patch and the gang count stayed the
same.

Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #14003
2022-10-11 12:27:41 -07:00
Richard Yao
fdc2d30371
Cleanup: Specify unsignedness on things that should not be signed
In #13871, zfs_vdev_aggregation_limit_non_rotating and
zfs_vdev_aggregation_limit being signed was pointed out as a possible
reason not to eliminate an unnecessary MAX(unsigned, 0) since the
unsigned value was assigned from them.

There is no reason for these module parameters to be signed and upon
inspection, it was found that there are a number of other module
parameters that are signed, but should not be, so we make them unsigned.
Making them unsigned made it clear that some other variables in the code
should also be unsigned, so we also make those unsigned. This prevents
users from setting negative values that could potentially cause bad
behaviors. It also makes the code slightly easier to understand.

Mostly module parameters that deal with timeouts, limits, bitshifts and
percentages are made unsigned by this. Any that are boolean are left
signed, since whether booleans should be considered signed or unsigned
does not matter.

Making zfs_arc_lotsfree_percent unsigned caused a
`zfs_arc_lotsfree_percent >= 0` check to become redundant, so it was
removed. Removing the check was also necessary to prevent a compiler
error from -Werror=type-limits.

Several end of line comments had to be moved to their own lines because
replacing int with uint_t caused us to exceed the 80 character limit
enforced by cstyle.pl.

The following were kept signed because they are passed to
taskq_create(), which expects signed values and modifying the
OpenSolaris/Illumos DDI is out of scope of this patch:

	* metaslab_load_pct
	* zfs_sync_taskq_batch_pct
	* zfs_zil_clean_taskq_nthr_pct
	* zfs_zil_clean_taskq_minalloc
	* zfs_zil_clean_taskq_maxalloc
	* zfs_arc_prune_task_threads

Also, negative values in those parameters was found to be harmless.

The following were left signed because either negative values make
sense, or more analysis was needed to determine whether negative values
should be disallowed:

	* zfs_metaslab_switch_threshold
	* zfs_pd_bytes_max
	* zfs_livelist_min_percent_shared

zfs_multihost_history was made static to be consistent with other
parameters.

A number of module parameters were marked as signed, but in reality
referenced unsigned variables. upgrade_errlog_limit is one of the
numerous examples. In the case of zfs_vdev_async_read_max_active, it was
already uint32_t, but zdb had an extern int declaration for it.

Interestingly, the documentation in zfs.4 was right for
upgrade_errlog_limit despite the module parameter being wrongly marked,
while the documentation for zfs_vdev_async_read_max_active (and friends)
was wrong. It was also wrong for zstd_abort_size, which was unsigned,
but was documented as signed.

Also, the documentation in zfs.4 incorrectly described the following
parameters as ulong when they were int:

	* zfs_arc_meta_adjust_restarts
	* zfs_override_estimate_recordsize

They are now uint_t as of this patch and thus the man page has been
updated to describe them as uint.

dbuf_state_index was left alone since it does nothing and perhaps should
be removed in another patch.

If any module parameters were missed, they were not found by `grep -r
'ZFS_MODULE_PARAM' | grep ', INT'`. I did find a few that grep missed,
but only because they were in files that had hits.

This patch intentionally did not attempt to address whether some of
these module parameters should be elevated to 64-bit parameters, because
the length of a long on 32-bit is 32-bit.

Lastly, it was pointed out during review that uint_t is a better match
for these variables than uint32_t because FreeBSD kernel parameter
definitions are designed for uint_t, whose bit width can change in
future memory models.  As a result, we change the existing parameters
that are uint32_t to use uint_t.

Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Neal Gompa <ngompa@datto.com>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #13875
2022-09-27 16:42:41 -07:00
Richard Yao
e506a0ce40
Cleanup: Change 1 used in bitshifts to 1ULL
Coverity complains about this. It is not a bug as long as we never shift
by more than 31, but it is not terrible to change the constants from 1
to 1ULL as clean up.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #13914
2022-09-22 11:28:33 -07:00
Tino Reichardt
1d3ba0bf01
Replace dead opensolaris.org license link
The commit replaces all findings of the link:
http://www.opensolaris.org/os/licensing with this one:
https://opensource.org/licenses/CDDL-1.0

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Closes #13619
2022-07-11 14:16:13 -07:00
наб
dd66857d92 Remaining {=> const} char|void *tag
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #13348
2022-06-29 14:08:59 -07:00
Alexander Motin
c55b293287
Improve mg_aliquot math
When calculating mg_aliquot alike to #12046 use number of unique data
disks in the vdev, not the total number of children vdev.  Increase
default value of the tunable from 512KB to 1MB to compensate.

Before this change each disk in striped pool was getting 512KB of
sequential data, in 2-wide mirror -- 1MB, in 3-wide RAIDZ1 -- 768KB.
After this change in all the cases each disk should get 1MB.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #13388
2022-05-04 11:33:42 -07:00
Alexander Motin
600a02b884
Improve log spacemap load time
Previous flushing algorithm limited only total number of log blocks to
the minimum of 256K and 4x number of metaslabs in the pool.  As result,
system with 1500 disks with 1000 metaslabs each, touching several new
metaslabs each TXG could grow spacemap log to huge size without much
benefits.  We've observed one of such systems importing pool for about
45 minutes.

This patch improves the situation from five sides:
 - By limiting maximum period for each metaslab to be flushed to 1000
TXGs, that effectively limits maximum number of per-TXG spacemap logs
to load to the same number.
 - By making flushing more smooth via accounting number of metaslabs
that were touched after the last flush and actually need another flush,
not just ms_unflushed_txg bump.
 - By applying zfs_unflushed_log_block_pct to the number of metaslabs
that were touched after the last flush, not all metaslabs in the pool.
 - By aggressively prefetching per-TXG spacemap logs up to 16 TXGs in
advance, making log spacemap load process for wide HDD pool CPU-bound,
accelerating it by many times.
 - By reducing zfs_unflushed_log_block_max from 256K to 128K, reducing
single-threaded by nature log processing time from ~10 to ~5 minutes.

As further optimization we could skip bumping ms_unflushed_txg for
metaslabs not touched since the last flush, but that would be an
incompatible change, requiring new pool feature.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #12789
2022-04-26 10:44:21 -07:00
наб
861166b027 Remove bcopy(), bzero(), bcmp()
bcopy() has a confusing argument order and is actually a move, not a
copy; they're all deprecated since POSIX.1-2001 and removed in -2008,
and we shim them out to mem*() on Linux anyway

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12996
2022-03-15 15:13:42 -07:00
наб
7ada752a93 Clean up CSTYLEDs
69 CSTYLED BEGINs remain, appx. 30 of which can be removed if cstyle(1)
had a useful policy regarding
  CALL(ARG1,
  	ARG2,
  	ARG3);
above 2 lines. As it stands, it spits out *both*
  sysctl_os.c: 385: continuation line should be indented by 4 spaces
  sysctl_os.c: 385: indent by spaces instead of tabs
which is very cool

Another >10 could be fixed by removing "ulong" &al. handling.
I don't foresee anyone actually using it intentionally
(does it even exist in modern headers? why did it in the first place?).

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12993
2022-01-26 11:38:52 -08:00
наб
18168da727
module/*.ko: prune .data, global .rodata
Evaluated every variable that lives in .data (and globals in .rodata)
in the kernel modules, and constified/eliminated/localised them
appropriately. This means that all read-only data is now actually
read-only data, and, if possible, at file scope. A lot of previously-
global-symbols became inlinable (and inlined!) constants. Probably
not in a big Wowee Performance Moment, but hey.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12899
2022-01-14 15:37:55 -08:00
наб
14e4e3cb9f module: zfs: fix unused, remove argsused
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12844
2021-12-23 09:42:47 -08:00
Fedor Uporov
e39fe05b69
Skip spacemaps reading in case of pool readonly import
The only zdb utility require to read metaslab-related data during
read-only pool import because of spacemaps validation. Add global
variable which will allow zdb read spacemaps in case of readonly
import mode.

Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Fedor Uporov <fuporov.vstack@gmail.com>
Closes #9095
Closes #12687
2021-11-09 12:50:39 -08:00
Alexander Motin
dd3bda39cf
Add comment on metaslab_class_throttle_reserve() locking
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Issue #12314
Closes #12419
2021-07-26 16:30:20 -07:00
Alexander Motin
1b50749ce9
Optimize allocation throttling
Remove mc_lock use from metaslab_class_throttle_*().  The math there
is based on refcounts and so atomic, so the only race possible there
is between zfs_refcount_count() and zfs_refcount_add().  But in most
cases metaslab_class_throttle_reserve() is called with the allocator
lock held, which covers the race.  In cases where the lock is not
held, GANG_ALLOCATION() or METASLAB_MUST_RESERVE are set, and so we
do not use zfs_refcount_count().  And even if we assume some other
non-existing scenario, the worst that may happen from this race is
few more I/Os get to allocation earlier, that is not a problem.

Move locks and data of different allocators into different cache
lines to avoid false sharing.  Group spa_alloc_* arrays together
into single array of aligned struct spa_alloc spa_allocs.  Align
struct metaslab_class_allocator.

Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #12314
2021-07-21 06:40:36 -06:00
Alexander Motin
5b7053a9a5
Avoid 64bit division in multilist index functions
The number of sublists in a multilist is relatively small. We dont need
64 bits to calculate an index. 32 bits is sufficient and makes the
code more efficient.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> 
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #12288
2021-06-29 06:59:14 -06:00
jumbi77
86f5e0bbce
zfs_metaslab_mem_limit should be 25 instead of 75
According to current zfs man page zfs_metaslab_mem_limit should be
25 instead of 75.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: jumbi77@users.noreply.github.com
Closes #12273
2021-06-24 10:02:54 -07:00
Rich Ercolani
8e739b2c9f
Annotated dprintf as printf-like
ZFS loves using %llu for uint64_t, but that requires a cast to not 
be noisy - which is even done in many, though not all, places.
Also a couple places used %u for uint64_t, which were promoted
to %llu. 

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes #12233
2021-06-22 21:53:45 -07:00
Alexander Motin
29274c9f6d
Optimize small random numbers generation
In all places except two spa_get_random() is used for small values,
and the consumers do not require well seeded high quality values.
Switch those two exceptions directly to random_get_pseudo_bytes()
and optimize spa_get_random(), renaming it to random_in_range(),
since it is not related to SPA or ZFS in general.

On FreeBSD directly map random_in_range() to new prng32_bounded() KPI
added in FreeBSD 13.  On Linux and in user-space just reduce the type
used to uint32_t to avoid more expensive 64bit division.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #12183
2021-06-22 17:35:23 -06:00
Alexander Motin
ffdf019cb3
Re-embed multilist_t storage
This commit partially reverts changes to multilists in PR 7968
(multi-threaded spa-sync()) and adds some cache line alignments to
separate read-only multilists and heavily modified refcount's to different
cache lines.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-by: iXsystems, Inc.
Closes #12158
2021-06-10 10:42:31 -06:00
Matthew Ahrens
2b56a63457
Use a helper function to clarify gang block size
For gang blocks, `DVA_GET_ASIZE()` is the total space allocated for the
gang DVA including its children BP's.  The space allocated at each DVA's
vdev/offset is `vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE)`.

This commit makes this relationship more clear by using a helper
function, `vdev_gang_header_asize()`, for the space allocated at the
gang block's vdev/offset.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11744
2021-03-26 11:19:35 -07:00
Serapheim Dimitropoulos
793c958f6f
Initialize metaslab range trees in metaslab_init
= Motivation

We've noticed several zloop crashes within Delphix generated
due to the following sequence of events:

- A device gets expanded and new metaslabas are allocated for
  it. These metaslabs go through `metaslab_init()` but haven't
  gone through `metaslab_sync_done()` yet. This meas that the
  only range tree that's actually set is the `ms_allocatable`.
  All the others are NULL.

- A vdev_initialization is issues and `vdev_initialize_thread`
  starts processing one of these new metaslabs of the expanded
  vdev.

- As part of `vdev_initialize_calculate_progress()` we call
  into `metaslab_load()` and `metaslab_load_impl()` which
  in turn tries to dereference the metaslabs trees that
  are still NULL and therefore we crash.

The same failure can come up from the `vdev_trim` code paths.

= This Patch

We considered the following solutions to deal with this issue:

[A] Add logic to `vdev_initialize/trim` to skip those new
    metaslabs. We decided against this as it would be good
    to avoid exposing this lower-level detail to higer-level
    operations.

[B] Have `metaslab_load_impl()` return early for new metaslabs
    and thus never touch those range_trees that are NULL at
    that time. This seemed more of a work-around for the bug
    and not a clear-cut solution.

[C] Refactor our logic so all metaslabs have their range_trees
    created at the time of their creatin in `metaslab_init()`.

In this patch we decided to go with [C] because:

(1) It doesn't expose more metaslab details to higher level
    operations such as vdev initialize and trim.

(2) The current behavior of creating the range trees lazily
    in `metaslab_sync_done()` is unnecessarily complicated.

(3) Always initializing the metaslab range_trees makes other
    parts of the codebase cleaner. For example, we used to
    use `ms_freed` as the reference value for knowing whether
    all the range_trees have been initialized. Now we no
    longer need to do that check in most places (and in the
    few that we do we use the `ms_new` boolean field now
    which is more readable).

= Side Changes

Probably due to a mismerge we set `ms_loaded` to `B_TRUE` twice
in `metasloab_load_impl()`. In this patch we remove the extraneous
assignment.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #11737
2021-03-19 22:36:02 -07:00
Alan Somers
a0e01997ec Parallelize vdev_load
metaslab_init is the slowest part of importing a mature pool, and it
must be repeated hundreds of times for each top-level vdev.  But its
speed is dominated by a few serialized disk accesses.  That can lead to
import times of > 1 hour for pools with many top-level vdevs on spinny
disks.

Speed up the import by using a taskqueue to parallelize vdev_load across
all top-level vdevs.

This also requires adding mutex protection to
metaslab_class_t.mc_historgram.  The mc_histogram fields were
unprotected when that code was first written in "Illumos 4976-4984 -
metaslab improvements" (OpenZFS
f3a7f6610f).  The lock wasn't added until
3dfb57a35e, though it's unclear exactly
which fields it's supposed to protect.  In any case, it wasn't until
vdev_load was parallelized that any code attempted concurrent access to
those fields.

Sponsored by: Axcient
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alan Somers <asomers@gmail.com>
Closes #11470
2021-01-26 19:35:59 -08:00
Matthew Ahrens
aa755b3549
Set aside a metaslab for ZIL blocks
Mixing ZIL and normal allocations has several problems:

1. The ZIL allocations are allocated, written to disk, and then a few
seconds later freed.  This leaves behind holes (free segments) where the
ZIL blocks used to be, which increases fragmentation, which negatively
impacts performance.

2. When under moderate load, ZIL allocations are of 128KB.  If the pool
is fairly fragmented, there may not be many free chunks of that size.
This causes ZFS to load more metaslabs to locate free segments of 128KB
or more.  The loading happens synchronously (from zil_commit()), and can
take around a second even if the metaslab's spacemap is cached in the
ARC.  All concurrent synchronous operations on this filesystem must wait
while the metaslab is loading.  This can cause a significant performance
impact.

3. If the pool is very fragmented, there may be zero free chunks of
128KB or more.  In this case, the ZIL falls back to txg_wait_synced(),
which has an enormous performance impact.

These problems can be eliminated by using a dedicated log device
("slog"), even one with the same performance characteristics as the
normal devices.

This change sets aside one metaslab from each top-level vdev that is
preferentially used for ZIL allocations (vdev_log_mg,
spa_embedded_log_class).  From an allocation perspective, this is
similar to having a dedicated log device, and it eliminates the
above-mentioned performance problems.

Log (ZIL) blocks can be allocated from the following locations.  Each
one is tried in order until the allocation succeeds:
1. dedicated log vdevs, aka "slog" (spa_log_class)
2. embedded slog metaslabs (spa_embedded_log_class)
3. other metaslabs in normal vdevs (spa_normal_class)

The space required for the embedded slog metaslabs is usually between
0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop"
space that is not available for user data.

On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity,
and recordsize=8k, testing shows a ~50% performance increase on random
8k sync writes.  On even more fragmented systems (which hit problem #3
above and call txg_wait_synced()), the performance improvement can be
arbitrarily large (>100x).

Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11389
2021-01-21 15:12:54 -08:00
Matthew Ahrens
be5c6d9653
Only examine best metaslabs on each vdev
On a system with very high fragmentation, we may need to do lots of gang
allocations (e.g. most indirect block allocations (~50KB) may need to
gang). Before failing a "normal" allocation and resorting to ganging, we
try every metaslab.  This has the impact of loading every metaslab (not
a huge deal since we now typically keep all metaslabs loaded), and also
iterating over every metaslab for every failing allocation. If there are
many metaslabs (more than the typical ~200, e.g. due to vdev expansion
or very large vdevs), the CPU cost of this iteration can be very
impactful.  This iteration is done with the mg_lock held, creating long
hold times and high lock contention for concurrent allocations,
ultimately causing long txg sync times and poor application performance.

To address this, this commit changes the behavior of "normal" (not
try_hard, not ZIL) allocations.  These will now only examine the 100
best metaslabs (as determined by their ms_weight).  If none of these
have a large enough free segment, then the allocation will fail and
we'll fall back on ganging.

To accomplish this, we will now (normally) gang before doing a
`try_hard` allocation.  Non-try_hard allocations will only examine the
100 best metaslabs of each vdev.  In summary, we will first try normal
allocation.  If that fails then we will do a gang allocation.  If that
fails then we will do a "try hard" gang allocation.  If that fails then
we will have a multi-layer gang block.

Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11327
2020-12-16 14:40:05 -08:00
Alexander Motin
f8020c9363
Make metaslab class rotor and aliquot per-allocator.
Metaslab rotor and aliquot are used to distribute workload between
vdevs while keeping some locality for logically adjacent blocks.  Once
multiple allocators were introduced to separate allocation of different
objects it does not make much sense for different allocators to write
into different metaslabs of the same metaslab group (vdev) same time,
competing for its resources.  This change makes each allocator choose
metaslab group independently, colliding with others only sporadically.

Test including simultaneous write into 4 files with recordsize of 4KB
on a striped pool of 30 disks on a system with 40 logical cores show
reduction of vdev queue lock contention from 54 to 27% due to better
load distribution.  Unfortunately it won't help much ZVOLs yet since
only one dataset/ZVOL is synced at a time, and so for the most part
only one allocator is used, but it may improve later.

While there, to reduce the number of pointer dereferences change
per-allocator storage for metaslab classes and groups from several
separate malloc()'s to variable length arrays at the ends of the
original class and group structures.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes #11288
2020-12-15 10:55:44 -08:00
Brian Behlendorf
b2255edcc0
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID.  This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.

A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`.  No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.

    zpool create <pool> draid[1,2,3] <vdevs...>

Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons.  The supported options include:

    zpool create <pool> \
        draid[<parity>][:<data>d][:<children>c][:<spares>s] \
        <vdevs...>

    - draid[parity]       - Parity level (default 1)
    - draid[:<data>d]     - Data devices per group (default 8)
    - draid[:<children>c] - Expected number of child vdevs
    - draid[:<spares>s]   - Distributed hot spares (default 0)

Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.

```
  pool: tank
 state: ONLINE
config:

    NAME                  STATE     READ WRITE CKSUM
    slag7                 ONLINE       0     0     0
      draid2:8d:68c:2s-0  ONLINE       0     0     0
        L0                ONLINE       0     0     0
        L1                ONLINE       0     0     0
        ...
        U25               ONLINE       0     0     0
        U26               ONLINE       0     0     0
        spare-53          ONLINE       0     0     0
          U27             ONLINE       0     0     0
          draid2-0-0      ONLINE       0     0     0
        U28               ONLINE       0     0     0
        U29               ONLINE       0     0     0
        ...
        U42               ONLINE       0     0     0
        U43               ONLINE       0     0     0
    special
      mirror-1            ONLINE       0     0     0
        L5                ONLINE       0     0     0
        U5                ONLINE       0     0     0
      mirror-2            ONLINE       0     0     0
        L6                ONLINE       0     0     0
        U6                ONLINE       0     0     0
    spares
      draid2-0-0          INUSE     currently in use
      draid2-0-1          AVAIL
```

When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command.  These options are leverages
by zloop.sh to test a wide range of dRAID configurations.

    -K draid|raidz|random - kind of RAID to test
    -D <value>            - dRAID data drives per group
    -S <value>            - dRAID distributed hot spares
    -R <value>            - RAID parity (raidz or dRAID)

The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.

Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 13:51:51 -08:00
Ryan Moeller
76d04993a6
Update references to nonexistent man pages in code
Refer to the correct section or alternative for FreeBSD and Linux.

Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes #11132
2020-10-30 08:55:59 -07:00
Brian Behlendorf
dce63135ae Sequential scrub and resilver updated comments
Commit d4a72f2 which introduced multi-phase scrubs and resilvers
continued the work presented by Nexenta at the 2016 ZFS developer
summit.  Update the source to reflect their contribution.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2020-09-04 10:51:51 -07:00
Matthew Ahrens
d64c6a2eee
Use zfs_dbgmsg to log metaslab_load/unload
Metaslabs are now (usually) loaded and unloaded infrequently, but when
that is not the case, it is useful to have a log of when and why these
events happened.

This commit enables the zfs_dbgmsg() in metaslab_load(), and adds a
zfs_dbgmsg() in metaslab_unload().

Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10683
2020-08-12 10:10:50 -07:00
Matthew Macy
6d8da84106
Make use of ZFS_DEBUG consistent within kmod sources
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #10623
2020-07-25 20:07:44 -07:00
Matthew Ahrens
6774931dfa
Extend zdb to print inconsistencies in livelists and metaslabs
Livelists and spacemaps are data structures that are logs of allocations
and frees.  Livelists entries are block pointers (blkptr_t). Spacemaps
entries are ranges of numbers, most often used as to track
allocated/freed regions of metaslabs/vdevs.

These data structures can become self-inconsistent, for example if a
block or range can be "double allocated" (two allocation records without
an intervening free) or "double freed" (two free records without an
intervening allocation).

ZDB (as well as zfs running in the kernel) can detect these
inconsistencies when loading livelists and metaslab.  However, it
generally halts processing when the error is detected.

When analyzing an on-disk problem, we often want to know the entire set
of inconsistencies, which is not possible with the current behavior.
This commit adds a new flag, `zdb -y`, which analyzes the livelist and
metaslab data structures and displays all of their inconsistencies.
Note that this is different from the leak detection performed by
`zdb -b`, which checks for inconsistencies between the spacemaps and the
tree of block pointers, but assumes the spacemaps are self-consistent.

The specific checks added are:

Verify livelists by iterating through each sublivelists and:
- report leftover FREEs
- report double ALLOCs and double FREEs
- record leftover ALLOCs together with their TXG [see Cross Check]

Verify spacemaps by iterating over each metaslab and:
- iterate over spacemap and then the metaslab's entries in the
  spacemap log, then report any double FREEs and double ALLOCs

Verify that livelists are consistenet with spacemaps.  The space
referenced by livelists (after using the FREE's to cancel out
corresponding ALLOCs) should be allocated, according to the spacemaps.

Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sara Hartse <sara.hartse@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-66031
Closes #10515
2020-07-14 17:51:05 -07:00
Arvind Sankar
65c7cc49bf Mark functions as static
Mark functions used only in the same translation unit as static. This
only includes functions that do not have a prototype in a header file
either.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Closes #10470
2020-06-18 12:20:38 -07:00
Andrea Gelmini
dd4bc569b9
Fix typos
Correct various typos in the comments and tests.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes #10423
2020-06-09 21:24:09 -07:00