Unlike DDT, where ZAP values may have different lengths due to
compression, all BRT entries are identical 8-byte counters. It
does not make sense to first fetch the length only to assert it.
zap_lookup_uint64() is specifically designed to work with counters
of different size and should return error if something odd found.
Calling it straight allows to save some measurable CPU time.
Reviewed-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rob Norris <robn@despairlabs.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15950
Similar to DDT make BRT data and indirect block sizes configurable
via module parameters. I am not sure what would be the best yet,
but similar to DDT 4KB blocks kill all chances of compression on
vdev with ashift=12 or more, that on my tests reaches 3x.
While here, fix documentation for respective DDT parameters.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15967
Since brt_pending_apply() is running in syncing context, no other
brt_pending_tree accesses are possible for the TXG. We don't need
to acquire brt_pending_lock here.
Reviewed-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Rob Norris <robn@despairlabs.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15955
Before this change ZAP called dnode_hold() for almost every block
access, that was clearly visible in profiler under heavy load, such
as BRT. This patch makes it always hold the dnode reference between
zap_lockdir() and zap_unlockdir(). It allows to avoid most of dnode
operations between those. It also adds several new _by_dnode() APIs
to ZAP and uses them in BRT code. Also adds dmu_prefetch_by_dnode()
variant and uses it in the ZAP code.
After this there remains only one call to dmu_buf_dnode_enter(),
which seems to be unneeded. So remove the call and the functions.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15951
If there is a pending entry for this block, then we've already
issued BRT prefetch for it within this TXG, so don't do it again.
BRT vdev lookup and following zap_prefetch_uint64() call can be
pretty expensive and should be avoided when not necessary.
Reviewed-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15941
- Remove custom zap_memset(), use regular memset().
- Use PANIC() instead of opaque cmn_err(CE_PANIC).
- Provide entry parameter to zap_leaf_rehash_entry().
- Reduce branching in zap_leaf_array_create() inner loop.
- Remove signedness where it should not be.
Should be no function changes.
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15976
It does not look important how exactly brt_pending_tree is sorted.
When cloning large file, it is quite likely that all of its blocks
have identical physical birth times, so comparing them first does
not provide useful entropy, while accesses additional cache line.
In most cases combination of vdev and offset provides unique result
and physical birth time comparison is not even needed. Meanwhile,
when traversing the tree inside brt_pending_apply(), it can be
beneficial for dbuf cache and CPU cache hits to group processing
by vdev and so by the per-VDEV BRT ZAPs.
Reviewed-by: Rob Norris <robn@despairlabs.com>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15954
Before this change resume token was updated only on data receive.
Usually it is enough to resume replication without much overlap.
But we've got a report of a curios case, where replication source
was traversed with recursive grep, which through enabled atime
modified every object without modifying any data. It produced
several gigabytes of replication traffic without a single data
write and so without a single resume point.
While the resume token was not designed to resume from an object,
I've found that the send implementation always sends object before
any data. So by requesting resume from offset 0 we are effectively
resuming from the object, followed (or not) by the data at offset
0, just as we need it.
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15927
- Split dmu_prefetch_dnode() from dmu_prefetch() into a separate
function. It is quite inconvenient to read the code where len = 0
means dnode prefetch instead indirect/data prefetch. One function
doing both has no benefits, since the code paths are independent.
- Improve dmu_prefetch() handling of long block ranges. Instead
of limiting L0 data length to prefetch for to dmu_prefetch_max,
make dmu_prefetch_max limit the actual amount of prefetch at the
specified level, and, if there is more, prefetch all the rest at
higher indirection level. It should improve random access times
within the prefetched range of any length, reducing importance of
specific dmu_prefetch_max value.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15076
Track history in context of bursts, not individual log blocks. It
allows to not blow away all the history by single large burst of
many block, and same time allows optimizations covering multiple
blocks in a burst and even predicted following burst. For each
burst account its optimal block size and minimal first block size.
Use that statistics from the last 8 bursts to predict first block
size of the next burst.
Remove predefined set of block sizes. Allocate any size we see fit,
multiple of 4KB, as required by ZIL now. With compression enabled
by default, ZFS already writes pretty random block sizes, so this
should not surprise space allocator any more.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15635
- Generalize vdev_nowritecache handling by traversing through the
VDEV tree and skipping children ZIOs where not supported.
- Remove intermediate zio_null() in case of several VDEV children.
- Remove children handling from zio_ioctl(). There are no other
use cases for this code beside DKIOCFLUSHWRITECACHED, and would there
be, I doubt they would so straightforward apply to all VDEV children.
Comparing to removed previous optimization this should improve cases
of redundant ZILs/SLOGs.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15515
... by checking that previous block is fully written and flushed.
It allows to skip commit delays since we can give up on aggregation
in that case. This removes zil_min_commit_timeout parameter, since
for single-threaded workloads it is not needed at all, while on very
fast devices even some multi-threaded workloads may get detected as
single-threaded and still bypass the wait. To give multi-threaded
workloads more aggregation chances increase zfs_commit_timeout_pct
from 5 to 10%, as they should suffer less from additional latency.
Also single-threaded workloads detection allows in perspective better
prediction of the next block size.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15381
1) Make mmap flushes synchronous. Linux may skip flushing dirty pages
already in writeback unless data-integrity sync is requested.
2) Change zfs_putpage to use TXG_WAIT. Otherwise dirty pages may be
skipped due to DMU pushing back on TX assign.
3) Add missing mmap flush when doing block cloning.
4) While here, pass errors from putpage to writepage/writepages.
This change fixes corruption edge cases, but unfortunately adds
synchronous ZIL flushes for dirty mmap pages to llseek and bclone
operations. It may be possible to avoid these sync writes later
but would need more tricky refactoring of the writeback code.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Robert Evans <evansr@google.com>
Closes#15933Closes#16019
The regular ABD iterators yield data buffers, so they have to map and
unmap pages into kernel memory. If the caller only wants to count
chunks, or can use page pointers directly, then the map/unmap is just
unnecessary overhead.
This adds adb_iterate_page_func, which yields unmapped struct page
instead.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Closes#15533Closes#15588
(cherry picked from commit 390b448726)
When ZFS overwrites a whole block, it does not bother to read the
old content from disk. It is a good optimization, but if the buffer
fill fails due to page fault or something else, the buffer ends up
corrupted, neither keeping old content, nor getting the new one.
On FreeBSD this is additionally complicated by page faults being
blocked by VFS layer, always returning EFAULT on attempt to write
from mmap()'ed but not yet cached address range. Normally it is
not a big problem, since after original failure VFS will retry the
write after reading the required data. The problem becomes worse
in specific case when somebody tries to write into a file its own
mmap()'ed content from the same location. In that situation the
only copy of the data is getting corrupted on the page fault and
the following retries only fixate the status quo. Block cloning
makes this issue easier to reproduce, since it does not read the
old data, unlike traditional file copy, that may work by chance.
This patch provides the fill status to dmu_buf_fill_done(), that
in case of error can destroy the corrupted buffer as if no write
happened. One more complication in case of block cloning is that
if error is possible during fill, dmu_buf_will_fill() must read
the data via fall-back to dmu_buf_will_dirty(). It is required
to allow in case of error restoring the buffer to a state after
the cloning, not not before it, that would happen if we just call
dbuf_undirty().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rob Norris <robn@despairlabs.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15665
Similar to deduplication, the size of data duplicated by block cloning
should not be included in the slop space calculation.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Yuxin Wang <yuxinwang9999@gmail.com>
Closes#15874
On Linux the ioctl_ficlonerange() and ioctl_ficlone() system calls
are expected to either fully clone the specified range or return an
error. The range may be for an entire file. While internally ZFS
supports cloning partial ranges there's no way to return the length
cloned to the caller so we need to make this all or nothing.
As part of this change support for the REMAP_FILE_CAN_SHORTEN flag
has been added. When REMAP_FILE_CAN_SHORTEN is set zfs_clone_range()
will return a shortened range when encountering pending dirty records.
When it's clear zfs_clone_range() will block and wait for the records
to be written out allowing the blocks to be cloned.
Furthermore, the file range lock is held over the region being cloned
to prevent it from being modified while cloning. This doesn't quite
provide an atomic semantics since if an error is encountered only a
portion of the range may be cloned. This will be converted to an
error if REMAP_FILE_CAN_SHORTEN was not provided and returned to the
caller. However, the destination file range is left in an undefined
state.
A test case has been added which exercises this functionality by
verifying that `cp --reflink=never|auto|always` works correctly.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#15728Closes#15842
During device removal stress tests, we noticed that we were tripping
the assertion that mg_initialized was true. After investigation, it was
determined that the mg in question was the embedded log metaslab
group for a newly added vdev; the normal mg had been initialized (by
metaslab_sync_reassess, via vdev_sync_done). However, because the spa
config alloc lock is not held as writer across both calls to
metaslab_sync_reassess, it is possible for an allocation to happen
between the two metaslab_groups being initialized. Because the metaslab
code doesn't check the group in question, just the vdev's main mg, it
is possible to get past the initial check in vdev_allocatable and
later fail due to the assertion.
We simply remove the assertions. We could also consider locking the
ALLOC lock around the reassess calls in vdev_sync_done, but that risks
deadlocks. We could check the actual target mg in vdev_allocatable,
but that risks racing with a passivation that comes in after that
check but before the assertion. We still won't be able to actually
allocate from the metaslab group if no metaslabs are ready, so this
change shouldn't break anything.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#15818
If devid or physpath for a vdev changes between imports, ensure it is
updated to the new value.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes#15816
Pool import logic uses vdev paths, so it makes sense to add path
information on AUX vdev as well.
Reviewed-by: Umer Saleem <usaleem@ixsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes#15737
When spare or l2cache (aux) vdev is added during pool creation,
spa->spa_uberblock is not dumped until that point. Subsequently,
the aux label is never synchronized after its initial creation,
resulting in the uberblock label remaining undumped. The uberblock
is crucial for lib_blkid in identifying the ZFS partition type. To
address this issue, we now ensure sync of the uberblock label once
if it's not dumped initially.
Reviewed-by: Umer Saleem <usaleem@ixsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes#15737
In general, VOPs must not load the "z_log" field until having called
zfs_enter_verify_zp().
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Mark Johnston <markj@FreeBSD.org>
Closes#15752
If the destination file is mmaped and the mmaped region was already
read, so it is cached, we need to update mmaped pages after successful
clone using update_pages().
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Pointed out by: Ka Ho Ng <khng@freebsd.org>
Signed-off-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Closes#15772
Switch from cv_wait() to cv_wait_idle() in vdev_autotrim_wait_kick(),
which should mitigate the high load average while waiting.
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: jxdking <lostking2008@hotmail.com>
Closes#15781
For FreeBSD sysctls, we don't want the extra newline, since the
sysctl(8) utility will format strings appropriately.
Reviewed-by: Rob Norris <robn@despairlabs.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reported-by: Peter Holm <pho@FreeBSD.org>
Signed-off-by: Mark Johnston <markj@FreeBSD.org>
Closes#15719
sbuf_cpy() resets the sbuf state, which is wrong for sbufs allocated by
sbuf_new_for_sysctl(). In particular, this code triggers an assertion
failure in sbuf_clear().
Simplify by just using sysctl_handle_string() for both reading and
setting the tunable.
Fixes: 6930ecbb7 ("spa: make read/write queues configurable")
Reviewed-by: Rob Norris <robn@despairlabs.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reported-by: Peter Holm <pho@FreeBSD.org>
Signed-off-by: Mark Johnston <markj@FreeBSD.org>
Closes#15719
Two block pointers in livelist pointing to the same location may
be caused not only by dedup, but also by block cloning. We should
not assert D bit set in them.
Two block pointers in livelist pointing to the same location may
have different logical birth time in case of dedup or cloning. We
should assert identical physical birth time instead.
Assert identical physical block size between pointers in addition
to checksum, since that is what checksums are calculated on.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15732
- Fail if source block is smaller than destination. We can only
grow blocks, not shrink them.
- Fail if we do not have full znode range lock. In that case grow
is not even called. We should improve zfs_rangelock_cb() somehow
to know when cloning needs to grow the block size unlike write.
- Fail of we tried to resize, but failed. There are many reasons
for it to fail that we can not predict at this level, so be ready
for them. Unlike write, that may proceed after growth failure,
block cloning can't and must return error.
This fixes assertion inside dmu_brt_clone() when it sees different
number of blocks held in destination than it got block pointers.
Builds without ZFS_DEBUG returned EXDEV, so are not affected much.
Reviewed-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15724Closes#15735
While 763ca47 closes the situation of block cloning creating
unencrypted records in encrypted datasets, existing data still causes
panic on read. Setting zfs_recover bypasses this but at the cost of
potentially ignoring more serious issues.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chris Peredun <chris.peredun@ixsystems.com>
Closes#15677
Block cloning normally creates dirty record without dr_data. But if
the block is read after cloning, it is moved into DB_CACHED state and
receives the data buffer. If after that we call dbuf_unoverride()
to convert the dirty record into normal write, we should give it the
data buffer from dbuf and release one.
Reviewed-by: Kay Pedersen <mail@mkwg.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15654Closes#15656
In some cases dbuf_assign_arcbuf() may be called on a block that
was recently cloned. If it happened in current TXG we must undo
the block cloning first, since the only one dirty record per TXG
can't and shouldn't mean both cloning and overwrite same time.
Reviewed-by: Kay Pedersen <mail@mkwg.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15653
dmu_assign_arcbuf_by_dnode() should drop dn_struct_rwlock lock in
case dbuf_hold() failed. I don't have reproduction for this, but
it looks inconsistent with dmu_buf_hold_noread_by_dnode() and co.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15644
Without this patch on pool of 60 vdevs with ZFS_DEBUG enabled clone
takes much more time than copy, while heavily trashing dbgmsg for
no good reason, repeatedly dumping all vdevs BRTs again and again,
even unmodified ones.
I am generally not sure this dumping is not excessive, but decided
to keep it for now, just restricting its scope to more reasonable.
Reviewed-by: Kay Pedersen <mail@mkwg.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15625
To improve 128KB block write performance in case of multiple VDEVs
ZIL used to spit those writes into two 64KB ones. Unfortunately it
was found to cause LWB buffer overflow, trying to write maximum-
sizes 128KB TX_CLONE_RANGE record with 1022 block pointers into
68KB buffer, since unlike TX_WRITE ZIL code can't split it.
This is a minimally-invasive temporary block cloning fix until the
following more invasive prediction code refactoring.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ameer Hamza <ahamza@ixsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15634
When two datasets share the same master encryption key, it is safe
to clone encrypted blocks. Currently only snapshots and clones
of a dataset share with it the same encryption key.
Added a test for:
- Clone from encrypted sibling to encrypted sibling with
non encrypted parent
- Clone from encrypted parent to inherited encrypted child
- Clone from child to sibling with encrypted parent
- Clone from snapshot to the original datasets
- Clone from foreign snapshot to a foreign dataset
- Cloning from non-encrypted to encrypted datasets
- Cloning from encrypted to non-encrypted datasets
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Original-patch-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Signed-off-by: Kay Pedersen <mail@mkwg.de>
Closes#15544
ZIL claim can not handle block pointers cloned from the future,
since they are not yet allocated at that point. It may happen
either if the block was just written when it was cloned, or if
the pool was frozen or somehow else rewound on import.
Handle it from two sides: prevent cloning of blocks with physical
birth time from not yet synced or frozen TXG, and abort ZIL claim
if we still detect such blocks due to rewind or something else.
While there, assert that any cloned blocks we claim are really
allocated by calling metaslab_check_free().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15617
zil_claim_clone_range() takes references on cloned blocks before ZIL
replay. Later zil_free_clone_range() drops them after replay or on
dataset destroy. The total balance is neutral. It means we do not
need to do anything (drop the references) for not implemented yet
TX_CLONE_RANGE replay for ZVOLs.
This is a logical follow up to #15603.
Reviewed-by: Kay Pedersen <mail@mkwg.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15612
Since we use a limited set of kmem caches, quite often we have unused
memory after the end of the buffer. Put there up to a 512-byte canary
when built with debug to detect buffer overflows at the free time.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15553
This should make sure we have log written without overflows.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15517
PR #15457 exposed weird logic in L2ARC write sizing. If it appeared
bigger than device size, instead of liming write it reset all the
system-wide tunables to their default. Aside of being excessive,
it did not actually help with the problem, still allowing infinite
loop to happen.
This patch removes the tunables reverting logic, but instead limits
L2ARC writes (or at least eviction/trim) to 1/4 of the capacity.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Amanakis <gamanakis@gmail.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15519
Add a dataset_kstats_rename function, and call it when renaming
a zvol on FreeBSD and Linux.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alan Somers <asomers@gmail.com>
Sponsored-by: Axcient
Closes#15482Closes#15486
Once we verified the ABDs and asserted the sizes we should never
see premature ABDs ends. Assert that and remove extra branches
from production builds.
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15428
We are finding that as customers get larger and faster machines
(hundreds of cores, large NVMe-backed pools) they keep hitting
relatively low performance ceilings. Our profiling work almost always
finds that they're running into bottlenecks on the SPA IO taskqs.
Unfortunately there's often little we can advise at that point, because
there's very few ways to change behaviour without patching.
This commit adds two load-time parameters `zio_taskq_read` and
`zio_taskq_write` that can configure the READ and WRITE IO taskqs
directly.
This achieves two goals: it gives operators (and those that support
them) a way to tune things without requiring a custom build of OpenZFS,
which is often not possible, and it lets us easily try different config
variations in a variety of environments to inform the development of
better defaults for these kind of systems.
Because tuning the IO taskqs really requires a fairly deep understanding
of how IO in ZFS works, and generally isn't needed without a pretty
serious workload and an ability to identify bottlenecks, only minimal
documentation is provided. Its expected that anyone using this is going
to have the source code there as well.
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
zil_claim_clone_range() takes references on cloned blocks before ZIL
replay. Later zil_free_clone_range() drops them after replay or on
dataset destroy. The total balance is neutral. It means on actual
replay we must take additional references, which would stay in BRT.
Without this blocks could be freed prematurely when either original
file or its clone are destroyed. I've observed BRT being emptied
and the feature being deactivated after ZIL replay completion, which
should not have happened. With the patch I see expected stats.
Reviewed-by: Kay Pedersen <mail@mkwg.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rob Norris <robn@despairlabs.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15603
Previously, dmu_buf_will_clone() would roll back any dirty record, but
would not clean out the modified data nor reset the state before
releasing the lock. That leaves the last-written data in db_data, but
the dbuf in the wrong state.
This is eventually corrected when the dbuf state is made NOFILL, and
dbuf_noread() called (which clears out the old data), but at this point
its too late, because the lock was already dropped with that invalid
state.
Any caller acquiring the lock before the call into
dmu_buf_will_not_fill() can find what appears to be a clean, readable
buffer, and would take the wrong state from it: it should be getting the
data from the cloned block, not from earlier (unwritten) dirty data.
Even after the state was switched to NOFILL, the old data was still not
cleaned out until dbuf_noread(), which is another gap for a caller to
take the lock and read the wrong data.
This commit fixes all this by properly cleaning up the previous state
and then setting the new state before dropping the lock. The
DBUF_VERIFY() calls confirm that the dbuf is in a valid state when the
lock is down.
Sponsored-by: Klara, Inc.
Sponsored-By: OpenDrives Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#15566Closes#15526
So that zdb (and others!) can get at the BRT on-disk structures.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Kay Pedersen <mail@mkwg.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Closes#15541
Over its history this the dirty dnode test has been changed between
checking for a dnodes being on `os_dirty_dnodes` (`dn_dirty_link`) and
`dn_dirty_record`.
de198f2d9 Fix lseek(SEEK_DATA/SEEK_HOLE) mmap consistency
2531ce372 Revert "Report holes when there are only metadata changes"
ec4f9b8f3 Report holes when there are only metadata changes
454365bba Fix dirty check in dmu_offset_next()
66aca2473 SEEK_HOLE should not block on txg_wait_synced()
Also illumos/illumos-gate@c543ec060dillumos/illumos-gate@2bcf0248e9
It turns out both are actually required.
In the case of appending data to a newly created file, the dnode proper
is dirtied (at least to change the blocksize) and dirty records are
added. Thus, a single logical operation is represented by separate
dirty indicators, and must not be separated.
The incorrect dirty check becomes a problem when the first block of a
file is being appended to while another process is calling lseek to skip
holes. There is a small window where the dnode part is undirtied while
there are still dirty records. In this case, `lseek(fd, 0, SEEK_DATA)`
would not know that the file is dirty, and would go to
`dnode_next_offset()`. Since the object has no data blocks yet, it
returns `ESRCH`, indicating no data found, which results in `ENXIO`
being returned to `lseek()`'s caller.
Since coreutils 9.2, `cp` performs sparse copies by default, that is, it
uses `SEEK_DATA` and `SEEK_HOLE` against the source file and attempts to
replicate the holes in the target. When it hits the bug, its initial
search for data fails, and it goes on to call `fallocate()` to create a
hole over the entire destination file.
This has come up more recently as users upgrade their systems, getting
OpenZFS 2.2 as well as a newer coreutils. However, this problem has been
reproduced against 2.1, as well as on FreeBSD 13 and 14.
This change simply updates the dirty check to check both types of dirty.
If there's anything dirty at all, we immediately go to the "wait for
sync" stage, It doesn't really matter after that; both changes are on
disk, so the dirty fields should be correct.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Rich Ercolani <rincebrain@gmail.com>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#15571Closes#15526
This reverts commit bd7a02c251 which
can trigger an unlikely existing bio alignment issue on Linux.
This change is good, but the underlying issue it exposes needs to
be resolved before this can be re-applied.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #15533
Currently vdev_queue_class_length is responsible for checking how long
the queue length is, however, it doesn't check the length when a list
is used, rather it just returns whether it is empty or not. To fix this
I added a counter variable to vdev_queue_class to keep track of the sync
IO ops, and changed vdev_queue_class_length to reference this variable
instead.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: MigeljanImeri <ImeriMigel@gmail.com>
Closes#15478
There is no sense to have separate implementations for FreeBSD and
Linux. Make Linux code shared as more functional and just register
FreeBSD-specific prune callback with arc_add_prune_callback() API.
Aside of code cleanup this should fix excessive pruning on FreeBSD:
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=274698
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Johnston <markj@FreeBSD.org>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15456