Commit Graph

151 Commits

Author SHA1 Message Date
Ameer Hamza
43d63ab2d4 zed: post a udev change event from spa_vdev_attach()
In order for zed to process the removal event correctly,
udev change event needs to be posted to sync the blkid
information. spa_create() and spa_config_update() posts
the event already through spa_write_cachefile(). Doing
the same for spa_vdev_attach() that handles the case
for vdev attachment and replacement.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes #14172
2023-03-27 11:32:09 -07:00
Ameer Hamza
bd9a9a4e1a zed: mark disks as REMOVED when they are removed
ZED does not take any action for disk removal events if there is no
spare VDEV available. Added zpool_vdev_remove_wanted() in libzfs
and vdev_remove_wanted() in vdev.c to remove the VDEV through ZED
on removal event.  This means that if you are running zed and
remove a disk, it will be propertly marked as REMOVED.

Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
2023-03-27 11:32:09 -07:00
Alexander Motin
5b860ae1fb Remove refcount from spa_config_*()
The only reason for spa_config_*() to use refcount instead of simple
non-atomic (thanks to scl_lock) variable for scl_count is tracking,
hard disabled for the last 8 years.  Switch to simple int scl_count
reduces the lock hold time by avoiding atomic, plus makes structure
fit into single cache line, reducing the locks contention.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #12287
2022-07-26 10:10:37 -07:00
наб
94a4b7ec3d module: zfs: fix unused, remove argsused
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12844
2022-02-16 17:58:56 -08:00
Rich Ercolani
6385f4e70e Fix unfortunate NULL in spa_update_dspace
After 1325434b, we can in certain circumstances end up calling
spa_update_dspace with vd->vdev_mg NULL, which ends poorly during
vdev removal.

So let's not do that further space adjustment when we can't.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes #12380
Closes #12428
2021-09-14 12:41:10 -07:00
Alexander Motin
32c0b6468c Optimize allocation throttling
Remove mc_lock use from metaslab_class_throttle_*().  The math there
is based on refcounts and so atomic, so the only race possible there
is between zfs_refcount_count() and zfs_refcount_add().  But in most
cases metaslab_class_throttle_reserve() is called with the allocator
lock held, which covers the race.  In cases where the lock is not
held, GANG_ALLOCATION() or METASLAB_MUST_RESERVE are set, and so we
do not use zfs_refcount_count().  And even if we assume some other
non-existing scenario, the worst that may happen from this race is
few more I/Os get to allocation earlier, that is not a problem.

Move locks and data of different allocators into different cache
lines to avoid false sharing.  Group spa_alloc_* arrays together
into single array of aligned struct spa_alloc spa_allocs.  Align
struct metaslab_class_allocator.

Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes #12314
2021-09-14 12:40:15 -07:00
Rich Ercolani
960a5a557b Tinker with slop space accounting with dedup
* Tinker with slop space accounting with dedup

Do not include the deduplicated space usage in the slop space
reservation, it leads to surprising outcomes.

* Update spa_dedup_dspace sometimes

Sometimes, we get into spa_get_slop_space() with
spa_dedup_dspace=~0ULL, AKA "unset", while spa_dspace is correctly set.

So call the code to update it before we use it if we hit that case.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes #12271
2021-09-14 12:38:05 -07:00
Alexander Motin
f3969ea78b Optimize small random numbers generation
In all places except two spa_get_random() is used for small values,
and the consumers do not require well seeded high quality values.
Switch those two exceptions directly to random_get_pseudo_bytes()
and optimize spa_get_random(), renaming it to random_in_range(),
since it is not related to SPA or ZFS in general.

On FreeBSD directly map random_in_range() to new prng32_bounded() KPI
added in FreeBSD 13.  On Linux and in user-space just reduce the type
used to uint32_t to avoid more expensive 64bit division.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #12183
2021-09-14 12:10:17 -07:00
Rich Ercolani
5e89181544 Annotated dprintf as printf-like
ZFS loves using %llu for uint64_t, but that requires a cast to not 
be noisy - which is even done in many, though not all, places.
Also a couple places used %u for uint64_t, which were promoted
to %llu. 

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes #12233
2021-06-24 13:12:36 -07:00
Ryan Moeller
35aa9dc6df
FreeBSD: Fix scope of deadman tunables
A few deadman tunables ended up in the wrong sysctl node.

Move them to vfs.zfs.deadman.*

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes #11715
2021-03-11 19:23:24 -08:00
Brian Behlendorf
75a089ed34
Fix overly broad locking in spa_vdev_config_exit()
Calling vdev_free() only requires the we acquire the spa config
SCL_STATE_ALL locks, not the SCL_ALL locks.  In particular, we need
need to avoid taking the SCL_CONFIG lock (included in SCL_ALL) as a
writer since this can lead to a deadlock.  The txg_sync_thread() may
block in spa_txg_history_init_io() when taking the SCL_CONFIG lock
as a reading when it detects there's a pending writer.

Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #11585
2021-02-24 10:00:21 -08:00
Prakash Surya
f01eaed455
Add upper bound for slop space calculation
This change modifies the behavior of how we determine how much slop
space to use in the pool, such that now it has an upper limit. The
default upper limit is 128G, but is configurable via a tunable.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Prakash Surya <prakash.surya@delphix.com>
Closes #11023
2021-02-24 09:52:43 -08:00
Matthew Ahrens
aa755b3549
Set aside a metaslab for ZIL blocks
Mixing ZIL and normal allocations has several problems:

1. The ZIL allocations are allocated, written to disk, and then a few
seconds later freed.  This leaves behind holes (free segments) where the
ZIL blocks used to be, which increases fragmentation, which negatively
impacts performance.

2. When under moderate load, ZIL allocations are of 128KB.  If the pool
is fairly fragmented, there may not be many free chunks of that size.
This causes ZFS to load more metaslabs to locate free segments of 128KB
or more.  The loading happens synchronously (from zil_commit()), and can
take around a second even if the metaslab's spacemap is cached in the
ARC.  All concurrent synchronous operations on this filesystem must wait
while the metaslab is loading.  This can cause a significant performance
impact.

3. If the pool is very fragmented, there may be zero free chunks of
128KB or more.  In this case, the ZIL falls back to txg_wait_synced(),
which has an enormous performance impact.

These problems can be eliminated by using a dedicated log device
("slog"), even one with the same performance characteristics as the
normal devices.

This change sets aside one metaslab from each top-level vdev that is
preferentially used for ZIL allocations (vdev_log_mg,
spa_embedded_log_class).  From an allocation perspective, this is
similar to having a dedicated log device, and it eliminates the
above-mentioned performance problems.

Log (ZIL) blocks can be allocated from the following locations.  Each
one is tried in order until the allocation succeeds:
1. dedicated log vdevs, aka "slog" (spa_log_class)
2. embedded slog metaslabs (spa_embedded_log_class)
3. other metaslabs in normal vdevs (spa_normal_class)

The space required for the embedded slog metaslabs is usually between
0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop"
space that is not available for user data.

On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity,
and recordsize=8k, testing shows a ~50% performance increase on random
8k sync writes.  On even more fragmented systems (which hit problem #3
above and call txg_wait_synced()), the performance improvement can be
arbitrarily large (>100x).

Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11389
2021-01-21 15:12:54 -08:00
Matthew Ahrens
71e4ce0e52
special device removal space accounting fixes
The space in special devices is not included in spa_dspace (or
dsl_pool_adjustedsize(), or the zfs `available` property).  Therefore
there is always at least as much free space in the normal class, as
there is allocated in the special class(es).  And therefore, there is
always enough free space to remove a special device.

However, the checks for free space when removing special devices did not
take this into account.  This commit corrects that.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11329
2020-12-17 12:11:56 -08:00
Alexander Motin
f8020c9363
Make metaslab class rotor and aliquot per-allocator.
Metaslab rotor and aliquot are used to distribute workload between
vdevs while keeping some locality for logically adjacent blocks.  Once
multiple allocators were introduced to separate allocation of different
objects it does not make much sense for different allocators to write
into different metaslabs of the same metaslab group (vdev) same time,
competing for its resources.  This change makes each allocator choose
metaslab group independently, colliding with others only sporadically.

Test including simultaneous write into 4 files with recordsize of 4KB
on a striped pool of 30 disks on a system with 40 logical cores show
reduction of vdev queue lock contention from 54 to 27% due to better
load distribution.  Unfortunately it won't help much ZVOLs yet since
only one dataset/ZVOL is synced at a time, and so for the most part
only one allocator is used, but it may improve later.

While there, to reduce the number of pointer dereferences change
per-allocator storage for metaslab classes and groups from several
separate malloc()'s to variable length arrays at the ends of the
original class and group structures.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes #11288
2020-12-15 10:55:44 -08:00
Brian Behlendorf
b2255edcc0
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID.  This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.

A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`.  No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.

    zpool create <pool> draid[1,2,3] <vdevs...>

Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons.  The supported options include:

    zpool create <pool> \
        draid[<parity>][:<data>d][:<children>c][:<spares>s] \
        <vdevs...>

    - draid[parity]       - Parity level (default 1)
    - draid[:<data>d]     - Data devices per group (default 8)
    - draid[:<children>c] - Expected number of child vdevs
    - draid[:<spares>s]   - Distributed hot spares (default 0)

Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.

```
  pool: tank
 state: ONLINE
config:

    NAME                  STATE     READ WRITE CKSUM
    slag7                 ONLINE       0     0     0
      draid2:8d:68c:2s-0  ONLINE       0     0     0
        L0                ONLINE       0     0     0
        L1                ONLINE       0     0     0
        ...
        U25               ONLINE       0     0     0
        U26               ONLINE       0     0     0
        spare-53          ONLINE       0     0     0
          U27             ONLINE       0     0     0
          draid2-0-0      ONLINE       0     0     0
        U28               ONLINE       0     0     0
        U29               ONLINE       0     0     0
        ...
        U42               ONLINE       0     0     0
        U43               ONLINE       0     0     0
    special
      mirror-1            ONLINE       0     0     0
        L5                ONLINE       0     0     0
        U5                ONLINE       0     0     0
      mirror-2            ONLINE       0     0     0
        L6                ONLINE       0     0     0
        U6                ONLINE       0     0     0
    spares
      draid2-0-0          INUSE     currently in use
      draid2-0-1          AVAIL
```

When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command.  These options are leverages
by zloop.sh to test a wide range of dRAID configurations.

    -K draid|raidz|random - kind of RAID to test
    -D <value>            - dRAID data drives per group
    -S <value>            - dRAID distributed hot spares
    -R <value>            - RAID parity (raidz or dRAID)

The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.

Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 13:51:51 -08:00
Ryan Moeller
76d04993a6
Update references to nonexistent man pages in code
Refer to the correct section or alternative for FreeBSD and Linux.

Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes #11132
2020-10-30 08:55:59 -07:00
Matthew Macy
7b8363d7f0
FreeBSD: Add support for procfs_list
The procfs_list interface is required by several kstats. Implement
this functionality for FreeBSD to provide access to these kstats.
                           
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #10890
2020-09-23 16:43:51 -07:00
Michael Niewöhner
10b3c7f5e4 Add zstd support to zfs
This PR adds two new compression types, based on ZStandard:

- zstd: A basic ZStandard compression algorithm Available compression.
  Levels for zstd are zstd-1 through zstd-19, where the compression
  increases with every level, but speed decreases.

- zstd-fast: A faster version of the ZStandard compression algorithm
  zstd-fast is basically a "negative" level of zstd. The compression
  decreases with every level, but speed increases.

  Available compression levels for zstd-fast:
   - zstd-fast-1 through zstd-fast-10
   - zstd-fast-20 through zstd-fast-100 (in increments of 10)
   - zstd-fast-500 and zstd-fast-1000

For more information check the man page.

Implementation details:

Rather than treat each level of zstd as a different algorithm (as was
done historically with gzip), the block pointer `enum zio_compress`
value is simply zstd for all levels, including zstd-fast, since they all
use the same decompression function.

The compress= property (a 64bit unsigned integer) uses the lower 7 bits
to store the compression algorithm (matching the number of bits used in
a block pointer, as the 8th bit was borrowed for embedded block
pointers).  The upper bits are used to store the compression level.

It is necessary to be able to determine what compression level was used
when later reading a block back, so the concept used in LZ4, where the
first 32bits of the on-disk value are the size of the compressed data
(since the allocation is rounded up to the nearest ashift), was
extended, and we store the version of ZSTD and the level as well as the
compressed size. This value is returned when decompressing a block, so
that if the block needs to be recompressed (L2ARC, nop-write, etc), that
the same parameters will be used to result in the matching checksum.

All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`,
`zio_prop_t`, etc.) uses the separated _compress and _complevel
variables.  Only the properties ZAP contains the combined/bit-shifted
value. The combined value is split when the compression_changed_cb()
callback is called, and sets both objset members (os_compress and
os_complevel).

The userspace tools all use the combined/bit-shifted value.

Additional notes:

zdb can now also decode the ZSTD compression header (flag -Z) and
inspect the size, version and compression level saved in that header.
For each record, if it is ZSTD compressed, the parameters of the decoded
compression header get printed.

ZSTD is included with all current tests and new tests are added
as-needed.

Per-dataset feature flags now get activated when the property is set.
If a compression algorithm requires a feature flag, zfs activates the
feature when the property is set, rather than waiting for the first
block to be born.  This is currently only used by zstd but can be
extended as needed.

Portions-Sponsored-By: The FreeBSD Foundation
Co-authored-by: Allan Jude <allanjude@freebsd.org>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Co-authored-by: Michael Niewöhner <foss@mniewoehner.de>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
Closes #6247
Closes #9024
Closes #10277
Closes #10278
2020-08-20 10:30:06 -07:00
Brian Behlendorf
9a49d3f3d3
Add device rebuild feature
The device_rebuild feature enables sequential reconstruction when
resilvering.  Mirror vdevs can be rebuilt in LBA order which may
more quickly restore redundancy depending on the pools average block
size, overall fragmentation and the performance characteristics
of the devices.  However, block checksums cannot be verified
as part of the rebuild thus a scrub is automatically started after
the sequential resilver completes.

The new '-s' option has been added to the `zpool attach` and
`zpool replace` command to request sequential reconstruction
instead of healing reconstruction when resilvering.

    zpool attach -s <pool> <existing vdev> <new vdev>
    zpool replace -s <pool> <old vdev> <new vdev>

The `zpool status` output has been updated to report the progress
of sequential resilvering in the same way as healing resilvering.
The one notable difference is that multiple sequential resilvers
may be in progress as long as they're operating on different
top-level vdevs.

The `zpool wait -t resilver` command was extended to wait on
sequential resilvers.  From this perspective they are no different
than healing resilvers.

Sequential resilvers cannot be supported for RAIDZ, but are
compatible with the dRAID feature being developed.

As part of this change the resilver_restart_* tests were moved
in to the functional/replacement directory.  Additionally, the
replacement tests were renamed and extended to verify both
resilvering and rebuilding.

Original-patch-by: Isaac Huang <he.huang@intel.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: John Poduska <jpoduska@datto.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10349
2020-07-03 11:05:50 -07:00
Arvind Sankar
65c7cc49bf Mark functions as static
Mark functions used only in the same translation unit as static. This
only includes functions that do not have a prototype in a header file
either.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Closes #10470
2020-06-18 12:20:38 -07:00
Ryan Moeller
7e3df9db12
Finish refactoring for ZFS_MODULE_PARAM_CALL
Linux and FreeBSD have different parameters for tunable proc handler.
This has prevented FreeBSD from implementing the ZFS_MODULE_PARAM_CALL
macro.

To complete the sharing of ZFS_MODULE_PARAM_CALL declarations, create
per-platform definitions of the parameter list, ZFS_MODULE_PARAM_ARGS.

With the declarations wired up we discovered an incorrect scope prefix
for spa_slop_shift, so this is now fixed.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes #10179
2020-04-07 10:06:22 -07:00
Ryan Moeller
57940b435c
Share some code for spa deadman tunables
We need to do the same thing to update all spas on any OS for these
tunables, so let's share the code.

While here let's match the types of the literals initializing the
variables with the type of the variable.

Reviewed-by: Allan Jude <allanjude@freebsd.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes #9964
2020-02-10 13:11:30 -08:00
Matthew Macy
e64e84eca5 Refactor deadman set failmode to be cross platform
Update zfs_deadman_failmode to use the ZFS_MODULE_PARAM_CALL
wrapper, and split the common and platform specific portions.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9670
2019-12-05 12:40:45 -08:00
Matthew Macy
da92d5cbb3 Add zfs_file_* interface, remove vnodes
Provide a common zfs_file_* interface which can be implemented on all 
platforms to perform normal file access from either the kernel module
or the libzpool library.

This allows all non-portable vnode_t usage in the common code to be 
replaced by the new portable zfs_file_t.  The associated vnode and
kobj compatibility functions, types, and macros have been removed
from the SPL.  Moving forward, vnodes should only be used in platform
specific code when provided by the native operating system.

Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9556
2019-11-21 09:32:57 -08:00
Matthew Macy
2a3aa5a109 Factor Linux specific code out of spa_misc.c
Move these Linux module parameter get/set helpers in to
platform specific code.

Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9457
2019-10-31 09:52:22 -07:00
loli10K
e35704647e Fix for ARC sysctls ignored at runtime
This change leverage module_param_call() to run arc_tuning_update()
immediately after the ARC tunable has been updated as suggested in
cffa8372 code review.

A simple test case is added to the ZFS Test Suite to prevent future
regressions in functionality.

Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes #9487  
Closes #9489
2019-10-26 15:22:19 -07:00
Paul Dagnelie
ca5777793e Reduce loaded range tree memory usage
This patch implements a new tree structure for ZFS, and uses it to 
store range trees more efficiently.

The new structure is approximately a B-tree, though there are some 
small differences from the usual characterizations. The tree has core 
nodes and leaf nodes; each contain data elements, which the elements 
in the core nodes acting as separators between its children. The 
difference between core and leaf nodes is that the core nodes have an 
array of children, while leaf nodes don't. Every node in the tree may 
be only partially full; in most cases, they are all at least 50% full 
(in terms of element count) except for the root node, which can be 
less full. Underfull nodes will steal from their neighbors or merge to 
remain full enough, while overfull nodes will split in two. The data 
elements are contained in tree-controlled buffers; they are copied 
into these on insertion, and overwritten on deletion. This means that 
the elements are not independently allocated, which reduces overhead, 
but also means they can't be shared between trees (and also that 
pointers to them are only valid until a side-effectful tree operation 
occurs). The overhead varies based on how dense the tree is, but is 
usually on the order of about 50% of the element size; the per-node 
overheads are very small, and so don't make a significant difference. 
The trees can accept arbitrary records; they accept a size and a 
comparator to allow them to be used for a variety of purposes.

The new trees replace the AVL trees used in the range trees today. 
Currently, the range_seg_t structure contains three 8 byte integers 
of payload and two 24 byte avl_tree_node_ts to handle its storage in 
both an offset-sorted tree and a size-sorted tree (total size: 64 
bytes). In the new model, the range seg structures are usually two 4 
byte integers, but a separate one needs to exist for the size-sorted 
and offset-sorted tree. Between the raw size, the 50% overhead, and 
the double storage, the new btrees are expected to use 8*1.5*2 = 24 
bytes per record, or 33.3% as much memory as the AVL trees (this is 
for the purposes of storing metaslab range trees; for other purposes, 
like scrubs, they use ~50% as much memory).

We reduced the size of the payload in the range segments by teaching 
range trees about starting offsets and shifts; since metaslabs have a 
fixed starting offset, and they all operate in terms of disk sectors, 
we can store the ranges using 4-byte integers as long as the size of 
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle 
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not 
anticipate disks of this size in the near future, there should be 
almost no cases where metaslabs need 64-byte integers to store their 
ranges. We do still have the capability to store 64-byte integer ranges 
to account for cases where we are storing per-vdev (or per-dnode) trees, 
which could reasonably go above the limits discussed. We also do not 
store fill information in the compact version of the node, since it 
is only used for sorted scrub.

We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than 
they are for the avl tree, remove usually requires a find operation, 
while in the AVL tree model the element itself suffices. Some clever 
changes actually caused an overall speedup in metaslab loading; we use 
approximately 40% less cpu to load metaslabs in our tests on Illumos.

Another memory and performance optimization was achieved by changing 
what is stored in the size-sorted trees. When a disk is heavily 
fragmented, the df algorithm used by default in ZFS will almost always 
find a number of small regions in its initial cursor-based search; it 
will usually only fall back to the size-sorted tree to find larger 
regions. If we increase the size of the cursor-based search slightly, 
and don't store segments that are smaller than a tunable size floor 
in the size-sorted tree, we can further cut memory usage down to 
below 20% of what the AVL trees store. This also results in further 
reductions in CPU time spent loading metaslabs.

The 16KiB size floor was chosen because it results in substantial memory 
usage reduction while not usually resulting in situations where we can't 
find an appropriate chunk with the cursor and are forced to use an 
oversized chunk from the size-sorted tree. In addition, even if we do 
have to use an oversized chunk from the size-sorted tree, the chunk 
would be too small to use for ZIL allocations, so it isn't as big of a 
loss as it might otherwise be. And often, more small allocations will 
follow the initial one, and the cursor search will now find the 
remainder of the chunk we didn't use all of and use it for subsequent 
allocations. Practical testing has shown little or no change in 
fragmentation as a result of this change.

If the size-sorted tree becomes empty while the offset sorted one still 
has entries, it will load all the entries from the offset sorted tree 
and disregard the size floor until it is unloaded again. This operation 
occurs rarely with the default setting, only on incredibly thoroughly 
fragmented pools.

There are some other small changes to zdb to teach it to handle btrees, 
but nothing major.
                                           
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy seb@delphix.com
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9181
2019-10-09 10:36:03 -07:00
John Gallagher
e60e158eff Add subcommand to wait for background zfs activity to complete
Currently the best way to wait for the completion of a long-running
operation in a pool, like a scrub or device removal, is to poll 'zpool
status' and parse its output, which is neither efficient nor convenient.

This change adds a 'wait' subcommand to the zpool command. When invoked,
'zpool wait' will block until a specified type of background activity
completes. Currently, this subcommand can wait for any of the following:

 - Scrubs or resilvers to complete
 - Devices to initialized
 - Devices to be replaced
 - Devices to be removed
 - Checkpoints to be discarded
 - Background freeing to complete

For example, a scrub that is in progress could be waited for by running

    zpool wait -t scrub <pool>

This also adds a -w flag to the attach, checkpoint, initialize, replace,
remove, and scrub subcommands. When used, this flag makes the operations
kicked off by these subcommands synchronous instead of asynchronous.

This functionality is implemented using a new ioctl. The type of
activity to wait for is provided as input to the ioctl, and the ioctl
blocks until all activity of that type has completed. An ioctl was used
over other methods of kernel-userspace communiction primarily for the
sake of portability.

Porting Notes:
This is ported from Delphix OS change DLPX-44432. The following changes
were made while porting:

 - Added ZoL-style ioctl input declaration.
 - Reorganized error handling in zpool_initialize in libzfs to integrate
   better with changes made for TRIM support.
 - Fixed check for whether a checkpoint discard is in progress.
   Previously it also waited if the pool had a checkpoint, instead of
   just if a checkpoint was being discarded.
 - Exposed zfs_initialize_chunk_size as a ZoL-style tunable.
 - Updated more existing tests to make use of new 'zpool wait'
   functionality, tests that don't exist in Delphix OS.
 - Used existing ZoL tunable zfs_scan_suspend_progress, together with
   zinject, in place of a new tunable zfs_scan_max_blks_per_txg.
 - Added support for a non-integral interval argument to zpool wait.

Future work:
ZoL has support for trimming devices, which Delphix OS does not. In the
future, 'zpool wait' could be extended to add the ability to wait for
trim operations to complete.

Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
Closes #9162
2019-09-13 18:09:06 -07:00
Brian Behlendorf
25f06d677a
Fix /etc/hostid on root pool deadlock
Accidentally introduced by dc04a8c which now takes the SCL_VDEV lock
as a reader in zfs_blkptr_verify().  A deadlock can occur if the
/etc/hostid file resides on a dataset in the same pool.  This is
because reading the /etc/hostid file may occur while the caller is
holding the SCL_VDEV lock as a writer.  For example, to perform a
`zpool attach` as shown in the abbreviated stack below.

To resolve the issue we cache the system's hostid when initializing
the spa_t, or when modifying the multihost property.  The cached
value is then relied upon for subsequent accesses.

Call Trace:
    spa_config_enter+0x1e8/0x350 [zfs]
    zfs_blkptr_verify+0x33c/0x4f0 [zfs] <--- trying read lock
    zio_read+0x6c/0x140 [zfs]
    ...
    vfs_read+0xfc/0x1e0
    kernel_read+0x50/0x90
    ...
    spa_get_hostid+0x1c/0x38 [zfs]
    spa_config_generate+0x1a0/0x610 [zfs]
    vdev_label_init+0xa0/0xc80 [zfs]
    vdev_create+0x98/0xe0 [zfs]
    spa_vdev_attach+0x14c/0xb40 [zfs] <--- grabbed write lock

Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #9256 
Closes #9285
2019-09-10 13:42:30 -07:00
Matthew Macy
bced7e3aaa OpenZFS restructuring - move platform specific sources
Move platform specific Linux source under module/os/linux/
and update the build system accordingly.  Additional code
restructuring will follow to make the common code fully
portable.
    
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Macy <mmacy@FreeBSD.org>
Closes #9206
2019-09-06 11:26:26 -07:00
Matthew Macy
03fdcb9adc Make module tunables cross platform
Adds ZFS_MODULE_PARAM to abstract module parameter
setting to operating systems other than Linux.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes #9230
2019-09-05 14:49:49 -07:00
Paul Dagnelie
dc04a8c757 Prevent race in blkptr_verify against device removal
When we check the vdev of the blkptr in zfs_blkptr_verify, we can run 
into a race condition where that vdev is temporarily unavailable. This 
happens when a device removal operation and the old vdev_t has been 
removed from the array, but the new indirect vdev has not yet been 
inserted.

We hold the spa_config_lock while doing our sensitive verification. 
To ensure that we don't deadlock, we only grab the lock if we don't 
have config_writer held. In addition, I had to const the tags of the 
refcounts and the spa_config_lock arguments.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9112
2019-08-13 21:24:43 -06:00
Serapheim Dimitropoulos
93e28d661e Log Spacemap Project
= Motivation

At Delphix we've seen a lot of customer systems where fragmentation
is over 75% and random writes take a performance hit because a lot
of time is spend on I/Os that update on-disk space accounting metadata.
Specifically, we seen cases where 20% to 40% of sync time is spend
after sync pass 1 and ~30% of the I/Os on the system is spent updating
spacemaps.

The problem is that these pools have existed long enough that we've
touched almost every metaslab at least once, and random writes
scatter frees across all metaslabs every TXG, thus appending to
their spacemaps and resulting in many I/Os. To give an example,
assuming that every VDEV has 200 metaslabs and our writes fit within
a single spacemap block (generally 4K) we have 200 I/Os. Then if we
assume 2 levels of indirection, we need 400 additional I/Os and
since we are talking about metadata for which we keep 2 extra copies
for redundancy we need to triple that number, leading to a total of
1800 I/Os per VDEV every TXG.

We could try and decrease the number of metaslabs so we have less
I/Os per TXG but then each metaslab would cover a wider range on
disk and thus would take more time to be loaded in memory from disk.
In addition, after it's loaded, it's range tree would consume more
memory.

Another idea would be to just increase the spacemap block size
which would allow us to fit more entries within an I/O block
resulting in fewer I/Os per metaslab and a speedup in loading time.
The problem is still that we don't deal with the number of I/Os
going up as the number of metaslabs is increasing and the fact
is that we generally write a lot to a few metaslabs and a little
to the rest of them. Thus, just increasing the block size would
actually waste bandwidth because we won't be utilizing our bigger
block size.

= About this patch

This patch introduces the Log Spacemap project which provides the
solution to the above problem while taking into account all the
aforementioned tradeoffs. The details on how it achieves that can
be found in the references sections below and in the code (see
Big Theory Statement in spa_log_spacemap.c).

Even though the change is fairly constraint within the metaslab
and lower-level SPA codepaths, there is a side-change that is
user-facing. The change is that VDEV IDs from VDEV holes will no
longer be reused. To give some background and reasoning for this,
when a log device is removed and its VDEV structure was replaced
with a hole (or was compacted; if at the end of the vdev array),
its vdev_id could be reused by devices added after that. Now
with the pool-wide space maps recording the vdev ID, this behavior
can cause problems (e.g. is this entry referring to a segment in
the new vdev or the removed log?). Thus, to simplify things the
ID reuse behavior is gone and now vdev IDs for top-level vdevs
are truly unique within a pool.

= Testing

The illumos implementation of this feature has been used internally
for a year and has been in production for ~6 months. For this patch
specifically there don't seem to be any regressions introduced to
ZTS and I have been running zloop for a week without any related
problems.

= Performance Analysis (Linux Specific)

All performance results and analysis for illumos can be found in
the links of the references. Redoing the same experiments in Linux
gave similar results. Below are the specifics of the Linux run.

After the pool reached stable state the percentage of the time
spent in pass 1 per TXG was 64% on average for the stock bits
while the log spacemap bits stayed at 95% during the experiment
(graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png).

Sync times per TXG were 37.6 seconds on average for the stock
bits and 22.7 seconds for the log spacemap bits (related graph:
sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result
the log spacemap bits were able to push more TXGs, which is also
the reason why all graphs quantified per TXG have more entries for
the log spacemap bits.

Another interesting aspect in terms of txg syncs is that the stock
bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8,
and 20% reach 9. The log space map bits reached sync pass 4 in 79%
of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This
emphasizes the fact that not only we spend less time on metadata
but we also iterate less times to convergence in spa_sync() dirtying
objects.
[related graphs:
stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png
lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png]

Finally, the improvement in IOPs that the userland gains from the
change is approximately 40%. There is a consistent win in IOPS as
you can see from the graphs below but the absolute amount of
improvement that the log spacemap gives varies within each minute
interval.
sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png
sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png

= Porting to Other Platforms

For people that want to port this commit to other platforms below
is a list of ZoL commits that this patch depends on:

Make zdb results for checkpoint tests consistent
db587941c5

Update vdev_is_spacemap_addressable() for new spacemap encoding
419ba59145

Simplify spa_sync by breaking it up to smaller functions
8dc2197b7b

Factor metaslab_load_wait() in metaslab_load()
b194fab0fb

Rename range_tree_verify to range_tree_verify_not_present
df72b8bebe

Change target size of metaslabs from 256GB to 16GB
c853f382db

zdb -L should skip leak detection altogether
21e7cf5da8

vs_alloc can underflow in L2ARC vdevs
7558997d2f

Simplify log vdev removal code
6c926f426a

Get rid of space_map_update() for ms_synced_length
425d3237ee

Introduce auxiliary metaslab histograms
928e8ad47d

Error path in metaslab_load_impl() forgets to drop ms_sync_lock
8eef997679

= References

Background, Motivation, and Internals of the Feature
- OpenZFS 2017 Presentation:
youtu.be/jj2IxRkl5bQ
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project

Flushing Algorithm Internals & Performance Results
(Illumos Specific)
- Blogpost:
sdimitro.github.io/post/zfs-lsm-flushing/
- OpenZFS 2018 Presentation:
youtu.be/x6D2dHRjkxw
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm

Upstream Delphix Issues:
DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320
DLPX-63385

Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #8442
2019-07-16 10:11:49 -07:00
loli10K
75c09c5060 Fix coverity defects: CID 186143
CID 186143: Memory - illegal accesses (USE_AFTER_FREE)

This patch fixes an use-after-free in spa_import_progress_destroy()
moving the kmem_free() call at the end of the function.

Reviewed-by: Chris Dunlop <chris@onthe.net.au>
Reviewed-by: Giuseppe Di Natale <guss80@gmail.com>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes #8788
2019-05-23 19:17:00 -07:00
Richard Elling
78fac8d925 Fix kstat state update during pool transition
When reading kstats, the health (aka state) of the pool is stored into
/proc/spl/kstat/zfs/POOLNAME/state via spa_state_to_name().
However, during import/export there is a case where the spa exists,
but the root vdev does not exist. This fix checks that case and sets
the state to "TRANSITIONING"

Unfortunately, it is not easy to reproduce a test for this. It was
detected randomly during ZTS runs while kstats were also being sampled
regularly. After this change, further testing did not trip on the case
and the TRANSITIONING state was collected at least once by the kstats.

For posterity, the backtrace prior to this fix is:
[Mon May 13 17:21:00 2019] RIP: 0010:spa_state_to_name+0x10/0xb0 [zfs]
...
Mon May 13 17:21:00 2019] Call Trace:
[Mon May 13 17:21:00 2019]  spa_state_data+0x1a/0x40 [zfs]
[Mon May 13 17:21:00 2019]  kstat_seq_show+0x117/0x440 [spl]
[Mon May 13 17:21:00 2019]  seq_read+0xe5/0x430
[Mon May 13 17:21:00 2019]  proc_reg_read+0x45/0x70
[Mon May 13 17:21:00 2019]  __vfs_read+0x1b/0x40
[Mon May 13 17:21:00 2019]  vfs_read+0x8e/0x130
[Mon May 13 17:21:00 2019]  SyS_read+0x55/0xc0
[Mon May 13 17:21:00 2019]  ? SyS_fcntl+0x5d/0xb0
[Mon May 13 17:21:00 2019]  do_syscall_64+0x73/0x130
[Mon May 13 17:21:00 2019]  entry_SYSCALL_64_after_hwframe+0x3d/0xa2

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Richard Elling <Richard.Elling@RichardElling.com>
Closes #8746
2019-05-23 14:28:53 -07:00
Olaf Faaland
ca95f70dff zpool import progress kstat
When an import requires a long MMP activity check, or when the user
requests pool recovery, the import make take a long time.  The user may
not know why, or be able to tell whether the import is progressing or is
hung.

Add a kstat which lists all imports currently being processed by the
kernel (currently only one at a time is possible, but the kstat allows
for more than one).  The kstat is /proc/spl/kstat/zfs/import_progress.

The kstat contents are as follows:
pool_guid         load_state multihost_secs  max_txg pool_name
16667015954387398 3          15              0       tank3

load_state: the value of spa_load_state
multihost_secs:  seconds until the end of the multihost activity
                 check; if over, or none required, this is 0
max_txg: current spa_load_max_txg, if rewind is occurring

This could be used by outside tools, such as a pacemaker resource agent,
to report import progress, or as a part of manual troubleshooting.  The
zpool import subcommand could also be modified to report this
information.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes #8696
2019-05-09 10:08:05 -07:00
DeHackEd
1f02ecc5a5 Make zfs_special_class_metadata_reserve_pct into a parameter
Exported and documented a new module parameter.

Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: DHE <git@dehacked.net>
Closes #8706
2019-05-07 15:34:42 -07:00
Brian Behlendorf
1b939560be
Add TRIM support
UNMAP/TRIM support is a frequently-requested feature to help
prevent performance from degrading on SSDs and on various other
SAN-like storage back-ends.  By issuing UNMAP/TRIM commands for
sectors which are no longer allocated the underlying device can
often more efficiently manage itself.

This TRIM implementation is modeled on the `zpool initialize`
feature which writes a pattern to all unallocated space in the
pool.  The new `zpool trim` command uses the same vdev_xlate()
code to calculate what sectors are unallocated, the same per-
vdev TRIM thread model and locking, and the same basic CLI for
a consistent user experience.  The core difference is that
instead of writing a pattern it will issue UNMAP/TRIM commands
for those extents.

The zio pipeline was updated to accommodate this by adding a new
ZIO_TYPE_TRIM type and associated spa taskq.  This new type makes
is straight forward to add the platform specific TRIM/UNMAP calls
to vdev_disk.c and vdev_file.c.  These new ZIO_TYPE_TRIM zios are
handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs.
This makes it possible to largely avoid changing the pipieline,
one exception is that TRIM zio's may exceed the 16M block size
limit since they contain no data.

In addition to the manual `zpool trim` command, a background
automatic TRIM was added and is controlled by the 'autotrim'
property.  It relies on the exact same infrastructure as the
manual TRIM.  However, instead of relying on the extents in a
metaslab's ms_allocatable range tree, a ms_trim tree is kept
per metaslab.  When 'autotrim=on', ranges added back to the
ms_allocatable tree are also added to the ms_free tree.  The
ms_free tree is then periodically consumed by an autotrim
thread which systematically walks a top level vdev's metaslabs.

Since the automatic TRIM will skip ranges it considers too small
there is value in occasionally running a full `zpool trim`.  This
may occur when the freed blocks are small and not enough time
was allowed to aggregate them.  An automatic TRIM and a manual
`zpool trim` may be run concurrently, in which case the automatic
TRIM will yield to the manual TRIM.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Contributions-by: Tim Chase <tim@chase2k.com>
Contributions-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8419 
Closes #598
2019-03-29 09:13:20 -07:00
Olaf Faaland
3d31aad83e MMP writes rotate over leaves
Instead of choosing a leaf vdev quasi-randomly, by starting at the root
vdev and randomly choosing children, rotate over leaves to issue MMP
writes.  This fixes an issue in a pool whose top-level vdevs have
different numbers of leaves.

The issue is that the frequency at which individual leaves are chosen
for MMP writes is based not on the total number of leaves but based on
how many siblings the leaves have.

For example, in a pool like this:

       root-vdev
   +------+---------------+
vdev1                   vdev2
  |                       |
  |                +------+-----+-----+----+
disk1             disk2 disk3 disk4 disk5 disk6

vdev1 and vdev2 will each be chosen 50% of the time.  Every time vdev1
is chosen, disk1 will be chosen.  However, every time vdev2 is chosen,
disk2 is chosen 20% of the time.  As a result, disk1 will be sent 5x as
many MMP writes as disk2.

This may create wear issues in the case of SSDs.  It also reduces the
effectiveness of MMP as it depends on the writes being evenly
distributed for the case where some devices fail or are partitioned.

The new code maintains a list of leaf vdevs in the pool.  MMP records
the last leaf used for an MMP write in mmp->mmp_last_leaf.  To choose
the next leaf, MMP starts at mmp->mmp_last_leaf and traverses the list,
continuing from the head if the tail is reached.  It stops when a
suitable leaf is found or all leaves have been examined.

Added a test to verify MMP write distribution is even.

Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Kash Pande <kash@tripleback.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes #7953
2019-03-12 10:37:06 -07:00
loli10K
4417096956 Pool allocation classes misplacing small file blocks
Due to an off-by-one condition in spa_preferred_class() we are picking
the "normal" allocation class instead of the "special" one for file
blocks with size equal to the special_small_blocks property value.

This change fix the small code issue, update the ZFS Test Suite and the
zfs(8) man page.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes #8351
Closes #8361
2019-02-08 12:32:12 -08:00
George Wilson
c10d37dd9f zfs initialize performance enhancements
PROBLEM
========

When invoking "zpool initialize" on a pool the command will
create a thread to initialize each disk. Unfortunately, it does
this serially across many transaction groups which can result
in commands taking a long time to return to the user and may
appear hung. The same thing is true when trying to suspend/cancel
the operation.

SOLUTION
=========

This change refactors the way we invoke the initialize interface
to ensure we can start or stop the intialization in just a few
transaction groups.

When stopping or cancelling a vdev initialization perform it
in two phases.  First signal each vdev initialization thread
that it should exit, then after all threads have been signaled
wait for them to exit.

On a pool with 40 leaf vdevs this reduces the vdev initialize
stop/cancel time from ~10 minutes to under a second.  The reason
for this is spa_vdev_initialize() no longer needs to wait on
multiple full TXGs per leaf vdev being stopped.

This commit additionally adds some missing checks for the passed
"initialize_vdevs" input nvlist.  The contents of the user provided
input "initialize_vdevs" nvlist must be validated to ensure all
values are uint64s.  This is done in zfs_ioc_pool_initialize() in
order to keep all of these checks in a single location.

Updated the innvl and outnvl comments to match the formatting used
for all other new sytle ioctls.

Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Reviewed-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Wilson <george.wilson@delphix.com>
Closes #8230
2019-01-07 11:03:08 -08:00
George Wilson
619f097693 OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========

The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.

SOLUTION
=========

This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.

When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
        - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
                - start, suspend, or cancel initialization
        - Creates new open-context thread for each vdev
        - Thread iterates through all metaslabs in this vdev
        - Each metaslab:
                - select a metaslab
                - load the metaslab
                - mark the metaslab as being zeroed
                - walk all free ranges within that metaslab and translate
                  them to ranges on the leaf vdev
                - issue a "zeroing" I/O on the leaf vdev that corresponds to
                  a free range on the metaslab we're working on
                - continue until all free ranges for this metaslab have been
                  "zeroed"
                - reset/unmark the metaslab being zeroed
                - if more metaslabs exist, then repeat above tasks.
                - if no more metaslabs, then we're done.

        - progress for the initialization is stored on-disk in the vdev’s
          leaf zap object. The following information is stored:
                - the last offset that has been initialized
                - the state of the initialization process (i.e. active,
                  suspended, or canceled)
                - the start time for the initialization

        - progress is reported via the zpool status command and shows
          information for each of the vdevs that are initializing

Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
  written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.

Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>

OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2019-01-07 10:37:26 -08:00
Tom Caputi
9410257800 Fix random ztest_deadman_thread failures
The zloop test has been failing in buildbot for the last few weeks
with various failures in ztest_deadman_thread(). This is due to the
fact that this thread is not stopped when performing pool import /
export tests as it should be. This patch simply corrects this.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #8010
2018-10-24 14:36:21 -07:00
Matthew Ahrens
d637db98e1 OpenZFS 9681 - ztest failure in spa_history_log_internal due to spa_rename()
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: George Melikov <mail@gmelikov.ru>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>

OpenZFS-issue: https://www.illumos.org/issues/9681
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/6aee0ad7
Closes #8041
2018-10-19 12:02:28 -07:00
Tim Schumacher
424fd7c3e0 Prefix all refcount functions with zfs_
Recent changes in the Linux kernel made it necessary to prefix
the refcount_add() function with zfs_ due to a name collision.

To bring the other functions in line with that and to avoid future
collisions, prefix the other refcount functions as well.

Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Schumacher <timschumi@gmx.de>
Closes #7963
2018-10-01 10:42:05 -07:00
Tim Schumacher
c13060e478 Linux 4.19-rc3+ compat: Remove refcount_t compat
torvalds/linux@59b57717f ("blkcg: delay blkg destruction until
after writeback has finished") added a refcount_t to the blkcg
structure. Due to the refcount_t compatibility code, zfs_refcount_t
was used by mistake.

Resolve this by removing the compatibility code and replacing the
occurrences of refcount_t with zfs_refcount_t.

Reviewed-by: Franz Pletz <fpletz@fnordicwalking.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Schumacher <timschumi@gmx.de>
Closes #7885 
Closes #7932
2018-09-26 10:29:26 -07:00
LOLi
7522a26077 Add limits to spa_slop_shift tunable
This change adds limits to the possible spa_slop_shift values set via
the sysfs interface. Accepted values are from a minimum of 1 to a
maximum of 31 (inclusive): these limits are based on the following
values observed on a 128PB file-vdev test pool:

spa_slop_shift=1, spa_get_slop_space=63.5PiB
spa_slop_shift=2, spa_get_slop_space=31.8PiB
spa_slop_shift=3, spa_get_slop_space=15.9PiB
spa_slop_shift=4, spa_get_slop_space=7.9PiB
spa_slop_shift=5, spa_get_slop_space=4PiB
spa_slop_shift=6, spa_get_slop_space=2PiB
...
spa_slop_shift=25, spa_get_slop_space=4GiB
spa_slop_shift=26, spa_get_slop_space=2GiB
spa_slop_shift=27, spa_get_slop_space=1016MiB
spa_slop_shift=28, spa_get_slop_space=508MiB
spa_slop_shift=29, spa_get_slop_space=254MiB
spa_slop_shift=30, spa_get_slop_space=128MiB
spa_slop_shift=31, spa_get_slop_space=128MiB
spa_slop_shift=32, spa_get_slop_space=128MiB

Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes #7876 
Closes #7900
2018-09-20 21:10:12 -07:00
Don Brady
cc99f275a2 Pool allocation classes
Allocation Classes add the ability to have allocation classes in a
pool that are dedicated to serving specific block categories, such
as DDT data, metadata, and small file blocks. A pool can opt-in to
this feature by adding a 'special' or 'dedup' top-level VDEV.

Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Reviewed-by: Andreas Dilger <andreas.dilger@chamcloud.com>
Reviewed-by: DHE <git@dehacked.net>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Gregor Kopka <gregor@kopka.net>
Reviewed-by: Kash Pande <kash@tripleback.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes #5182
2018-09-05 18:33:36 -07:00
Paul Dagnelie
492f64e941 OpenZFS 9112 - Improve allocation performance on high-end systems
Overview
========

We parallelize the allocation process by creating the concept of
"allocators". There are a certain number of allocators per metaslab
group, defined by the value of a tunable at pool open time.  Each
allocator for a given metaslab group has up to 2 active metaslabs; one
"primary", and one "secondary". The primary and secondary weight mean
the same thing they did in in the pre-allocator world; primary metaslabs
are used for most allocations, secondary metaslabs are used for ditto
blocks being allocated in the same metaslab group.  There is also the
CLAIM weight, which has been separated out from the other weights, but
that is less important to understanding the patch.  The active metaslabs
for each allocator are moved from their normal place in the metaslab
tree for the group to the back of the tree. This way, they will not be
selected for use by other allocators searching for new metaslabs unless
all the passive metaslabs are unsuitable for allocations.  If that does
happen, the allocators will "steal" from each other to ensure that IOs
don't fail until there is truly no space left to perform allocations.

In addition, the alloc queue for each metaslab group has been broken
into a separate queue for each allocator. We don't want to dramatically
increase the number of inflight IOs on low-end systems, because it can
significantly increase txg times. On the other hand, we want to ensure
that there are enough IOs for each allocator to allow for good
coalescing before sending the IOs to the disk.  As a result, we take a
compromise path; each allocator's alloc queue max depth starts at a
certain value for every txg. Every time an IO completes, we increase the
max depth. This should hopefully provide a good balance between the two
failure modes, while not dramatically increasing complexity.

We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause
very similar contention when selecting IOs to allocate. This
parallelization uses the same allocator scheme as metaslab selection.

Performance Results
===================

Performance improvements from this change can vary significantly based
on the number of CPUs in the system, whether or not the system has a
NUMA architecture, the speed of the drives, the values for the various
tunables, and the workload being performed. For an fio async sequential
write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB
SSDs, there is a roughly 25% performance improvement.

Future Work
===========

Analysis of the performance of the system with this patch applied shows
that a significant new bottleneck is the vdev disk queues, which also
need to be parallelized.  Prototyping of this change has occurred, and
there was a performance improvement, but more work needs to be done
before its stability has been verified and it is ready to be upstreamed.

Authored by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Alexander Motin <mav@FreeBSD.org>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Gordon Ross <gwr@nexenta.com>
Ported-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>

Porting Notes:
* Fix reservation test failures by increasing tolerance.

OpenZFS-issue: https://illumos.org/issues/9112
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3
Closes #7682
2018-07-31 10:52:33 -07:00