UNMAP/TRIM support is a frequently-requested feature to help
prevent performance from degrading on SSDs and on various other
SAN-like storage back-ends. By issuing UNMAP/TRIM commands for
sectors which are no longer allocated the underlying device can
often more efficiently manage itself.
This TRIM implementation is modeled on the `zpool initialize`
feature which writes a pattern to all unallocated space in the
pool. The new `zpool trim` command uses the same vdev_xlate()
code to calculate what sectors are unallocated, the same per-
vdev TRIM thread model and locking, and the same basic CLI for
a consistent user experience. The core difference is that
instead of writing a pattern it will issue UNMAP/TRIM commands
for those extents.
The zio pipeline was updated to accommodate this by adding a new
ZIO_TYPE_TRIM type and associated spa taskq. This new type makes
is straight forward to add the platform specific TRIM/UNMAP calls
to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are
handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs.
This makes it possible to largely avoid changing the pipieline,
one exception is that TRIM zio's may exceed the 16M block size
limit since they contain no data.
In addition to the manual `zpool trim` command, a background
automatic TRIM was added and is controlled by the 'autotrim'
property. It relies on the exact same infrastructure as the
manual TRIM. However, instead of relying on the extents in a
metaslab's ms_allocatable range tree, a ms_trim tree is kept
per metaslab. When 'autotrim=on', ranges added back to the
ms_allocatable tree are also added to the ms_free tree. The
ms_free tree is then periodically consumed by an autotrim
thread which systematically walks a top level vdev's metaslabs.
Since the automatic TRIM will skip ranges it considers too small
there is value in occasionally running a full `zpool trim`. This
may occur when the freed blocks are small and not enough time
was allowed to aggregate them. An automatic TRIM and a manual
`zpool trim` may be run concurrently, in which case the automatic
TRIM will yield to the manual TRIM.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Contributions-by: Tim Chase <tim@chase2k.com>
Contributions-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8419Closes#598
Resolve a vdev_initialize crash uncovered by ztest. Similar
to when starting a new initialization verify that a removal
is not in progress. Additionally, do not restart when the
thread already exists. This check is now congruent with the
POOL_INITIALIZE_DO handling in spa_vdev_initialize_impl().
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8477
Before allowing new allocations to the metaslab we need to ensure
that any issued initializing writes have been synced. Otherwise,
it's possible for metaslab_block_alloc() to allocate a range which
is about to be overwritten by an initializing IO.
Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8461
Initially, metaslabs and space maps used to be the same thing
in ZFS. Later, we started differentiating them by referring
to the space map as the on-disk state of the metaslab, making
the metaslab a higher-level concept that is metadata that deals
with space accounting. Today we've managed to split that code
furthermore, with the space map being its own on-disk data
structure used in areas of ZFS besides metaslabs (e.g. the
vdev-wide space maps used for zpool checkpoint or vdev removal
features).
This patch refactors the space map code to further split the
space map code from the metaslab code. It does so by getting
rid of the idea that the space map can have a different in-core
and on-disk length (sm_length vs smp_length) which is something
that is only used for the metaslab code, and other consumers
of space maps just have to deal with. Instead, this patch
introduces changes that move the old in-core length of the
metaslab's space map to the metaslab structure itself (see
ms_synced_length field) while making the space map code only
care about the actual space map's length on-disk.
The result of this is that space map consumers no longer have
to deal with syncing two different lengths for the same
structure (e.g. space_map_update() goes away) while metaslab
specific behavior stays within the metaslab code. Specifically,
the ms_synced_length field keeps track of the amount of data
metaslab_load() can read from the metaslab's space map while
working concurrently with metaslab_sync() that may be
appending to that same space map.
As a side note, the patch also adds a few comments around
the metaslab code documenting some assumptions and expected
behavior.
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8328
Most callers that need to operate on a loaded metaslab, always
call metaslab_load_wait() before loading the metaslab just in
case someone else is already doing the work.
Factoring metaslab_load_wait() within metaslab_load() makes the
later more robust, as callers won't have to do the load-wait
check explicitly every time they need to load a metaslab.
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8290
PROBLEM
========
When invoking "zpool initialize" on a pool the command will
create a thread to initialize each disk. Unfortunately, it does
this serially across many transaction groups which can result
in commands taking a long time to return to the user and may
appear hung. The same thing is true when trying to suspend/cancel
the operation.
SOLUTION
=========
This change refactors the way we invoke the initialize interface
to ensure we can start or stop the intialization in just a few
transaction groups.
When stopping or cancelling a vdev initialization perform it
in two phases. First signal each vdev initialization thread
that it should exit, then after all threads have been signaled
wait for them to exit.
On a pool with 40 leaf vdevs this reduces the vdev initialize
stop/cancel time from ~10 minutes to under a second. The reason
for this is spa_vdev_initialize() no longer needs to wait on
multiple full TXGs per leaf vdev being stopped.
This commit additionally adds some missing checks for the passed
"initialize_vdevs" input nvlist. The contents of the user provided
input "initialize_vdevs" nvlist must be validated to ensure all
values are uint64s. This is done in zfs_ioc_pool_initialize() in
order to keep all of these checks in a single location.
Updated the innvl and outnvl comments to match the formatting used
for all other new sytle ioctls.
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Reviewed-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Wilson <george.wilson@delphix.com>
Closes#8230
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210ebCloses#8230