Commit Graph

109 Commits

Author SHA1 Message Date
Tim Chase
f4a4046bd6 Convert zfs_mg_noalloc_threshold to a module parameter and document
The parameter was added as illumos issue 4081 which was committed to
zfsonlinux in ac72fac3ea.  This patch
documents the parameter and allows for it to be set as a module parameter.

Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2483
2014-07-16 16:49:25 -07:00
Tim Chase
27b293be8a Expand the description of scan-related and other parameters.
Document that the scan-related parameters are, in fact, applicable only
to scrub and/or resilver operations as appropriate.

Expand a few of the prefetch-related descriptions.

Add clarification to other module parameters.

Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2361
2014-06-06 13:04:43 -07:00
George Wilson
aa7d06a98a Illumos #4101 finer-grained control of metaslab_debug
Today the metaslab_debug logic performs two tasks:

- load all metaslabs on import/open
- don't unload metaslabs at the end of spa_sync

This change provides knobs for each of these independently.

References:
  https://illumos.org/issues/4101
  https://github.com/illumos/illumos-gate/commit/0713e23

Notes:

1) This is a small piece of the metaslab improvement patch from
Illumos. It was worth bringing over before the rest, since it's
low risk and it can be useful on fragmented pools (e.g. Lustre
MDTs). metaslab_debug_unload would give the performance benefit
of the old metaslab_debug option without causing unwanted delay
during pool import.

Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2227
2014-05-06 09:46:04 -07:00
Prakash Surya
624227854e Disable arc_p adapt dampener by default
It's unclear why adjustments to arc_p need to be dampened as they are in
arc_adjust. With that said, it's removal significantly improves the arc's
ability to "warm up" to a given workload. Thus, I'm disabling by default
until its usefulness is better understood.

Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #2110
2014-02-21 16:10:49 -08:00
Prakash Surya
f521ce1b9c Allow "arc_p" to drop to zero or grow to "arc_c"
Setting a limit on the minimum value of "arc_p" has been shown to have
detrimental effects on the arc hit rate for certain "metadata" intensive
workloads. Specifically, this has been exhibited with a workload that
constantly dirties new "metadata" but also frequently touches a "small"
amount of mfu data (e.g. mkdir's).

What is seen is that the new anon data throttles the mfu list to a
negligible size (because arc_p > anon + mru in arc_get_data_buf), even
though the mfu ghost list receives a constant stream of hits. To remedy
this, arc_p is now allowed to drop to zero if the algorithm deems it
necessary.

Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #2110
2014-02-21 16:10:27 -08:00
Prakash Surya
89c8cac493 Disable aggressive arc_p growth by default
For specific workloads consisting mainly of mfu data and new anon data
buffers, the aggressive growth of arc_p found in the arc_get_data_buf()
function can have detrimental effects on the mfu list size and ghost
list hit rate.

Running a workload consisting of two processes:

    * Process 1 is creating many small files
    * Process 2 is tar'ing a directory consisting of many small files

I've seen arc_p and the mru grow to their maximum size, while the mru
ghost list receives 100K times fewer hits than the mfu ghost list.

Ideally, as the mfu ghost list receives hits, arc_p should be driven
down and the size of the mfu should increase. Given the specific
workload I was testing with, the mfu list size should grow to a point
where almost no mfu ghost list hits would occur. Unfortunately, this
does not happen because the newly dirtied anon buffers constancy drive
arc_p to its maximum value and keep it there (effectively prioritizing
the mru list and starving the mfu list down to a negligible size).

The logic to increment arc_p from within the arc_get_data_buf() function
was introduced many years ago in this upstream commit:

    commit 641fbdae3a027d12b3c3dcd18927ccafae6d58bc
    Author: maybee <none@none>
    Date:   Wed Dec 20 15:46:12 2006 -0800

        6505658 target MRU size (arc.p) needs to be adjusted more aggressively

and since I don't fully understand the motivation for the change, I am
reluctant to completely remove it.

As a way to test out how it's removal might affect performance, I've
disabled that code by default, but left it tunable via a module option.
Thus, if its removal is found to be grossly detrimental for certain
workloads, it can be re-enabled on the fly, without a code change.

Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #2110
2014-02-21 14:53:28 -08:00
Turbo Fredriksson
fd8febbd1e Add zfs_send_corrupt_data module option
Tuning setting to ignore read/checksum errors when sending data.

Signed-off-by: Turbo Fredriksson <turbo@bayour.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1982
Issue #1897
2013-12-18 16:46:35 -08:00
Matthew Ahrens
e8b96c6007 Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work

1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver.  The scheduler
issues a number of concurrent i/os from each class to the device.  Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes).  The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is.  See the block comment in vdev_queue.c (reproduced
below) for more details.

2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load.  The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system.  When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount.  This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens.  One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync().  Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes.  See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.

This diff has several other effects, including:

 * the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.

 * the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently.  There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.

 * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc.  This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).

--matt

APPENDIX: problems with the current i/o scheduler

The current ZFS i/o scheduler (vdev_queue.c) is deadline based.  The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.

For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due".  One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).

If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os.  This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future.  If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due.  Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).

Notes on porting to ZFS on Linux:

- zio_t gained new members io_physdone and io_phys_children.  Because
  object caches in the Linux port call the constructor only once at
  allocation time, objects may contain residual data when retrieved
  from the cache. Therefore zio_create() was updated to zero out the two
  new fields.

- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
  (vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
  This tree has been replaced by vq->vq_active_tree which is now used
  for the same purpose.

- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
  the number of vdev I/O buffers to pre-allocate.  That global no longer
  exists, so we instead use the sum of the *_max_active values for each of
  the five I/O classes described above.

- The Illumos implementation of dmu_tx_delay() delays a transaction by
  sleeping in condition variable embedded in the thread
  (curthread->t_delay_cv).  We do not have an equivalent CV to use in
  Linux, so this change replaced the delay logic with a wrapper called
  zfs_sleep_until(). This wrapper could be adopted upstream and in other
  downstream ports to abstract away operating system-specific delay logic.

- These tunables are added as module parameters, and descriptions added
  to the zfs-module-parameters.5 man page.

  spa_asize_inflation
  zfs_deadman_synctime_ms
  zfs_vdev_max_active
  zfs_vdev_async_write_active_min_dirty_percent
  zfs_vdev_async_write_active_max_dirty_percent
  zfs_vdev_async_read_max_active
  zfs_vdev_async_read_min_active
  zfs_vdev_async_write_max_active
  zfs_vdev_async_write_min_active
  zfs_vdev_scrub_max_active
  zfs_vdev_scrub_min_active
  zfs_vdev_sync_read_max_active
  zfs_vdev_sync_read_min_active
  zfs_vdev_sync_write_max_active
  zfs_vdev_sync_write_min_active
  zfs_dirty_data_max_percent
  zfs_delay_min_dirty_percent
  zfs_dirty_data_max_max_percent
  zfs_dirty_data_max
  zfs_dirty_data_max_max
  zfs_dirty_data_sync
  zfs_delay_scale

  The latter four have type unsigned long, whereas they are uint64_t in
  Illumos.  This accommodates Linux's module_param() supported types, but
  means they may overflow on 32-bit architectures.

  The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
  likely to overflow on 32-bit systems, since they express physical RAM
  sizes in bytes.  In fact, Illumos initializes zfs_dirty_data_max_max to
  2^32 which does overflow. To resolve that, this port instead initializes
  it in arc_init() to 25% of physical RAM, and adds the tunable
  zfs_dirty_data_max_max_percent to override that percentage.  While this
  solution doesn't completely avoid the overflow issue, it should be a
  reasonable default for most systems, and the minority of affected
  systems can work around the issue by overriding the defaults.

- Fixed reversed logic in comment above zfs_delay_scale declaration.

- Clarified comments in vdev_queue.c regarding when per-queue minimums take
  effect.

- Replaced dmu_tx_write_limit in the dmu_tx kstat file
  with dmu_tx_dirty_delay and dmu_tx_dirty_over_max.  The first counts
  how many times a transaction has been delayed because the pool dirty
  data has exceeded zfs_delay_min_dirty_percent.  The latter counts how
  many times the pool dirty data has exceeded zfs_dirty_data_max (which
  we expect to never happen).

- The original patch would have regressed the bug fixed in
  zfsonlinux/zfs@c418410, which prevented users from setting the
  zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
  A similar fix is added to vdev_queue_aggregate().

- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
  heap instead of the stack.  In Linux we can't afford such large
  structures on the stack.

Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>

References:
  http://www.illumos.org/issues/4045
  illumos/illumos-gate@69962b5647

Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-12-06 09:32:43 -08:00
Turbo Fredriksson
29714574fa Document ZFS module parameters.
This is a first draft of a zfs-module-parameters(5) man page. I have
just extracted the parameter name and its description with modinfo,
then checked the source what type it is and its default value.

This will need more work, preferably someone that actually know these
values and what to use them for.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1856
2013-11-20 16:00:33 -08:00