Currently, count_block() does not correctly account for the
possibility that the bp that is passed to it could be embedded.
These blocks shouldn't be counted since the work of scanning
these blocks in already handled when the containing block is
scanned. This patch simply resolves this issue by returning
early in this case.
Reviewed by: Allan Jude <allanjude@freebsd.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Authored-by: Bill Sommerfeld <sommerfeld@alum.mit.edu>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#8800Closes#8766
Currently, there is an issue in the sequential scrub code which
prevents self healing from working in some cases. The scrub code
will split up all DVA copies of a bp and issue each of them
separately. The problem is that, since each of the DVAs is no
longer associated with the others, the self healing code doesn't
have the opportunity to repair problems that show up in one of the
DVAs with the data from the others.
This patch fixes this issue by ensuring that all IOs issued by the
sequential scrub code include all DVAs. Initially, only the first
DVA of each is attempted. If an issue arises, the IO is retried
with all available copies, giving the self healing code a chance
to correct the issue.
To test this change, this patch also adds the ability for zinject
to specify individual DVAs to inject read errors into. We then
add a new test case that utilizes this functionality to ensure
scrubs and self-healing reads can handle and transparently fix
issues with individual copies of blocks.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#8453
This patch simply ensures that scn->scn_prefetch_queue is emptied
before the kernel module is unloaded and when scanning completes.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#8178
Currently, several tests in the ZFS Test Suite that attempt to
test scrub and resilver behavior occasionally fail. A big reason
for this is that these tests use a combination of zinject and
zfs_scan_vdev_limit to attempt to slow these operations enough
to verify their test commands. This method works most of the time,
but provides no guarantees and leads to flaky behavior. This patch
adds a new tunable, zfs_scan_suspend_progress, that ensures that
scans make no progress, guaranteeing that tests can be run without
racing.
This patch also changes zfs_remove_max_bytes_pause to match this
new tunable. This provides some consistency between these two
similar tunables and ensures that the tunable will not misbehave
on 32-bit systems.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Giuseppe Di Natale <guss80@gmail.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#8111
This patch corrects 2 small bugs where scn->scn_phys_cached was
not properly updated to match the primary copy when it needed to
be. The first resulted in the pause state not being properly
updated and the second resulted in the cached version being
completely zeroed even if the primary was not.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#8010
This patch fixes an issue discovered by ztest where
dsl_scan_ddt_entry() could add I/Os to the dsl scan queues
between when the scan had finished all required work and
when the scan was marked as complete. This caused the scan
to spin indefinitely without ending.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#8010
Currently, if a resilver is triggered for any reason while an
existing one is running, zfs will immediately restart the existing
resilver from the beginning to include the new drive. This causes
problems for system administrators when a drive fails while another
is already resilvering. In this case, the optimal thing to do to
reduce risk of data loss is to wait for the current resilver to end
before immediately replacing the second failed drive, which allows
the system to operate with two incomplete drives for the minimum
amount of time.
This patch introduces the resilver_defer feature that essentially
does this for the admin without forcing them to wait and monitor
the resilver manually. The change requires an on-disk feature
since we must mark drives that are part of a deferred resilver in
the vdev config to ensure that we do not assume they are done
resilvering when an existing resilver completes.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: @mmaybee
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7732
Recent changes in the Linux kernel made it necessary to prefix
the refcount_add() function with zfs_ due to a name collision.
To bring the other functions in line with that and to avoid future
collisions, prefix the other refcount functions as well.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Schumacher <timschumi@gmx.de>
Closes#7963
torvalds/linux@59b57717f ("blkcg: delay blkg destruction until
after writeback has finished") added a refcount_t to the blkcg
structure. Due to the refcount_t compatibility code, zfs_refcount_t
was used by mistake.
Resolve this by removing the compatibility code and replacing the
occurrences of refcount_t with zfs_refcount_t.
Reviewed-by: Franz Pletz <fpletz@fnordicwalking.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Schumacher <timschumi@gmx.de>
Closes#7885Closes#7932
We were doing count_block() twice inside this function, once
unconditionally at the beginning (intended to catch the embedded block
case) and once near the end after processing the block.
The double-accounting caused the "zpool scrub" progress statistics in
"zpool status" to climb from 0% to 200% instead of 0% to 100%, and
showed double the I/O rate it was actually seeing.
This was apparently a regression introduced in commit 00c405b4b5,
which was an incorrect port of this OpenZFS commit:
https://github.com/openzfs/openzfs/commit/d8a447a7
Reviewed by: Thomas Caputi <tcaputi@datto.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Steven Noonan <steven@uplinklabs.net>
Closes#7720Closes#7738
When we do a scrub or resilver, ZFS counts the different types of blocks,
which can be printed by the ::zfs_blkstats mdb dcmd. However, it fails to
count embedded blocks.
Porting notes:
* Commit d4a72f23 moved count_blocks under a BP_IS_EMBEDDED conditional
as part of the sequential resilver functionality. Since phys_birth
would be zero that case should never happen as described above. This
is confirmed by the code coverage analysis. Remove the conditional
to realign that aspect of this function with OpenZFS.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: George Melikov <mail@gmelikov.ru>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Robert Mustacchi <rm@joyent.com>
OpenZFS-issue: https://www.illumos.org/issues/9454
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/d8a447a7Closes#7697
Details about the motivation of this feature and its usage can
be found in this blogpost:
https://sdimitro.github.io/post/zpool-checkpoint/
A lightning talk of this feature can be found here:
https://www.youtube.com/watch?v=fPQA8K40jAM
Implementation details can be found in big block comment of
spa_checkpoint.c
Side-changes that are relevant to this commit but not explained
elsewhere:
* renames members of "struct metaslab trees to be shorter without
losing meaning
* space_map_{alloc,truncate}() accept a block size as a
parameter. The reason is that in the current state all space
maps that we allocate through the DMU use a global tunable
(space_map_blksz) which defauls to 4KB. This is ok for metaslab
space maps in terms of bandwirdth since they are scattered all
over the disk. But for other space maps this default is probably
not what we want. Examples are device removal's vdev_obsolete_sm
or vdev_chedkpoint_sm from this review. Both of these have a
1:1 relationship with each vdev and could benefit from a bigger
block size.
Porting notes:
* The part of dsl_scan_sync() which handles async destroys has
been moved into the new dsl_process_async_destroys() function.
* Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write
to block device backed pools.
* ZTS:
* Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg".
* Don't use large dd block sizes on /dev/urandom under Linux in
checkpoint_capacity.
* Adopt Delphix-OS's setting of 4 (spa_asize_inflation =
SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed
its attempts to fill the pool
* Create the base and nested pools with sync=disabled to speed up
the "setup" phase.
* Clear labels in test pool between checkpoint tests to avoid
duplicate pool issues.
* The import_rewind_device_replaced test has been marked as "known
to fail" for the reasons listed in its DISCLAIMER.
* New module parameters:
zfs_spa_discard_memory_limit,
zfs_remove_max_bytes_pause (not documented - debugging only)
vdev_max_ms_count (formerly metaslabs_per_vdev)
vdev_min_ms_count
Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9166
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8Closes#7570
Minimal changes required to integrate the SPL sources in to the
ZFS repository build infrastructure and packaging.
Build system and packaging:
* Renamed SPL_* autoconf m4 macros to ZFS_*.
* Removed redundant SPL_* autoconf m4 macros.
* Updated the RPM spec files to remove SPL package dependency.
* The zfs package obsoletes the spl package, and the zfs-kmod
package obsoletes the spl-kmod package.
* The zfs-kmod-devel* packages were updated to add compatibility
symlinks under /usr/src/spl-x.y.z until all dependent packages
can be updated. They will be removed in a future release.
* Updated copy-builtin script for in-kernel builds.
* Updated DKMS package to include the spl.ko.
* Updated stale AUTHORS file to include all contributors.
* Updated stale COPYRIGHT and included the SPL as an exception.
* Renamed README.markdown to README.md
* Renamed OPENSOLARIS.LICENSE to LICENSE.
* Renamed DISCLAIMER to NOTICE.
Required code changes:
* Removed redundant HAVE_SPL macro.
* Removed _BOOT from nvpairs since it doesn't apply for Linux.
* Initial header cleanup (removal of empty headers, refactoring).
* Remove SPL repository clone/build from zimport.sh.
* Use of DEFINE_RATELIMIT_STATE and DEFINE_SPINLOCK removed due
to build issues when forcing C99 compilation.
* Replaced legacy ACCESS_ONCE with READ_ONCE.
* Include needed headers for `current` and `EXPORT_SYMBOL`.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
TEST_ZIMPORT_SKIP="yes"
Closes#7556
While expanding stored pools, we ran into a panic using an old pool.
Steps to reproduce:
$ sudo zpool create -o version=2 test c2t1d0
$ sudo cp /etc/passwd /test/foo
$ sudo zpool attach test c2t1d0 c2t2d0
We'll get this panic:
ffffff000fc0e5e0 unix:real_mode_stop_cpu_stage2_end+b27c ()
ffffff000fc0e6f0 unix:trap+dc8 ()
ffffff000fc0e700 unix:cmntrap+e6 ()
ffffff000fc0e860 zfs:dsl_scan_visitds+1ff ()
ffffff000fc0ea20 zfs:dsl_scan_visit+fe ()
ffffff000fc0ea80 zfs:dsl_scan_sync+1b3 ()
ffffff000fc0eb60 zfs:spa_sync+435 ()
ffffff000fc0ec20 zfs:txg_sync_thread+23f ()
ffffff000fc0ec30 unix:thread_start+8 ()
The problem is a bad trap accessing a NULL pointer. We're looking for
the dp_origin_snap of a dsl_pool_t, but version 2 didn't have that. The
system will go into a reboot loop at this point, and the dump won't be
accessible except by removing the cache file from within the recovery
environment.
This impacts any sort of scrub or resilver on version <11 pools, e.g.:
$ zpool create -o version=10 test c2t1d0
$ zpool scrub test
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Igor Kozhukhov <igor@dilos.org>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/9443
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/010eed29Closes#7501
Mirrors are supposed to provide redundancy in the face of whole-disk
failure and silent damage (e.g. some data on disk is not right, but ZFS
hasn't detected the whole device as being broken). However, the current
device removal implementation bypasses some of the mirror's redundancy.
Note that in no case is incorrect data returned, but we might get a
checksum error when we should have been able to find the right data.
There are two underlying problems:
1. When we remove a mirror device, we only read one side of the mirror.
Since we can't verify the checksum, this side may be silently bad, but
the good data is on the other side of the mirror (which we didn't read).
This can cause the removal to "bake in" the busted data – all copies of
the data in the new location are the same, busted version, while we left
the good version behind.
The fix for this is to read and copy both sides of the mirror. If the
old and new vdevs are mirrors, we will read both sides of the old
mirror, and write each copy to the corresponding side of the new mirror.
(If the old and new vdevs have a different number of children, we will
do this as best as possible.) Even though we aren't verifying checksums,
this ensures that as long as there's a good copy of the data, we'll have
a good copy after the removal, even if there's silent damage to one side
of the mirror. If we're removing a mirror that has some silent damage,
we'll have exactly the same damage in the new location (assuming that
the new location is also a mirror).
2. When we read from an indirect vdev that points to a mirror vdev, we
only consider one copy of the data. This can lead to reduced effective
redundancy, because we might read a bad copy of the data from one side
of the mirror, and not retry the other, good side of the mirror.
Note that the problem is not with the removal process, but rather after
the removal has completed (having copied correct data to both sides of
the mirror), if one side of the new mirror is silently damaged, we
encounter the problem when reading the relocated data via the indirect
vdev. Also note that the problem doesn't occur when ZFS knows that one
side of the mirror is bad, e.g. when a disk entirely fails or is
offlined.
The impact is that reads (from indirect vdevs that point to mirrors) may
return a checksum error even though the good data exists on one side of
the mirror, and scrub doesn't repair all data on the mirror (if some of
it is pointed to via an indirect vdev).
The fix for this is complicated by "split blocks" - one logical block
may be split into two (or more) pieces with each piece moved to a
different new location. In this case we need to read all versions of
each split (one from each side of the mirror), and figure out which
combination of versions results in the correct checksum, and then repair
the incorrect versions.
This ensures that we supply the same redundancy whether you use device
removal or not. For example, if a mirror has small silent errors on all
of its children, we can still reconstruct the correct data, as long as
those errors are at sufficiently-separated offsets (specifically,
separated by the largest block size - default of 128KB, but up to 16MB).
Porting notes:
* A new indirect vdev check was moved from dsl_scan_needs_resilver_cb()
to dsl_scan_needs_resilver(), which was added to ZoL as part of the
sequential scrub work.
* Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t
parameter. The extra parameter is unique to ZoL.
* When posting indirect checksum errors the ABD can be passed directly,
zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9290
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591Closes#6900
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1ebCloses#6900
Fix a bunch of (mostly) sprintf/snprintf truncation compiler
warnings that show up on Fedora 28 (GCC 8.0.1).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes#7361Closes#7368
This patch fixes an issue where dsl_scan_prefetch_cb() might
add more prefetch I/Os to the prefetch queue after prefetching
has been completed. This was happening because that code was
checking scn->scn_suspending instead of scn->scn_prefetch_stop.
This occasionally triggered an ASSERT during ztest runs in
dsl_scan_fini() when the code attempted to destroy an AVL tree
that still had entires in it. This patch also includes a number
of spelling corrections and comment cleanups throughout
dsl_scan.c
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7353
Project quota is a new ZFS system space/object usage accounting
and enforcement mechanism. Similar as user/group quota, project
quota is another dimension of system quota. It bases on the new
object attribute - project ID.
Project ID is a numerical value to indicate to which project an
object belongs. An object only can belong to one project though
you (the object owner or privileged user) can change the object
project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly.
The object also can inherit the project ID from its parent when
created if the parent has the project inherit flag (that can be
set via 'chattr +P' or 'zfs project -s [-p]').
By accounting the spaces/objects belong to the same project, we
can know how many spaces/objects used by the project. And if we
set the upper limit then we can control the spaces/objects that
are consumed by such project. It is useful when multiple groups
and users cooperate for the same project, or a user/group needs
to participate in multiple projects.
Support the following commands and functionalities:
zfs set projectquota@project
zfs set projectobjquota@project
zfs get projectquota@project
zfs get projectobjquota@project
zfs get projectused@project
zfs get projectobjused@project
zfs projectspace
zfs allow projectquota
zfs allow projectobjquota
zfs allow projectused
zfs allow projectobjused
zfs unallow projectquota
zfs unallow projectobjquota
zfs unallow projectused
zfs unallow projectobjused
chattr +/-P
chattr -p project_id
lsattr -p
This patch also supports tree quota based on the project quota via
"zfs project" commands set as following:
zfs project [-d|-r] <file|directory ...>
zfs project -C [-k] [-r] <file|directory ...>
zfs project -c [-0] [-d|-r] [-p id] <file|directory ...>
zfs project [-p id] [-r] [-s] <file|directory ...>
For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on
the $DIR, then the proejct [obj]quota and [obj]used values for the
$DIR's project ID will be shown as the total/free (avail) resource.
Keep the same behavior as EXT4/XFS does.
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by Ned Bass <bass6@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Fan Yong <fan.yong@intel.com>
TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master"
Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c
Closes#6290
When scn->scn_maxinflight_bytes has not been initialized it's
possible to hang on the condition variable in scan_exec_io().
This issue was uncovered by ztest and is only possible when
deduplication is enabled through the following call path.
txg_sync_thread()
spa_sync()
ddt_sync_table()
ddt_sync_entry()
dsl_scan_ddt_entry()
dsl_scan_scrub_cb()
dsl_scan_enqueuei()
scan_exec_io()
cv_wait()
Resolve the issue by always initializing scn_maxinflight_bytes
to a reasonable minimum value. This value will be recalculated
in dsl_scan_sync() to pick up changes to zfs_scan_vdev_limit
and the addition/removal of vdevs.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#7098
* Remove 'zfs snap' from zfs help message (OpenZFS sync)
* Update zfs(8) to suggest 'snap' can be used as an alias for 'snapshot'
* Enforce 80 columns limit in help messages
* Remove zfs_disable_dup_eviction from zfs-module-parameters(5)
* Expose zfs_scan_max_ext_gap as a kernel module parameter.
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#7087
Authored by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Gordon Ross <gwr@nexenta.com>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Porting Notes:
- Brought #defines in eventdefs.h in line with ZFS on Linux format.
- Updated zfs-events.5 with the new events.
OpenZFS-issue: https://www.illumos.org/issues/8959
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c862b93eeaCloses#7049
When sequential scrubs were merged, all calls to arc_read()
(including prefetch IOs) were given ZIO_PRIORITY_ASYNC_READ.
Unfortunately, this behaves badly with an existing issue where
prefetch IOs cannot be re-prioritized after the issue. The
result is that synchronous reads end up in the same vdev_queue
as the scrub IOs and can have (in some workloads) multiple
seconds of latency.
This patch incorporates 2 changes. The first ensures that all
scrub IOs are given ZIO_PRIORITY_SCRUB to allow the vdev_queue
code to differentiate between these I/Os and user prefetches.
Second, this patch introduces zio_change_priority() to provide
the missing capability to upgrade a zio's priority.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#6921Closes#6926
Currently, scrubs and resilvers can take an extremely
long time to complete. This is largely due to the fact
that zfs scans process pools in logical order, as
determined by each block's bookmark. This makes sense
from a simplicity perspective, but blocks in zfs are
often scattered randomly across disks, particularly
due to zfs's copy-on-write mechanisms.
This patch improves performance by splitting scrubs
and resilvers into a metadata scanning phase and an IO
issuing phase. The metadata scan reads through the
structure of the pool and gathers an in-memory queue
of I/Os, sorted by size and offset on disk. The issuing
phase will then issue the scrub I/Os as sequentially as
possible, greatly improving performance.
This patch also updates and cleans up some of the scan
code which has not been updated in several years.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Authored-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Authored-by: Alek Pinchuk <apinchuk@datto.com>
Authored-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#3625Closes#6256
With PR 5756 the zfs module now supports c99 and the
remaining past c89 workarounds can be undone.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#6816
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#494Closes#5769
Update many return and assignment statements to follow the convention
of using the SET_ERROR macro when returning a hard-coded non-zero
value from a function. This aids debugging by recording the error
codes in the debug log.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes#6441
Authored by: Dave Eddy <dave@daveeddy.com>
Reviewed by: Patrick Mooney <patrick.mooney@joyent.com>
Reviewed by: Joshua M. Clulow <jmc@joyent.com>
Reviewed by: Josh Wilsdon <jwilsdon@joyent.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed by: Alan Somers <asomers@gmail.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/6939
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ce1577bCloses#6328
Authored by: Yuri Pankov <yuri.pankov@nexenta.com>
Reviewed by: Robert Mustacchi <rm@joyent.com>
Approved by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Porting Notes:
* All hunks unrelated to ZFS were dropped.
OpenZFS-issue: https://www.illumos.org/issues/5428
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4585130Closes#6326
Currently, there is no way to pause a scrub. Pausing may
be useful when the pool is busy with other I/O to preserve
bandwidth.
This patch adds the ability to pause and resume scrubbing.
This is achieved by maintaining a persistent on-disk scrub state.
While the state is 'paused' we do not scrub any more blocks.
We do however perform regular scan housekeeping such as
freeing async destroyed and deadlist blocks while paused.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Thomas Caputi <tcaputi@datto.com>
Reviewed-by: Serapheim Dimitropoulos <serapheimd@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alek Pinchuk <apinchuk@datto.com>
Closes#6167
On a raidz vdev, a block that does not span all child vdevs, excluding
its skip sectors if any, may not be affected by a child vdev outage or
failure. In such cases, the block does not need to be resilvered.
However, current resilver algorithm simply resilvers all blocks on a
degraded raidz vdev. Such spurious IO is not only wasteful, but also
adds the risk of overwriting good data.
This patch eliminates such spurious IOs.
Reviewed-by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Isaac Huang <he.huang@intel.com>
Closes#5316
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Haakan T Johansson <f96hajo@chalmers.se>
Closes#5547Closes#5543
Enable picky cstyle checks and resolve the new warnings. The vast
majority of the changes needed were to handle minor issues with
whitespace formatting. This patch contains no functional changes.
Non-whitespace changes are as follows:
* 8 times ; to { } in for/while loop
* fix missing ; in cmd/zed/agents/zfs_diagnosis.c
* comment (confim -> confirm)
* change endline , to ; in cmd/zpool/zpool_main.c
* a number of /* BEGIN CSTYLED */ /* END CSTYLED */ blocks
* /* CSTYLED */ markers
* change == 0 to !
* ulong to unsigned long in module/zfs/dsl_scan.c
* rearrangement of module_param lines in module/zfs/metaslab.c
* add { } block around statement after for_each_online_node
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#5465
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: David Quigley <david.quigley@intel.com>
This review covers the reading and writing of compressed arc headers, sharing
data between the arc_hdr_t and the arc_buf_t, and the implementation of a new
dbuf cache to keep frequently access data uncompressed.
I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs
off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block
for that DVA. The physical block may or may not be compressed. If compressed
arc is enabled and the block on-disk is compressed, then the b_pdata will match
the block on-disk and remain compressed in memory. If the block on disk is not
compressed, then neither will the b_pdata. Lastly, if compressed arc is
disabled, then b_pdata will always be an uncompressed version of the on-disk
block.
Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict
any arc_buf_t's that are no longer referenced. This means that the arc will
primarily have compressed blocks as the arc_buf_t's are considered overhead and
are always uncompressed. When a consumer reads a block we first look to see if
the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new
arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If
the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t
and bcopy the uncompressed contents from the first arc_buf_t to the new one.
Writing to the compressed arc requires that we first discard the b_pdata since
the physical block is about to be rewritten. The new data contents will be
passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we
will copy the physical block contents to a newly allocated b_pdata.
When an l2arc is inuse it will also take advantage of the b_pdata. Now the
l2arc will always write the contents of b_pdata to the l2arc. This means that
when compressed arc is enabled that the l2arc blocks are identical to those
stored in the main data pool. This provides a significant advantage since we
can leverage the bp's checksum when reading from the l2arc to determine if the
contents are valid. If the compressed arc is disabled, then we must first
transform the read block to look like the physical block in the main data pool
before comparing the checksum and determining it's valid.
OpenZFS-issue: https://www.illumos.org/issues/6950
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0
Issue #5078
Authored by: Hans Rosenfeld <hans.rosenfeld@nexenta.com>
Reviewed by: Dan Fields <dan.fields@nexenta.com>
Reviewed by: Josef Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Signed-off-by: Don Brady <don.brady@intel.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/5997
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/1437283
Porting Notes:
In addition to the OpenZFS changes this patch realigns the events
with those found in OpenZFS.
Events which would be logged as sysevents on illumos have been
been mapped to the 'sysevent' class for Linux. In addition, several
subclass names have been changed to match what is used in OpenZFS.
In all cases this means a '.' was changed to an '_' in the subclass.
The scripts provided by ZoL have been updated, however users which
provide scripts for any of the following events will need to rename
them based on the new subclass names.
ereport.fs.zfs.config.sync sysevent.fs.zfs.config_sync
ereport.fs.zfs.zpool.destroy sysevent.fs.zfs.pool_destroy
ereport.fs.zfs.zpool.reguid sysevent.fs.zfs.pool_reguid
ereport.fs.zfs.vdev.remove sysevent.fs.zfs.vdev_remove
ereport.fs.zfs.vdev.clear sysevent.fs.zfs.vdev_clear
ereport.fs.zfs.vdev.check sysevent.fs.zfs.vdev_check
ereport.fs.zfs.vdev.spare sysevent.fs.zfs.vdev_spare
ereport.fs.zfs.vdev.autoexpand sysevent.fs.zfs.vdev_autoexpand
ereport.fs.zfs.resilver.start sysevent.fs.zfs.resilver_start
ereport.fs.zfs.resilver.finish sysevent.fs.zfs.resilver_finish
ereport.fs.zfs.scrub.start sysevent.fs.zfs.scrub_start
ereport.fs.zfs.scrub.finish sysevent.fs.zfs.scrub_finish
ereport.fs.zfs.bootfs.vdev.attach sysevent.fs.zfs.bootfs_vdev_attach
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3542
6537 Panic on zpool scrub with DEBUG kernel
Reviewed by: Steve Gonczi <gonczi@comcast.net>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Igor Kozhukhov <ikozhukhov@gmail.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Matthew Ahrens <mahrens@delphix.com>
References:
https://www.illumos.org/issues/6537https://github.com/illumos/illumos-gate/commit/8c04a1f
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
6450 scrub/resilver unnecessarily traverses snapshots created
after the scrub started
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
References:
https://www.illumos.org/issues/6450https://github.com/illumos/illumos-gate/commit/38d6103
Ported-by: kernelOfTruth kerneloftruth@gmail.com
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
6292 exporting a pool while an async destroy is running can leave
entries in the deferred tree
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Fabian Keil <fk@fabiankeil.de>
Approved by: Gordon Ross <gordon.ross@nexenta.com>
References:
https://www.illumos.org/issues/6292https://github.com/illumos/illumos-gate/commit/a443cc8
Ported-by: kernelOfTruth kerneloftruth@gmail.com
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
5369 arc flags should be an enum
5370 consistent arc_buf_hdr_t naming scheme
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Alex Reece <alex.reece@delphix.com>
Reviewed by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
Porting notes:
ZoL has moved some ARC definitions into arc_impl.h.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: Tim Chase <tim@chase2k.com>
5351 scrub goes for an extra second each txg
5352 scrub should pause when there is some dirty data
Author: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Alex Reece <alex.reece@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5351https://github.com/illumos/illumos-gate/commit/6f6a76a
Ported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3383