In several places abd_zero() cleaned ABD filled at the next line.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15514
Copy the disable parameter that FreeBSD implemented, and extend it to
work on Linux as well, until we're sure this is stable.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes#15529
This feature allows disks to be added one at a time to a RAID-Z group,
expanding its capacity incrementally. This feature is especially useful
for small pools (typically with only one RAID-Z group), where there
isn't sufficient hardware to add capacity by adding a whole new RAID-Z
group (typically doubling the number of disks).
== Initiating expansion ==
A new device (disk) can be attached to an existing RAIDZ vdev, by
running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank
raidz2-0 sda`. The new device will become part of the RAIDZ group. A
"raidz expansion" will be initiated, and the new device will contribute
additional space to the RAIDZ group once the expansion completes.
The `feature@raidz_expansion` on-disk feature flag must be `enabled` to
initiate an expansion, and it remains `active` for the life of the pool.
In other words, pools with expanded RAIDZ vdevs can not be imported by
older releases of the ZFS software.
== During expansion ==
The expansion entails reading all allocated space from existing disks in
the RAIDZ group, and rewriting it to the new disks in the RAIDZ group
(including the newly added device).
The expansion progress can be monitored with `zpool status`.
Data redundancy is maintained during (and after) the expansion. If a
disk fails while the expansion is in progress, the expansion pauses
until the health of the RAIDZ vdev is restored (e.g. by replacing the
failed disk and waiting for reconstruction to complete).
The pool remains accessible during expansion. Following a reboot or
export/import, the expansion resumes where it left off.
== After expansion ==
When the expansion completes, the additional space is available for use,
and is reflected in the `available` zfs property (as seen in `zfs list`,
`df`, etc).
Expansion does not change the number of failures that can be tolerated
without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after
expansion).
A RAIDZ vdev can be expanded multiple times.
After the expansion completes, old blocks remain with their old
data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but
distributed among the larger set of disks. New blocks will be written
with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been
expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ
vdev's "assumed parity ratio" does not change, so slightly less space
than is expected may be reported for newly-written blocks, according to
`zfs list`, `df`, `ls -s`, and similar tools.
Sponsored-by: The FreeBSD Foundation
Sponsored-by: iXsystems, Inc.
Sponsored-by: vStack
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Authored-by: Matthew Ahrens <mahrens@delphix.com>
Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com>
Contributions-by: Stuart Maybee <stuart.maybee@comcast.net>
Contributions-by: Thorsten Behrens <tbehrens@outlook.com>
Contributions-by: Fmstrat <nospam@nowsci.com>
Contributions-by: Don Brady <dev.fs.zfs@gmail.com>
Signed-off-by: Don Brady <dev.fs.zfs@gmail.com>
Closes#15022
Add a ZFS feature flag to indicate OpenZFS availability.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Gordon Tetlow <gordon@freebsd.org>
Closes#15484
Previously taskq_init_ent() was an empty macro, while actual init
was done by taskq_dispatch_ent(). It could be slightly faster in
case taskq never enqueued. But without it taskq_empty_ent() relied
on the structure being zeroed by somebody else, that is not good.
As a side effect this allows the same task to be queued several
times, that is normal on FreeBSD, that may or may not get useful
here also one day.
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15455
- Use sbuf_new_for_sysctl() to reduce double-buffering on sysctl
output.
- Use much faster sbuf_cat() instead of sbuf_printf("%s").
Together it reduces `sysctl kstat.zfs.misc.dbufs` time from minutes
to seconds, making dbufstat almost usable.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15495
Add a dataset_kstats_rename function, and call it when renaming
a zvol on FreeBSD and Linux.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alan Somers <asomers@gmail.com>
Sponsored-by: Axcient
Closes#15482Closes#15486
As part of transaction group commit, dsl_pool_sync() sequentially calls
dsl_dataset_sync() for each dirty dataset, which subsequently calls
dmu_objset_sync(). dmu_objset_sync() in turn uses up to 75% of CPU
cores to run sync_dnodes_task() in taskq threads to sync the dirty
dnodes (files).
There are two problems:
1. Each ZVOL in a pool is a separate dataset/objset having a single
dnode. This means the objsets are synchronized serially, which
leads to a bottleneck of ~330K blocks written per second per pool.
2. In the case of multiple dirty dnodes/files on a dataset/objset on a
big system they will be sync'd in parallel taskq threads. However,
it is inefficient to to use 75% of CPU cores of a big system to do
that, because of (a) bottlenecks on a single write issue taskq, and
(b) allocation throttling. In addition, if not for the allocation
throttling sorting write requests by bookmarks (logical address),
writes for different files may reach space allocators interleaved,
leading to unwanted fragmentation.
The solution to both problems is to always sync no more and (if
possible) no fewer dnodes at the same time than there are allocators
the pool.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Edmund Nadolski <edmund.nadolski@ixsystems.com>
Closes#15197
There is no sense to have separate implementations for FreeBSD and
Linux. Make Linux code shared as more functional and just register
FreeBSD-specific prune callback with arc_add_prune_callback() API.
Aside of code cleanup this should fix excessive pruning on FreeBSD:
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=274698
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Johnston <markj@FreeBSD.org>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15456
ZVOL:
- Mark all ZVOL ZIL transactions as sync. Since ZVOLs have only
one object, it makes no sense to maintain async queue and on each
commit merge it into sync. Single sync queue is just cheaper, while
it changes nothing until actual commit request arrives.
- Remove zsd_sync_cnt and the zil_async_to_sync() calls since we
are no longer switching between sync and async queues.
ZFS:
- Mark write transactions as sync based only on number of sync
opens (z_sync_cnt). We can not randomly jump between sync and
async unless we want data corruptions due to writes reordering.
- When file first opened with O_SYNC (z_sync_cnt incremented to 1)
call zil_async_to_sync() for it to preserve correct ordering between
past and future writes.
- Drop zfs_fsyncer_key logic. Looks like it was an optimization
for workloads heavily intermixing async writes with tons of fsyncs.
But first it was broken 8 years ago due to Linux tsd implementation
not allowing data storage between syscalls, and second, I doubt it
is safe to switch from async to sync so often and without calling
zil_async_to_sync().
- Rename sync argument of *_log_write() into commit, now only
signalling caller's intent to call zil_commit() soon after. It
allows WR_COPIED optimizations without extra other meanings.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15366
Variable 'uma_align_cache' has not been used since commit "FreeBSD: Use
a hash table for taskqid lookups" (3933305ea). Moreover, it is soon
going to become private to FreeBSD's UMA in 15.0-CURRENT (main),
14.0-STABLE (stable/14) and 13.2-STABLE (stable/13). Should accessing
this information become necessary again, one will have to use the new
accessors for recent versions.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olivier Certner <olce.freebsd@certner.fr>
Closes#15416
- Group tqent_task and tqent_timeout_task into a union. They are
never used same time. This shrinks taskq_ent_t from 192 to 160 bytes.
- Remove tqent_registered. Use tqent_id != 0 instead.
- Remove tqent_cancelled. Use taskqueue pending counter instead.
- Change tqent_type into uint_t. We don't need to pack it any more.
- Change tqent_rc into uint_t, matching refcount(9).
- Take shared locks in taskq_lookup().
- Call proper taskqueue_drain_timeout() for TIMEOUT_TASK in
taskq_cancel_id() and taskq_wait_id().
- Switch from CK_LIST to regular LIST.
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mateusz Guzik <mjguzik@gmail.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15356
This includes random small tweaks, primarily a build fixes, required
when ZFS is built as part of FreeBSD base.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15368
Before this change ZFS created threads for 50% of CPUs for each top-
level vdev. Plus it created the same number of threads for embedded
log groups (that have only one metaslab and don't need any preload).
As result, on system with 80 CPUs and pool of 60 vdevs this resulted
in 4800 metaslab preload threads, that is absolutely insane.
This patch changes the preload threads to 50% of CPUs in one taskq
per pool, so on the mentioned system it will be only 40 threads.
Among other things this fixes zdb on the mentioned system and pool
on FreeBSD, that failed to create so many threads in one process.
Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15319
Added in ab26409db7 ("Linux 3.1 compat, super_block->s_shrink"), with
the only consumer which needed the count getting retired in 066e825221
("Linux compat: Minimum kernel version 3.10").
The counter gets in the way of not maintaining the list to begin with.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Closes#15274
ZFS historically has had several space allocators that were
dynamically selectable. While these have been retained in
OpenZFS, only a single allocator has been statically compiled
in. This patch compiles all allocators for OpenZFS and provides
a module parameter to allow for manual selection between them.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ameer Hamza <ahamza@ixsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Edmund Nadolski <edmund.nadolski@ixsystems.com>
Closes#15218
In 019dea0a5 we removed the conversion from EAGAIN->EXDEV inside
zfs_clone_range(), but forgot to add a test for EAGAIN to the
copy_file_range() entry points to trigger fallback to a content copy.
This commit fixes that.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Kay Pedersen <mail@mkwg.de>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Closes#15170Closes#15172
Return the more descriptive error codes instead of `EXDEV` when
the parameters don't match the requirements of the clone function.
Updated the comments in `brt.c` accordingly.
The first three errors are just invalid parameters, which zfs can
not handle.
The fourth error indicates that the block which should be cloned
is created and cloned or modified in the same transaction
group (`txg`).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rob Norris <rob.norris@klarasystems.com>
Signed-off-by: Kay Pedersen <mail@mkwg.de>
Closes#15148
- Split dmu_prefetch_dnode() from dmu_prefetch() into a separate
function. It is quite inconvenient to read the code where len = 0
means dnode prefetch instead indirect/data prefetch. One function
doing both has no benefits, since the code paths are independent.
- Improve dmu_prefetch() handling of long block ranges. Instead
of limiting L0 data length to prefetch for to dmu_prefetch_max,
make dmu_prefetch_max limit the actual amount of prefetch at the
specified level, and, if there is more, prefetch all the rest at
higher indirection level. It should improve random access times
within the prefetched range of any length, reducing importance of
specific dmu_prefetch_max value.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15076
Return the more descriptive EOPNOTSUPP instead of EXDEV when the
storage pool doesn't support block cloning.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rob Norris <rob.norris@klarasystems.com>
Signed-off-by: Kay Pedersen <mail@mkwg.de>
Closes#15097
Starting approximately from version 1302506 vn_lock_pair() grown two
additional arguments following head. There is a one week hole, but
that is closet reference point we have.
Reviewed-by: Mateusz Guzik <mjguzik@gmail.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15047
It was a vdev level read cache, designed to aggregate many small
reads by speculatively issuing bigger reads instead and caching
the result. But since it has almost no idea about what is going
on with exception of ZIO_FLAG_DONT_CACHE flag set by higher layers,
it was found to make more harm than good, for which reason it was
disabled for the past 12 years. These days we have much better
instruments to enlarge the I/Os, such as speculative and prescient
prefetches, I/O scheduler, I/O aggregation etc.
Besides just the dead code removal this removes one extra mutex
lock/unlock per write inside vdev_cache_write(), not otherwise
disabled and trying to do some work.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#14953
... instead of list_head() + list_remove(). On FreeBSD the list
functions are not inlined, so in addition to more compact code
this also saves another function call.
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#14955
There's no particular reason this function should be kernel-only, and I
want to use it (indirectly) from zdb. I've moved it to zfs_znode.c
because libzpool does not compile in zfs_vfsops.c, and this at least
matches the header its imported from.
Sponsored-By: Klara, Inc.
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Reviewed-by: WHR <msl0000023508@gmail.com>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#14642
Protect zvol_cdev_read with zv_suspend_lock to prevent concurrent
release of the dnode, avoiding panic when a snapshot is rolled back
in parallel during ongoing zvol read operation.
Reviewed-by: Chunwei Chen <tuxoko@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes#14839
It became illegal to not have them as of
5f6df177758b9dff88e4b6069aeb2359e8b0c493 ("vfs: validate that vop
vectors provide all or none fplookup vops") upstream.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Closes#14788
Not complete, but already shaves on some locking.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Sponsored by: Rubicon Communications, LLC ("Netgate")
Closes#14723
API contract requires VOPs to handle EXDEV internally, worst case by
falling back to the generic copy routine. This broke with the recent
changes.
While here whack custom loop to lock 2 vnodes with vn_lock_pair, which
provides the same functionality internally. write start/finish around
it plays no role so got eliminated.
One difference is that vn_lock_pair always takes an exclusive lock on
both vnodes. I did not patch around it because current code takes an
exclusive lock on the target vnode. zfs supports shared-locking for
writes, so this serializes different calls to the routine as is, despite
range locking inside. At the same time you may notice the source vnode
can get some traffic if only shared-locked, thus once more this goes
the safer route of exclusive-locking. Note this should be patched to
use shared-locking for both once the feature is considered stable.
Technically the switch to vn_lock_pair should be a separate change, but
it would only introduce churn immediately whacked by the rest of the
patch.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Sponsored by: Rubicon Communications, LLC ("Netgate")
Closes#14723
Noticed while attempting to change FreeBSD's boolean_t into an actual
bool: in include/sys/zfs_ioctl_impl.h, zfs_vfs_held() is declared to
return a boolean_t, but in module/os/freebsd/zfs/zfs_ioctl_os.c it is
defined to return an int. Make the definition match the declaration.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Signed-off-by: Dimitry Andric <dimitry@andric.com>
Closes#14776
Linux kernel 6.3 changed a bunch of APIs to use the dedicated idmap
type for mounts (struct mnt_idmap), we need to detect these changes
and make zfs work with the new APIs.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Youzhong Yang <yyang@mathworks.com>
Closes#14682
Add missing machine/md_var.h to spl/sys/simd_aarch64.h and
spl/sys/simd_arm.h
In spl/sys/simd_x86.h, PCB_FPUNOSAVE exists only on amd64, use PCB_NPXNOSAVE
on i386
In FreeBSD sys/elf_common.h redefines AT_UID and AT_GID on FreeBSD, we need
a hack in vnode.h similar to Linux. sys/simd.h needs to be included early.
In zfs_freebsd_copy_file_range() we pass a (size_t *)lenp to
zfs_clone_range() that expects a (uint64_t *)
Allow compiling armv6 world by limiting ARM macros in sha256_impl.c and
sha512_impl.c to __ARM_ARCH > 6
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Reviewed-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Reviewed-by: Signed-off-by: WHR <msl0000023508@gmail.com>
Signed-off-by: Martin Matuska <mm@FreeBSD.org>
Closes#14674
It was previously available only to FreeBSD.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: Seagate Technology LLC
Closes#14718
Holding the zp->z_rangelock as a RL_READER over the range
0-UINT64_MAX is sufficient to prevent the dnode from being
re-dirtied by concurrent writers. To avoid potentially
looping multiple times for external caller which do not
take the rangelock holes are not reported after the first
sync. While not optimal this is always functionally correct.
This change adds the missing rangelock calls on FreeBSD to
zvol_cdev_ioctl().
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#14512Closes#14641
Constify some variables after d1807f168e.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Signed-off-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Closes#14656
Remove arc_reduce_target_size() call from arc_prune_task(). The idea
of arc_prune_task() is to remove external references on ARC metadata,
such as vnodes. Since arc_prune_async() is called only from ARC itself,
it makes no sense to create a parasitic loop between ARC eviction and
the pruning, treatening to drop ARC to its minimum. I can't guess why
it was added as part of FreeBSD to OpenZFS integration.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#14639
After addressing coverity complaints involving `nvpair_name()`, the
compiler started complaining about dropping const. This lead to a rabbit
hole where not only `nvpair_name()` needed to be constified, but also
`nvpair_value_string()`, `fnvpair_value_string()` and a few other static
functions, plus variable pointers throughout the code. The result became
a fairly big change, so it has been split out into its own patch.
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#14612
Block Cloning allows to manually clone a file (or a subset of its
blocks) into another (or the same) file by just creating additional
references to the data blocks without copying the data itself.
Those references are kept in the Block Reference Tables (BRTs).
The whole design of block cloning is documented in module/zfs/brt.c.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Christian Schwarz <christian.schwarz@nutanix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rich Ercolani <rincebrain@gmail.com>
Signed-off-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Closes#13392
Traditionally ARC adaptation was limited to MRU/MFU distribution. But
for years people with metadata-centric workload demanded mechanisms to
also manage data/metadata distribution, that in original ZFS was just
a FIFO. As result ZFS effectively got separate states for data and
metadata, minimum and maximum metadata limits etc, but it all required
manual tuning, was not adaptive and in its heart remained a bad FIFO.
This change removes most of existing eviction logic, rewriting it from
scratch. This makes MRU/MFU adaptation individual for data and meta-
data, same as the distribution between data and metadata themselves.
Since most of required states separation was already done, it only
required to make arcs_size state field specific per data/metadata.
The adaptation logic is still based on previous concept of ghost hits,
just now it balances ARC capacity between 4 states: MRU data, MRU
metadata, MFU data and MFU metadata. To simplify arc_c changes instead
of arc_p measured in bytes, this code uses 3 variable arc_meta, arc_pd
and arc_pm, representing ARC balance between metadata and data, MRU and
MFU for data, and MRU and MFU for metadata respectively as 32-bit fixed
point fractions. Since we care about the math result only when need to
evict, this moves all the logic from arc_adapt() to arc_evict(), that
reduces per-block overhead, since per-block operations are limited to
stats collection, now moved from arc_adapt() to arc_access() and using
cheaper wmsums. This also allows to remove ugly ARC_HDR_DO_ADAPT flag
from many places.
This change also removes number of metadata specific tunables, part of
which were actually not functioning correctly, since not all metadata
are equal and some (like L2ARC headers) are not really evictable.
Instead it introduced single opaque knob zfs_arc_meta_balance, tuning
ARC's reaction on ghost hits, allowing administrator give more or less
preference to metadata without setting strict limits.
Some of old code parts like arc_evict_meta() are just removed, because
since introduction of ABD ARC they really make no sense: only headers
referenced by small number of buffers are not evictable, and they are
really not evictable no matter what this code do. Instead just call
arc_prune_async() if too much metadata appear not evictable.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#14359
The assert is enabled when DEBUG_VFS_LOCKS kernel option is set.
The exact panic is:
panic: condition seqc_in_modify(_vp->v_seqc) not met
It happens because seqc protocol is not followed for ZIL replay.
But we actually do not need to make any namecache calls at that stage,
because the namecache use is not enabled until after the replay is
completed.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Andriy Gapon <avg@FreeBSD.org>
Closes#14566
This is needed because of a possible error path where zfs_vnode_forget()
is called. That function calls vgone() and vput(), the former requires
the vnode to be exclusively locked and the latter expects it to be
locked.
It should be safe to lock the vnode as early as possible because it is
not yet visible, so there is no interaction with other locks.
While here, remove a tautological assignment to 'vp'.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Signed-off-by: Andriy Gapon <avg@FreeBSD.org>
Closes#14565
We had three sha2.h headers in different places.
The FreeBSD version, the Linux version and the generic solaris version.
The only assembly used for acceleration was some old x86-64 openssl
implementation for sha256 within the icp module.
For FreeBSD the whole SHA2 files of FreeBSD were copied into OpenZFS,
these files got removed also.
Tested-by: Rich Ercolani <rincebrain@gmail.com>
Tested-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Closes#13741
Under certain loads, the following panic is hit:
panic: page fault
KDB: stack backtrace:
#0 0xffffffff805db025 at kdb_backtrace+0x65
#1 0xffffffff8058e86f at vpanic+0x17f
#2 0xffffffff8058e6e3 at panic+0x43
#3 0xffffffff808adc15 at trap_fatal+0x385
#4 0xffffffff808adc6f at trap_pfault+0x4f
#5 0xffffffff80886da8 at calltrap+0x8
#6 0xffffffff80669186 at vgonel+0x186
#7 0xffffffff80669841 at vgone+0x31
#8 0xffffffff8065806d at vfs_hash_insert+0x26d
#9 0xffffffff81a39069 at sfs_vgetx+0x149
#10 0xffffffff81a39c54 at zfsctl_snapdir_lookup+0x1e4
#11 0xffffffff8065a28c at lookup+0x45c
#12 0xffffffff806594b9 at namei+0x259
#13 0xffffffff80676a33 at kern_statat+0xf3
#14 0xffffffff8067712f at sys_fstatat+0x2f
#15 0xffffffff808ae50c at amd64_syscall+0x10c
#16 0xffffffff808876bb at fast_syscall_common+0xf8
The page fault occurs because vgonel() will call VOP_CLOSE() for active
vnodes. For this reason, define vop_close for zfsctl_ops_snapshot. While
here, define vop_open for consistency.
After adding the necessary vop, the bug progresses to the following
panic:
panic: VERIFY3(vrecycle(vp) == 1) failed (0 == 1)
cpuid = 17
KDB: stack backtrace:
#0 0xffffffff805e29c5 at kdb_backtrace+0x65
#1 0xffffffff8059620f at vpanic+0x17f
#2 0xffffffff81a27f4a at spl_panic+0x3a
#3 0xffffffff81a3a4d0 at zfsctl_snapshot_inactive+0x40
#4 0xffffffff8066fdee at vinactivef+0xde
#5 0xffffffff80670b8a at vgonel+0x1ea
#6 0xffffffff806711e1 at vgone+0x31
#7 0xffffffff8065fa0d at vfs_hash_insert+0x26d
#8 0xffffffff81a39069 at sfs_vgetx+0x149
#9 0xffffffff81a39c54 at zfsctl_snapdir_lookup+0x1e4
#10 0xffffffff80661c2c at lookup+0x45c
#11 0xffffffff80660e59 at namei+0x259
#12 0xffffffff8067e3d3 at kern_statat+0xf3
#13 0xffffffff8067eacf at sys_fstatat+0x2f
#14 0xffffffff808b5ecc at amd64_syscall+0x10c
#15 0xffffffff8088f07b at fast_syscall_common+0xf8
This is caused by a race condition that can occur when allocating a new
vnode and adding that vnode to the vfs hash. If the newly created vnode
loses the race when being inserted into the vfs hash, it will not be
recycled as its usecount is greater than zero, hitting the above
assertion.
Fix this by dropping the assertion.
FreeBSD-issue: https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=252700
Reviewed-by: Andriy Gapon <avg@FreeBSD.org>
Reviewed-by: Mateusz Guzik <mjguzik@gmail.com>
Reviewed-by: Alek Pinchuk <apinchuk@axcient.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Rob Wing <rob.wing@klarasystems.com>
Co-authored-by: Rob Wing <rob.wing@klarasystems.com>
Submitted-by: Klara, Inc.
Sponsored-by: rsync.net
Closes#14501
When jail.conf set the nopersist flag during startup, it was
incorrectly destroying the per-jail ZFS settings.
Reported-by: Martin Matuska <mm@FreeBSD.org>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Sponsored-by: Modirum MDPay
Sponsored-by: Klara, Inc.
Closes#14509
We've had cases where we trigger an OOM despite having memory freely
available on the system. For example, here, we had about 21GB free:
kernel: Node 0 Normal: 2418758*4kB (UME) 1549533*8kB (UE) 0*16kB
0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB =
22071296kB
The problem being, all the memory is in 4K and 8K contiguous regions,
but the allocation request was for a 16K contiguous region:
kernel: SafeExecutors-4 invoked oom-killer:
gfp_mask=0x42dc0(GFP_KERNEL|__GFP_NOWARN|__GFP_COMP|__GFP_ZERO),
order=2, oom_score_adj=0
The offending allocation came from this call trace:
kernel: Call Trace:
kernel: dump_stack+0x57/0x7a
kernel: dump_header+0x4f/0x1e1
kernel: oom_kill_process.cold.33+0xb/0x10
kernel: out_of_memory+0x1ad/0x490
kernel: __alloc_pages_slowpath+0xd55/0xe40
kernel: __alloc_pages_nodemask+0x2df/0x330
kernel: kmalloc_large_node+0x42/0x90
kernel: __kmalloc_node+0x25a/0x320
kernel: ? spl_kmem_free_impl+0x21/0x30 [spl]
kernel: spl_kmem_alloc_impl+0xa5/0x100 [spl]
kernel: spl_kmem_zalloc+0x19/0x20 [spl]
kernel: zfsdev_ioctl+0x2b/0xe0 [zfs]
kernel: do_vfs_ioctl+0xa9/0x640
kernel: ? __audit_syscall_entry+0xdd/0x130
kernel: ksys_ioctl+0x67/0x90
kernel: __x64_sys_ioctl+0x1a/0x20
kernel: do_syscall_64+0x5e/0x200
kernel: entry_SYSCALL_64_after_hwframe+0x44/0xa9
kernel: RIP: 0033:0x7fdca3674317
The problem is, for each ioctl that ZFS makes, it has to allocate a
zfs_cmd_t structure, which is 13744 bytes in size (on my system):
sdb> sizeof zfs_cmd
(size_t)13744
This size, coupled with the fact that we currently allocate it with
kmem_zalloc, means we need a 16K contiguous region of memory to satisfy
the request.
The solution taken by this change, is to use "vmem" instead of "kmem" to
do the allocation, such that we don't necessarily need a contiguous 16K
memory region to satisfy the allocation.
Arguably, a better solution would be not to require such a large
allocation to begin with (e.g. reduce the size of the zfs_cmd_t
structure), but that'd be a much larger change than this "one liner".
Thus, I've opted for this approach for now; we can always circle back
and attempt to reduce the size of the structure in the future.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: Prakash Surya <prakash.surya@delphix.com>
Closes#14474
`dsl_dir_activity_in_progress()` can call `zfs_get_temporary_prop()` with
the forth value set to NULL, which will pass NULL to `strcpy()` when
there is a match
Clang's static analyzer caught this with the help of CodeChecker for
Cross Translation Unit analysis.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#14456
In original code, zfs_znode_dmu_fini is called in zfs_rmnode without
zfs_znode_hold_enter. It seems to assume it's ok to do so when the znode
is unlinked. However this assumption is not correct, as zfs_zget can be
called by NFS through zpl_fh_to_dentry as pointed out by Christian in
https://github.com/openzfs/zfs/pull/12767, which could result in a
use-after-free bug.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Chunwei Chen <david.chen@nutanix.com>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#12767Closes#14364
I recently gained the ability to run Clang's static analyzer on the
linux kernel modules via a few hacks. This extended coverage to code
that was previously missed since Clang's static analyzer only looked at
code that we built in userspace. Running it against the Linux kernel
modules built from my local branch produced a total of 72 reports
against my local branch. Of those, 50 were reports of logic errors and
22 were reports of dead code. Since we already had cleaned up all of
the previous dead code reports, I felt it would be a good next step to
clean up these dead code reports. Clang did a further breakdown of the
dead code reports into:
Dead assignment 15
Dead increment 2
Dead nested assignment 5
The benefit of cleaning these up, especially in the case of dead nested
assignment, is that they can expose places where our error handling is
incorrect. A number of them were fairly straight forward. However
several were not:
In vdev_disk_physio_completion(), not only were we not using the return
value from the static function vdev_disk_dio_put(), but nothing used it,
so I changed it to return void and removed the existing (void) cast in
the other area where we call it in addition to no longer storing it to a
stack value.
In FSE_createDTable(), the function is dead code. Its helper function
FSE_freeDTable() is also dead code, as are the CPP definitions in
`module/zstd/include/zstd_compat_wrapper.h`. We just delete it all.
In zfs_zevent_wait(), we have an optimization opportunity. cv_wait_sig()
returns 0 if there are waiting signals and 1 if there are none. The
Linux SPL version literally returns `signal_pending(current) ? 0 : 1)`
and FreeBSD implements the same semantics, we can just do
`!cv_wait_sig()` in place of `signal_pending(current)` to avoid
unnecessarily calling it again.
zfs_setattr() on FreeBSD version did not have error handling issue
because the code was removed entirely from FreeBSD version. The error is
from updating the attribute directory's files. After some thought, I
decided to propapage errors on it to userspace.
In zfs_secpolicy_tmp_snapshot(), we ignore a lack of permission from the
first check in favor of checking three other permissions. I assume this
is intentional.
In zfs_create_fs(), the return value of zap_update() was not checked
despite setting an important version number. I see no backward
compatibility reason to permit failures, so we add an assertion to catch
failures. Interestingly, Linux is still using ASSERT(error == 0) from
OpenSolaris while FreeBSD has switched to the improved ASSERT0(error)
from illumos, although illumos has yet to adopt it here. ASSERT(error ==
0) was used on Linux while ASSERT0(error) was used on FreeBSD since the
entire file needs conversion and that should be the subject of
another patch.
dnode_move()'s issue was caused by us not having implemented
POINTER_IS_VALID() on Linux. We have a stub in
`include/os/linux/spl/sys/kmem_cache.h` for it, when it really should be
in `include/os/linux/spl/sys/kmem.h` to be consistent with
Illumos/OpenSolaris. FreeBSD put both `POINTER_IS_VALID()` and
`POINTER_INVALIDATE()` in `include/os/freebsd/spl/sys/kmem.h`, so we
copy what it did.
Whenever a report was in platform-specific code, I checked the FreeBSD
version to see if it also applied to FreeBSD, but it was only relevant a
few times.
Lastly, the patch that enabled Clang's static analyzer to be run on the
Linux kernel modules needs more work before it can be put into a PR. I
plan to do that in the future as part of the on-going static analysis
work that I am doing.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#14380