spa_preferred_class() selects a storage class based on (among other
things) the DMU object type. This only works for old-style object types
that match only one specific kind of thing. For DMU_OTN_ types we need
another way to signal the storage class.
This commit allows the object type to be overridden in the IO policy for
the purposes of choosing a storage class. It then adds the ability to
set the storage type on a dnode hold, such that all writes generated
under that hold will get it.
This method has two shortcomings:
- it would be better if we could "name" a set of storage class
preferences rather than it being implied by the object type.
- it would be better if this info were stored in the dnode on disk.
In the absence of those things, this seems like the smallest possible
change.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes#15894
Rather than picking out specific values out of the properties, just pass
the entire zio in, to make it easier in the future to use more of that
info to decide on the storage class.
I would have rathered just pass io_prop in, but having spa.h include
zio.h gets a bit tricky.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes#15894
This adds two new pool properties:
- dedup_table_size, the total size of all DDTs on the pool; and
- dedup_table_quota, the maximum possible size of all DDTs in the pool
When set, quota will be enforced by checking when a new entry is about
to be created. If the pool is over its dedup quota, the entry won't be
created, and the corresponding write will be converted to a regular
non-dedup write. Note that existing entries can be updated (ie their
refcounts changed), as that reuses the space rather than requiring more.
dedup_table_quota can be set to 'auto', which will set it based on the
size of the devices backing the "dedup" allocation device. This makes it
possible to limit the DDTs to the size of a dedup vdev only, such that
when the device fills, no new blocks are deduplicated.
Sponsored-by: iXsystems, Inc.
Sponsored-By: Klara Inc.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Signed-off-by: Don Brady <don.brady@klarasystems.com>
Co-authored-by: Don Brady <don.brady@klarasystems.com>
Co-authored-by: Rob Wing <rob.wing@klarasystems.com>
Co-authored-by: Sean Eric Fagan <sean.fagan@klarasystems.com>
Closes#15889
If we wait until after we check for no spa references to drop the
namespace lock, then we know that spa consumers will need to call
spa_lookup() and end up waiting on the spa_namespace_cv until we
finish. This narrows the external checks to spa_lookup and we no
longer need to worry about the spa_vdev_enter case.
Sponsored-By: Klara Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Don Brady <don.brady@klarasystems.com>
Closes#16153
Changed spa_export_common() such that it no longer holds the
spa_namespace_lock for the entire duration and instead sets
spa_export_thread to indicate an import is in progress on the
spa. This allows for an export to a diffent pool to proceed
in parallel while an export is still processing potentially
long operations like spa_unload_log_sm_flush_all().
Calls like spa_lookup() and spa_vdev_enter() that rely on
the spa_namespace_lock to serialize them against a concurrent
export, now wait for any in-progress export thread to complete
before proceeding.
The 'zpool import -a' sub-command also provides multi-threaded
support, using a thread pool to submit the exports in parallel.
Sponsored-By: Klara Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Don Brady <don.brady@klarasystems.com>
Closes#16153
- Reduce number of allocators on small system down to one per 4
CPU cores, keeping maximum at 4 on 16+ core systems. Small systems
should not have the lock contention multiple allocators supposed
to solve, while having several metaslabs open and modified each
TXG is not free.
- Reduce number of write issue taskqs down to one per 16 CPU
cores and an integer fraction of number of allocators. On mid-
sized systems, where multiple allocators already make sense, too
many write issue taskqs may reduce write speed on single-file
workloads, since single file is handled by only one taskq to
reduce fragmentation. On large systems, that can actually benefit
from many taskq's better IOPS, the bottleneck is less important,
since in worst case there will be at least 16 cores to handle it.
- Distribute dnodes between allocators (and taskqs) in a round-
robin fashion instead of relying on sync taskqs to be balanced.
The last is not guarantied and may depend on scheduling.
- Remove io_wr_iss_tq from struct zio. io_allocator is enough.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#16130
This commit allow spa_load() to drop the spa_namespace_lock so
that imports can happen concurrently. Prior to dropping the
spa_namespace_lock, the import logic will set the spa_load_thread
value to track the thread which is doing the import.
Consumers of spa_lookup() retain the same behavior by blocking
when either a thread is holding the spa_namespace_lock or the
spa_load_thread value is set. This will ensure that critical
concurrent operations cannot take place while a pool is being
imported.
The zpool command is also enhanced to provide multi-threaded support
when invoking zpool import -a.
Lastly, zinject provides a mechanism to insert artificial delays
when importing a pool and new zfs tests are added to verify parallel
import functionality.
Contributions-by: Don Brady <don.brady@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Wilson <gwilson@delphix.com>
Closes#16093
Similar to deduplication, the size of data duplicated by block cloning
should not be included in the slop space calculation.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Yuxin Wang <yuxinwang9999@gmail.com>
Closes#15874
Detail the import progress of log spacemaps as they can take a very
long time. Also grab the spa_note() messages to, as they provide
insight into what is happening
Sponsored-By: OpenDrives Inc.
Sponsored-By: Klara Inc.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@klarasystems.com>
Co-authored-by: Allan Jude <allan@klarasystems.com>
Closes#15539
As part of transaction group commit, dsl_pool_sync() sequentially calls
dsl_dataset_sync() for each dirty dataset, which subsequently calls
dmu_objset_sync(). dmu_objset_sync() in turn uses up to 75% of CPU
cores to run sync_dnodes_task() in taskq threads to sync the dirty
dnodes (files).
There are two problems:
1. Each ZVOL in a pool is a separate dataset/objset having a single
dnode. This means the objsets are synchronized serially, which
leads to a bottleneck of ~330K blocks written per second per pool.
2. In the case of multiple dirty dnodes/files on a dataset/objset on a
big system they will be sync'd in parallel taskq threads. However,
it is inefficient to to use 75% of CPU cores of a big system to do
that, because of (a) bottlenecks on a single write issue taskq, and
(b) allocation throttling. In addition, if not for the allocation
throttling sorting write requests by bookmarks (logical address),
writes for different files may reach space allocators interleaved,
leading to unwanted fragmentation.
The solution to both problems is to always sync no more and (if
possible) no fewer dnodes at the same time than there are allocators
the pool.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Edmund Nadolski <edmund.nadolski@ixsystems.com>
Closes#15197
When failmode=continue is set and the pool suspends, both 'zpool status'
and the 'zfs/pool/state' kstat ignore it and report the normal vdev tree
state. There's no clear indicator that the pool is suspended. This is
unlike suspend in failmode=wait, or suspend due to MMP check failure,
which both report "SUSPENDED" explicitly.
This commit changes it so SUSPENDED is reported for failmode=continue
the same as for other modes.
Rationale:
The historical behaviour of failmode=continue is roughly, "press on as
though all is well". To this end, the fact that the pool had suspended
was not shown, to maintain the façade that all is well.
Its unclear why hiding this information was considered appropriate. One
possibility is that it was expected that a true pool fault would always
be reported as DEGRADED or FAULTED, and that the pool could not suspend
without these happening.
That is not necessarily true, as vdev health and suspend state are only
loosely connected, such that a pool in (apparent) good health can be
suspended for good reasons, and of course a degraded pool does not lead
to suspension. Even if that expectation were true, there's still a
difference in urgency - a degraded pool may not need to be attended to
for hours, while a suspended pool is most often unusable until an
operator intervenes.
An operator that has set failmode=continue has presumably done so
because their workload is one that can continue to operate in a useful
way when the pool suspends. In this case the operator still needs a
clear indicator that there is a problem that needs attending to.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#15297
ZFS historically has had several space allocators that were
dynamically selectable. While these have been retained in
OpenZFS, only a single allocator has been statically compiled
in. This patch compiles all allocators for OpenZFS and provides
a module parameter to allow for manual selection between them.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ameer Hamza <ahamza@ixsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Edmund Nadolski <edmund.nadolski@ixsystems.com>
Closes#15218
Since spa_min_alloc may not be a power of 2, unlike ashifts, in the
case of DRAID, we should not select the minimal value among several
vdevs. Rounding to a multiple of it is unlikely to work for other
vdevs. Instead, using the greatest common divisor produces smaller
yet more reasonable results.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes#15067
Scan process may skip blocks based on their birth time, DVA, etc.
Traditionally those blocks were accounted as issued, that caused
reporting of hugely over-inflated numbers, having nothing to do
with actual disk I/O. This change utilizes never used field in
struct dsl_scan_phys to account such skipped bytes, allowing to
report how much data were actually scrubbed/resilvered and what
is the actual I/O speed. While formally it is an on-disk format
change, it should be compatible both ways, so should not need a
feature flag.
This should partially address the same issue as c85ac731a0, but
from a different perspective, complementing it.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Akash B <akash-b@hpe.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15007
Switch FIFO queues (SYNC/TRIM) and active queue of vdev queue from
time-sorted AVL-trees to simple lists. AVL-trees are too expensive
for such a simple task. To change I/O priority without searching
through the trees, add io_queue_state field to struct zio.
To not check number of queued I/Os for each priority add vq_cqueued
bitmap to struct vdev_queue. Update it when adding/removing I/Os.
Make vq_cactive a separate array instead of struct vdev_queue_class
member. Together those allow to avoid lots of cache misses when
looking for work in vdev_queue_class_to_issue().
Introduce deadline of ~0.5s for LBA-sorted queues. Before this I
saw some I/Os waiting in a queue for up to 8 seconds and possibly
more due to starvation. With this change I no longer see it. I
had to slightly more complicate the comparison function, but since
it uses all the same cache lines the difference is minimal. For a
sequential I/Os the new code in vdev_queue_io_to_issue() actually
often uses more simple avl_first(), falling back to avl_find() and
avl_nearest() only when needed.
Arrange members in struct zio to access only one cache line when
searching through vdev queues. While there, remove io_alloc_node,
reusing the io_queue_node instead. Those two are never used same
time.
Remove zfs_vdev_aggregate_trim parameter. It was disabled for 4
years since implemented, while still wasted time maintaining the
offset-sorted tree of TRIM requests. Just remove the tree.
Remove locking from txg_all_lists_empty(). It is racy by design,
while 2 pair of locks/unlocks take noticeable time under the vdev
queue lock.
With these changes in my tests with volblocksize=4KB I measure vdev
queue lock spin time reduction by 50% on read and 75% on write.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#14925
It was a vdev level read cache, designed to aggregate many small
reads by speculatively issuing bigger reads instead and caching
the result. But since it has almost no idea about what is going
on with exception of ZIO_FLAG_DONT_CACHE flag set by higher layers,
it was found to make more harm than good, for which reason it was
disabled for the past 12 years. These days we have much better
instruments to enlarge the I/Os, such as speculative and prescient
prefetches, I/O scheduler, I/O aggregation etc.
Besides just the dead code removal this removes one extra mutex
lock/unlock per write inside vdev_cache_write(), not otherwise
disabled and trying to do some work.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#14953
... instead of list_head() + list_remove(). On FreeBSD the list
functions are not inlined, so in addition to more compact code
this also saves another function call.
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#14955
Added a flag '-e' in zpool scrub to scrub only blocks in error log. A
user can pause, resume and cancel the error scrub by passing additional
command line arguments -p -s just like a regular scrub. This involves
adding a new flag, creating new libzfs interfaces, a new ioctl, and the
actual iteration and read-issuing logic. Error scrubbing is executed in
multiple txg to make sure pool performance is not affected.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Co-authored-by: TulsiJain tulsi.jain@delphix.com
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#8995Closes#12355
At our site we have seen cases when multi-modifier protection is enabled
(multihost=on) on our pool and the pool gets suspended due to a single
disk that is failing and responding very slowly. Our pools have 90 disks
in them and we expect disks to fail. The current version of MMP requires
that we wait for other writers before moving on. When a disk is
responding very slowly, we observed that waiting here was bad enough to
cause the pool to suspend. This change allows the MMP thread to bypass
waiting for other threads and reduces the chances the pool gets
suspended.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Herb Wartens <hawartens@gmail.com>
Closes#14659
After addressing coverity complaints involving `nvpair_name()`, the
compiler started complaining about dropping const. This lead to a rabbit
hole where not only `nvpair_name()` needed to be constified, but also
`nvpair_value_string()`, `fnvpair_value_string()` and a few other static
functions, plus variable pointers throughout the code. The result became
a fairly big change, so it has been split out into its own patch.
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#14612
Block Cloning allows to manually clone a file (or a subset of its
blocks) into another (or the same) file by just creating additional
references to the data blocks without copying the data itself.
Those references are kept in the Block Reference Tables (BRTs).
The whole design of block cloning is documented in module/zfs/brt.c.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Christian Schwarz <christian.schwarz@nutanix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rich Ercolani <rincebrain@gmail.com>
Signed-off-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Closes#13392
When resilvering the estimated time remaining is calculated using
the average issue rate over the current pass. Where the current
pass starts when a scan was started, or restarted, if the pool
was exported/imported.
For dRAID pools in particular this can result in wildly optimistic
estimates since the issue rate will be very high while scanning
when non-degraded regions of the pool are scanned. Once repair
I/O starts being issued performance drops to a realistic number
but the estimated performance is still significantly skewed.
To address this we redefine a pass such that it starts after a
scanning phase completes so the issue rate is more reflective of
recent performance. Additionally, the zfs_scan_report_txgs
module option can be set to reset the pass statistics more often.
Reviewed-by: Akash B <akash-b@hpe.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#14410
In order for zed to process the removal event correctly,
udev change event needs to be posted to sync the blkid
information. spa_create() and spa_config_update() posts
the event already through spa_write_cachefile(). Doing
the same for spa_vdev_attach() that handles the case
for vdev attachment and replacement.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes#14172
`snprintf()` is meant to protect against buffer overflows, but operating
on the buffer using its return value, possibly by calling it again, can
cause a buffer overflow, because it will return how many characters it
would have written if it had enough space even when it did not. In a
number of places, we repeatedly call snprintf() by successively
incrementing a buffer offset and decrementing a buffer length, by its
return value. This is a potentially unsafe usage of `snprintf()`
whenever the buffer length is reached. CodeQL complained about this.
To fix this, we introduce `kmem_scnprintf()`, which will return 0 when
the buffer is zero or the number of written characters, minus 1 to
exclude the NULL character, when the buffer was too small. In all other
cases, it behaves like snprintf(). The name is inspired by the Linux and
XNU kernels' `scnprintf()`. The implementation was written before I
thought to look at `scnprintf()` and had a good name for it, but it
turned out to have identical semantics to the Linux kernel version.
That lead to the name, `kmem_scnprintf()`.
CodeQL only catches this issue in loops, so repeated use of snprintf()
outside of a loop was not caught. As a result, a thorough audit of the
codebase was done to examine all instances of `snprintf()` usage for
potential problems and a few were caught. Fixes for them are included in
this patch.
Unfortunately, ZED is one of the places where `snprintf()` is
potentially used incorrectly. Since using `kmem_scnprintf()` in it would
require changing how it is linked, we modify its usage to make it safe,
no matter what buffer length is used. In addition, there was a bug in
the use of the return value where the NULL format character was not
being written by pwrite(). That has been fixed.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#14098
Various module parameters such as `zfs_arc_max` were originally
`uint64_t` on OpenSolaris/Illumos, but were changed to `unsigned long`
for Linux compatibility because Linux's kernel default module parameter
implementation did not support 64-bit types on 32-bit platforms. This
caused problems when porting OpenZFS to Windows because its LLP64 memory
model made `unsigned long` a 32-bit type on 64-bit, which created the
undesireable situation that parameters that should accept 64-bit values
could not on 64-bit Windows.
Upon inspection, it turns out that the Linux kernel module parameter
interface is extensible, such that we are allowed to define our own
types. Rather than maintaining the original type change via hacks to to
continue shrinking module parameters on 32-bit Linux, we implement
support for 64-bit module parameters on Linux.
After doing a review of all 64-bit kernel parameters (found via the man
page and also proposed changes by Andrew Innes), the kernel module
parameters fell into a few groups:
Parameters that were originally 64-bit on Illumos:
* dbuf_cache_max_bytes
* dbuf_metadata_cache_max_bytes
* l2arc_feed_min_ms
* l2arc_feed_secs
* l2arc_headroom
* l2arc_headroom_boost
* l2arc_write_boost
* l2arc_write_max
* metaslab_aliquot
* metaslab_force_ganging
* zfetch_array_rd_sz
* zfs_arc_max
* zfs_arc_meta_limit
* zfs_arc_meta_min
* zfs_arc_min
* zfs_async_block_max_blocks
* zfs_condense_max_obsolete_bytes
* zfs_condense_min_mapping_bytes
* zfs_deadman_checktime_ms
* zfs_deadman_synctime_ms
* zfs_initialize_chunk_size
* zfs_initialize_value
* zfs_lua_max_instrlimit
* zfs_lua_max_memlimit
* zil_slog_bulk
Parameters that were originally 32-bit on Illumos:
* zfs_per_txg_dirty_frees_percent
Parameters that were originally `ssize_t` on Illumos:
* zfs_immediate_write_sz
Note that `ssize_t` is `int32_t` on 32-bit and `int64_t` on 64-bit. It
has been upgraded to 64-bit.
Parameters that were `long`/`unsigned long` because of Linux/FreeBSD
influence:
* l2arc_rebuild_blocks_min_l2size
* zfs_key_max_salt_uses
* zfs_max_log_walking
* zfs_max_logsm_summary_length
* zfs_metaslab_max_size_cache_sec
* zfs_min_metaslabs_to_flush
* zfs_multihost_interval
* zfs_unflushed_log_block_max
* zfs_unflushed_log_block_min
* zfs_unflushed_log_block_pct
* zfs_unflushed_max_mem_amt
* zfs_unflushed_max_mem_ppm
New parameters that do not exist in Illumos:
* l2arc_trim_ahead
* vdev_file_logical_ashift
* vdev_file_physical_ashift
* zfs_arc_dnode_limit
* zfs_arc_dnode_limit_percent
* zfs_arc_dnode_reduce_percent
* zfs_arc_meta_limit_percent
* zfs_arc_sys_free
* zfs_deadman_ziotime_ms
* zfs_delete_blocks
* zfs_history_output_max
* zfs_livelist_max_entries
* zfs_max_async_dedup_frees
* zfs_max_nvlist_src_size
* zfs_rebuild_max_segment
* zfs_rebuild_vdev_limit
* zfs_unflushed_log_txg_max
* zfs_vdev_max_auto_ashift
* zfs_vdev_min_auto_ashift
* zfs_vnops_read_chunk_size
* zvol_max_discard_blocks
Rather than clutter the lists with commentary, the module parameters
that need comments are repeated below.
A few parameters were defined in Linux/FreeBSD specific code, where the
use of ulong/long is not an issue for portability, so we leave them
alone:
* zfs_delete_blocks
* zfs_key_max_salt_uses
* zvol_max_discard_blocks
The documentation for a few parameters was found to be incorrect:
* zfs_deadman_checktime_ms - incorrectly documented as int
* zfs_delete_blocks - not documented as Linux only
* zfs_history_output_max - incorrectly documented as int
* zfs_vnops_read_chunk_size - incorrectly documented as long
* zvol_max_discard_blocks - incorrectly documented as ulong
The documentation for these has been fixed, alongside the changes to
document the switch to fixed width types.
In addition, several kernel module parameters were percentages or held
ashift values, so being 64-bit never made sense for them. They have been
downgraded to 32-bit:
* vdev_file_logical_ashift
* vdev_file_physical_ashift
* zfs_arc_dnode_limit_percent
* zfs_arc_dnode_reduce_percent
* zfs_arc_meta_limit_percent
* zfs_per_txg_dirty_frees_percent
* zfs_unflushed_log_block_pct
* zfs_vdev_max_auto_ashift
* zfs_vdev_min_auto_ashift
Of special note are `zfs_vdev_max_auto_ashift` and
`zfs_vdev_min_auto_ashift`, which were already defined as `uint64_t`,
and passed to the kernel as `ulong`. This is inherently buggy on big
endian 32-bit Linux, since the values would not be written to the
correct locations. 32-bit FreeBSD was unaffected because its sysctl code
correctly treated this as a `uint64_t`.
Lastly, a code comment suggests that `zfs_arc_sys_free` is
Linux-specific, but there is nothing to indicate to me that it is
Linux-specific. Nothing was done about that.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Original-patch-by: Andrew Innes <andrew.c12@gmail.com>
Original-patch-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#13984Closes#14004
ZED does not take any action for disk removal events if there is no
spare VDEV available. Added zpool_vdev_remove_wanted() in libzfs
and vdev_remove_wanted() in vdev.c to remove the VDEV through ZED
on removal event. This means that if you are running zed and
remove a disk, it will be properly marked as REMOVED.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes#13797
In #13871, zfs_vdev_aggregation_limit_non_rotating and
zfs_vdev_aggregation_limit being signed was pointed out as a possible
reason not to eliminate an unnecessary MAX(unsigned, 0) since the
unsigned value was assigned from them.
There is no reason for these module parameters to be signed and upon
inspection, it was found that there are a number of other module
parameters that are signed, but should not be, so we make them unsigned.
Making them unsigned made it clear that some other variables in the code
should also be unsigned, so we also make those unsigned. This prevents
users from setting negative values that could potentially cause bad
behaviors. It also makes the code slightly easier to understand.
Mostly module parameters that deal with timeouts, limits, bitshifts and
percentages are made unsigned by this. Any that are boolean are left
signed, since whether booleans should be considered signed or unsigned
does not matter.
Making zfs_arc_lotsfree_percent unsigned caused a
`zfs_arc_lotsfree_percent >= 0` check to become redundant, so it was
removed. Removing the check was also necessary to prevent a compiler
error from -Werror=type-limits.
Several end of line comments had to be moved to their own lines because
replacing int with uint_t caused us to exceed the 80 character limit
enforced by cstyle.pl.
The following were kept signed because they are passed to
taskq_create(), which expects signed values and modifying the
OpenSolaris/Illumos DDI is out of scope of this patch:
* metaslab_load_pct
* zfs_sync_taskq_batch_pct
* zfs_zil_clean_taskq_nthr_pct
* zfs_zil_clean_taskq_minalloc
* zfs_zil_clean_taskq_maxalloc
* zfs_arc_prune_task_threads
Also, negative values in those parameters was found to be harmless.
The following were left signed because either negative values make
sense, or more analysis was needed to determine whether negative values
should be disallowed:
* zfs_metaslab_switch_threshold
* zfs_pd_bytes_max
* zfs_livelist_min_percent_shared
zfs_multihost_history was made static to be consistent with other
parameters.
A number of module parameters were marked as signed, but in reality
referenced unsigned variables. upgrade_errlog_limit is one of the
numerous examples. In the case of zfs_vdev_async_read_max_active, it was
already uint32_t, but zdb had an extern int declaration for it.
Interestingly, the documentation in zfs.4 was right for
upgrade_errlog_limit despite the module parameter being wrongly marked,
while the documentation for zfs_vdev_async_read_max_active (and friends)
was wrong. It was also wrong for zstd_abort_size, which was unsigned,
but was documented as signed.
Also, the documentation in zfs.4 incorrectly described the following
parameters as ulong when they were int:
* zfs_arc_meta_adjust_restarts
* zfs_override_estimate_recordsize
They are now uint_t as of this patch and thus the man page has been
updated to describe them as uint.
dbuf_state_index was left alone since it does nothing and perhaps should
be removed in another patch.
If any module parameters were missed, they were not found by `grep -r
'ZFS_MODULE_PARAM' | grep ', INT'`. I did find a few that grep missed,
but only because they were in files that had hits.
This patch intentionally did not attempt to address whether some of
these module parameters should be elevated to 64-bit parameters, because
the length of a long on 32-bit is 32-bit.
Lastly, it was pointed out during review that uint_t is a better match
for these variables than uint32_t because FreeBSD kernel parameter
definitions are designed for uint_t, whose bit width can change in
future memory models. As a result, we change the existing parameters
that are uint32_t to use uint_t.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Neal Gompa <ngompa@datto.com>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#13875
Coverity found a bug in `zfs_secpolicy_create_clone()` where it is
possible for us to pass an unterminated string when `zfs_get_parent()`
returns an error. Upon inspection, it is clear that using `strlcpy()`
would have avoided this issue.
Looking at the codebase, there are a number of other uses of `strncpy()`
that are unsafe and even when it is used safely, switching to
`strlcpy()` would make the code more readable. Therefore, we switch all
instances where we use `strncpy()` to use `strlcpy()`.
Unfortunately, we do not portably have access to `strlcpy()` in
tests/zfs-tests/cmd/zfs_diff-socket.c because it does not link to
libspl. Modifying the appropriate Makefile.am to try to link to it
resulted in an error from the naming choice used in the file. Trying to
disable the check on the file did not work on FreeBSD because Clang
ignores `#undef` when a definition is provided by `-Dstrncpy(...)=...`.
We workaround that by explictly including the C file from libspl into
the test. This makes things build correctly everywhere.
We add a deprecation warning to `config/Rules.am` and suppress it on the
remaining `strncpy()` usage. `strlcpy()` is not portably avaliable in
tests/zfs-tests/cmd/zfs_diff-socket.c, so we use `snprintf()` there as a
substitute.
This patch does not tackle the related problem of `strcpy()`, which is
even less safe. Thankfully, a quick inspection found that it is used far
more correctly than strncpy() was used. A quick inspection did not find
any problems with `strcpy()` usage outside of zhack, but it should be
said that I only checked around 90% of them.
Lastly, some of the fields in kstat_t varied in size by 1 depending on
whether they were in userspace or in the kernel. The origin of this
discrepancy appears to be 04a479f706 where
it was made for no apparent reason. It conflicts with the comment on
KSTAT_STRLEN, so we shrink the kernel field sizes to match the userspace
field sizes.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#13876
This commit adds BLAKE3 checksums to OpenZFS, it has similar
performance to Edon-R, but without the caveats around the latter.
Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3
Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3
Short description of Wikipedia:
BLAKE3 is a cryptographic hash function based on Bao and BLAKE2,
created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and
Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real
World Crypto. BLAKE3 is a single algorithm with many desirable
features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE
and BLAKE2, which are algorithm families with multiple variants.
BLAKE3 has a binary tree structure, so it supports a practically
unlimited degree of parallelism (both SIMD and multithreading) given
enough input. The official Rust and C implementations are
dual-licensed as public domain (CC0) and the Apache License.
Along with adding the BLAKE3 hash into the OpenZFS infrastructure a
new benchmarking file called chksum_bench was introduced. When read
it reports the speed of the available checksum functions.
On Linux: cat /proc/spl/kstat/zfs/chksum_bench
On FreeBSD: sysctl kstat.zfs.misc.chksum_bench
This is an example output of an i3-1005G1 test system with Debian 11:
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 1196 1602 1761 1749 1762 1759 1751
skein-generic 546 591 608 615 619 612 616
sha256-generic 240 300 316 314 304 285 276
sha512-generic 353 441 467 476 472 467 426
blake3-generic 308 313 313 313 312 313 312
blake3-sse2 402 1289 1423 1446 1432 1458 1413
blake3-sse41 427 1470 1625 1704 1679 1607 1629
blake3-avx2 428 1920 3095 3343 3356 3318 3204
blake3-avx512 473 2687 4905 5836 5844 5643 5374
Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X)
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 1840 2458 2665 2719 2711 2723 2693
skein-generic 870 966 996 992 1003 1005 1009
sha256-generic 415 442 453 455 457 457 457
sha512-generic 608 690 711 718 719 720 721
blake3-generic 301 313 311 309 309 310 310
blake3-sse2 343 1865 2124 2188 2180 2181 2186
blake3-sse41 364 2091 2396 2509 2463 2482 2488
blake3-avx2 365 2590 4399 4971 4915 4802 4764
Output on Debian 5.10.0-9-powerpc64le system: (POWER 9)
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 1213 1703 1889 1918 1957 1902 1907
skein-generic 434 492 520 522 511 525 525
sha256-generic 167 183 187 188 188 187 188
sha512-generic 186 216 222 221 225 224 224
blake3-generic 153 152 154 153 151 153 153
blake3-sse2 391 1170 1366 1406 1428 1426 1414
blake3-sse41 352 1049 1212 1174 1262 1258 1259
Output on Debian 5.10.0-11-arm64 system: (Pi400)
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 487 603 629 639 643 641 641
skein-generic 271 299 303 308 309 309 307
sha256-generic 117 127 128 130 130 129 130
sha512-generic 145 165 170 172 173 174 175
blake3-generic 81 29 71 89 89 89 89
blake3-sse2 112 323 368 379 380 371 374
blake3-sse41 101 315 357 368 369 364 360
Structurally, the new code is mainly split into these parts:
- 1x cross platform generic c variant: blake3_generic.c
- 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512)
- 2x assembly for ARMv8 (NEON converted from SSE2)
- 2x assembly for PPC64-LE (POWER8 converted from SSE2)
- one file for switching between the implementations
Note the PPC64 assembly requires the VSX instruction set and the
kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly.
Reviewed-by: Felix Dörre <felix@dogcraft.de>
Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Co-authored-by: Rich Ercolani <rincebrain@gmail.com>
Closes#10058Closes#12918
bcopy() has a confusing argument order and is actually a move, not a
copy; they're all deprecated since POSIX.1-2001 and removed in -2008,
and we shim them out to mem*() on Linux anyway
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes#12996
Evaluated every variable that lives in .data (and globals in .rodata)
in the kernel modules, and constified/eliminated/localised them
appropriately. This means that all read-only data is now actually
read-only data, and, if possible, at file scope. A lot of previously-
global-symbols became inlinable (and inlined!) constants. Probably
not in a big Wowee Performance Moment, but hey.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes#12899
Add properties, similar to pool properties, to each vdev.
This makes use of the existing per-vdev ZAP that was added as
part of device evacuation/removal.
A large number of read-only properties are exposed,
many of the members of struct vdev_t, that provide useful
statistics.
Adds support for read-only "removing" vdev property.
Adds the "allocating" property that defaults to "on" and
can be set to "off" to prevent future allocations from that
top-level vdev.
Supports user-defined vdev properties.
Includes support for properties.vdev in SYSFS.
Co-authored-by: Allan Jude <allan@klarasystems.com>
Co-authored-by: Mark Maybee <mark.maybee@delphix.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Closes#11711
After 1325434b, we can in certain circumstances end up calling
spa_update_dspace with vd->vdev_mg NULL, which ends poorly during
vdev removal.
So let's not do that further space adjustment when we can't.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes#12380Closes#12428
Remove mc_lock use from metaslab_class_throttle_*(). The math there
is based on refcounts and so atomic, so the only race possible there
is between zfs_refcount_count() and zfs_refcount_add(). But in most
cases metaslab_class_throttle_reserve() is called with the allocator
lock held, which covers the race. In cases where the lock is not
held, GANG_ALLOCATION() or METASLAB_MUST_RESERVE are set, and so we
do not use zfs_refcount_count(). And even if we assume some other
non-existing scenario, the worst that may happen from this race is
few more I/Os get to allocation earlier, that is not a problem.
Move locks and data of different allocators into different cache
lines to avoid false sharing. Group spa_alloc_* arrays together
into single array of aligned struct spa_alloc spa_allocs. Align
struct metaslab_class_allocator.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes#12314
* Tinker with slop space accounting with dedup
Do not include the deduplicated space usage in the slop space
reservation, it leads to surprising outcomes.
* Update spa_dedup_dspace sometimes
Sometimes, we get into spa_get_slop_space() with
spa_dedup_dspace=~0ULL, AKA "unset", while spa_dspace is correctly set.
So call the code to update it before we use it if we hit that case.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes#12271
The only reason for spa_config_*() to use refcount instead of simple
non-atomic (thanks to scl_lock) variable for scl_count is tracking,
hard disabled for the last 8 years. Switch to simple int scl_count
reduces the lock hold time by avoiding atomic, plus makes structure
fit into single cache line, reducing the locks contention.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes#12287
ZFS loves using %llu for uint64_t, but that requires a cast to not
be noisy - which is even done in many, though not all, places.
Also a couple places used %u for uint64_t, which were promoted
to %llu.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes#12233
In all places except two spa_get_random() is used for small values,
and the consumers do not require well seeded high quality values.
Switch those two exceptions directly to random_get_pseudo_bytes()
and optimize spa_get_random(), renaming it to random_in_range(),
since it is not related to SPA or ZFS in general.
On FreeBSD directly map random_in_range() to new prng32_bounded() KPI
added in FreeBSD 13. On Linux and in user-space just reduce the type
used to uint32_t to avoid more expensive 64bit division.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes#12183
A few deadman tunables ended up in the wrong sysctl node.
Move them to vfs.zfs.deadman.*
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11715
Calling vdev_free() only requires the we acquire the spa config
SCL_STATE_ALL locks, not the SCL_ALL locks. In particular, we need
need to avoid taking the SCL_CONFIG lock (included in SCL_ALL) as a
writer since this can lead to a deadlock. The txg_sync_thread() may
block in spa_txg_history_init_io() when taking the SCL_CONFIG lock
as a reading when it detects there's a pending writer.
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#11585
This change modifies the behavior of how we determine how much slop
space to use in the pool, such that now it has an upper limit. The
default upper limit is 128G, but is configurable via a tunable.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Prakash Surya <prakash.surya@delphix.com>
Closes#11023
Mixing ZIL and normal allocations has several problems:
1. The ZIL allocations are allocated, written to disk, and then a few
seconds later freed. This leaves behind holes (free segments) where the
ZIL blocks used to be, which increases fragmentation, which negatively
impacts performance.
2. When under moderate load, ZIL allocations are of 128KB. If the pool
is fairly fragmented, there may not be many free chunks of that size.
This causes ZFS to load more metaslabs to locate free segments of 128KB
or more. The loading happens synchronously (from zil_commit()), and can
take around a second even if the metaslab's spacemap is cached in the
ARC. All concurrent synchronous operations on this filesystem must wait
while the metaslab is loading. This can cause a significant performance
impact.
3. If the pool is very fragmented, there may be zero free chunks of
128KB or more. In this case, the ZIL falls back to txg_wait_synced(),
which has an enormous performance impact.
These problems can be eliminated by using a dedicated log device
("slog"), even one with the same performance characteristics as the
normal devices.
This change sets aside one metaslab from each top-level vdev that is
preferentially used for ZIL allocations (vdev_log_mg,
spa_embedded_log_class). From an allocation perspective, this is
similar to having a dedicated log device, and it eliminates the
above-mentioned performance problems.
Log (ZIL) blocks can be allocated from the following locations. Each
one is tried in order until the allocation succeeds:
1. dedicated log vdevs, aka "slog" (spa_log_class)
2. embedded slog metaslabs (spa_embedded_log_class)
3. other metaslabs in normal vdevs (spa_normal_class)
The space required for the embedded slog metaslabs is usually between
0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop"
space that is not available for user data.
On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity,
and recordsize=8k, testing shows a ~50% performance increase on random
8k sync writes. On even more fragmented systems (which hit problem #3
above and call txg_wait_synced()), the performance improvement can be
arbitrarily large (>100x).
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11389
The space in special devices is not included in spa_dspace (or
dsl_pool_adjustedsize(), or the zfs `available` property). Therefore
there is always at least as much free space in the normal class, as
there is allocated in the special class(es). And therefore, there is
always enough free space to remove a special device.
However, the checks for free space when removing special devices did not
take this into account. This commit corrects that.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11329
Metaslab rotor and aliquot are used to distribute workload between
vdevs while keeping some locality for logically adjacent blocks. Once
multiple allocators were introduced to separate allocation of different
objects it does not make much sense for different allocators to write
into different metaslabs of the same metaslab group (vdev) same time,
competing for its resources. This change makes each allocator choose
metaslab group independently, colliding with others only sporadically.
Test including simultaneous write into 4 files with recordsize of 4KB
on a striped pool of 30 disks on a system with 40 logical cores show
reduction of vdev queue lock contention from 54 to 27% due to better
load distribution. Unfortunately it won't help much ZVOLs yet since
only one dataset/ZVOL is synced at a time, and so for the most part
only one allocator is used, but it may improve later.
While there, to reduce the number of pointer dereferences change
per-allocator storage for metaslab classes and groups from several
separate malloc()'s to variable length arrays at the ends of the
original class and group structures.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#11288
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10102