Commit Graph

141 Commits

Author SHA1 Message Date
Richard Yao
fdc2d30371
Cleanup: Specify unsignedness on things that should not be signed
In #13871, zfs_vdev_aggregation_limit_non_rotating and
zfs_vdev_aggregation_limit being signed was pointed out as a possible
reason not to eliminate an unnecessary MAX(unsigned, 0) since the
unsigned value was assigned from them.

There is no reason for these module parameters to be signed and upon
inspection, it was found that there are a number of other module
parameters that are signed, but should not be, so we make them unsigned.
Making them unsigned made it clear that some other variables in the code
should also be unsigned, so we also make those unsigned. This prevents
users from setting negative values that could potentially cause bad
behaviors. It also makes the code slightly easier to understand.

Mostly module parameters that deal with timeouts, limits, bitshifts and
percentages are made unsigned by this. Any that are boolean are left
signed, since whether booleans should be considered signed or unsigned
does not matter.

Making zfs_arc_lotsfree_percent unsigned caused a
`zfs_arc_lotsfree_percent >= 0` check to become redundant, so it was
removed. Removing the check was also necessary to prevent a compiler
error from -Werror=type-limits.

Several end of line comments had to be moved to their own lines because
replacing int with uint_t caused us to exceed the 80 character limit
enforced by cstyle.pl.

The following were kept signed because they are passed to
taskq_create(), which expects signed values and modifying the
OpenSolaris/Illumos DDI is out of scope of this patch:

	* metaslab_load_pct
	* zfs_sync_taskq_batch_pct
	* zfs_zil_clean_taskq_nthr_pct
	* zfs_zil_clean_taskq_minalloc
	* zfs_zil_clean_taskq_maxalloc
	* zfs_arc_prune_task_threads

Also, negative values in those parameters was found to be harmless.

The following were left signed because either negative values make
sense, or more analysis was needed to determine whether negative values
should be disallowed:

	* zfs_metaslab_switch_threshold
	* zfs_pd_bytes_max
	* zfs_livelist_min_percent_shared

zfs_multihost_history was made static to be consistent with other
parameters.

A number of module parameters were marked as signed, but in reality
referenced unsigned variables. upgrade_errlog_limit is one of the
numerous examples. In the case of zfs_vdev_async_read_max_active, it was
already uint32_t, but zdb had an extern int declaration for it.

Interestingly, the documentation in zfs.4 was right for
upgrade_errlog_limit despite the module parameter being wrongly marked,
while the documentation for zfs_vdev_async_read_max_active (and friends)
was wrong. It was also wrong for zstd_abort_size, which was unsigned,
but was documented as signed.

Also, the documentation in zfs.4 incorrectly described the following
parameters as ulong when they were int:

	* zfs_arc_meta_adjust_restarts
	* zfs_override_estimate_recordsize

They are now uint_t as of this patch and thus the man page has been
updated to describe them as uint.

dbuf_state_index was left alone since it does nothing and perhaps should
be removed in another patch.

If any module parameters were missed, they were not found by `grep -r
'ZFS_MODULE_PARAM' | grep ', INT'`. I did find a few that grep missed,
but only because they were in files that had hits.

This patch intentionally did not attempt to address whether some of
these module parameters should be elevated to 64-bit parameters, because
the length of a long on 32-bit is 32-bit.

Lastly, it was pointed out during review that uint_t is a better match
for these variables than uint32_t because FreeBSD kernel parameter
definitions are designed for uint_t, whose bit width can change in
future memory models.  As a result, we change the existing parameters
that are uint32_t to use uint_t.

Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Neal Gompa <ngompa@datto.com>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #13875
2022-09-27 16:42:41 -07:00
Richard Yao
e506a0ce40
Cleanup: Change 1 used in bitshifts to 1ULL
Coverity complains about this. It is not a bug as long as we never shift
by more than 31, but it is not terrible to change the constants from 1
to 1ULL as clean up.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #13914
2022-09-22 11:28:33 -07:00
Tino Reichardt
1d3ba0bf01
Replace dead opensolaris.org license link
The commit replaces all findings of the link:
http://www.opensolaris.org/os/licensing with this one:
https://opensource.org/licenses/CDDL-1.0

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Closes #13619
2022-07-11 14:16:13 -07:00
наб
dd66857d92 Remaining {=> const} char|void *tag
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #13348
2022-06-29 14:08:59 -07:00
Alexander Motin
c55b293287
Improve mg_aliquot math
When calculating mg_aliquot alike to #12046 use number of unique data
disks in the vdev, not the total number of children vdev.  Increase
default value of the tunable from 512KB to 1MB to compensate.

Before this change each disk in striped pool was getting 512KB of
sequential data, in 2-wide mirror -- 1MB, in 3-wide RAIDZ1 -- 768KB.
After this change in all the cases each disk should get 1MB.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #13388
2022-05-04 11:33:42 -07:00
Alexander Motin
600a02b884
Improve log spacemap load time
Previous flushing algorithm limited only total number of log blocks to
the minimum of 256K and 4x number of metaslabs in the pool.  As result,
system with 1500 disks with 1000 metaslabs each, touching several new
metaslabs each TXG could grow spacemap log to huge size without much
benefits.  We've observed one of such systems importing pool for about
45 minutes.

This patch improves the situation from five sides:
 - By limiting maximum period for each metaslab to be flushed to 1000
TXGs, that effectively limits maximum number of per-TXG spacemap logs
to load to the same number.
 - By making flushing more smooth via accounting number of metaslabs
that were touched after the last flush and actually need another flush,
not just ms_unflushed_txg bump.
 - By applying zfs_unflushed_log_block_pct to the number of metaslabs
that were touched after the last flush, not all metaslabs in the pool.
 - By aggressively prefetching per-TXG spacemap logs up to 16 TXGs in
advance, making log spacemap load process for wide HDD pool CPU-bound,
accelerating it by many times.
 - By reducing zfs_unflushed_log_block_max from 256K to 128K, reducing
single-threaded by nature log processing time from ~10 to ~5 minutes.

As further optimization we could skip bumping ms_unflushed_txg for
metaslabs not touched since the last flush, but that would be an
incompatible change, requiring new pool feature.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #12789
2022-04-26 10:44:21 -07:00
наб
861166b027 Remove bcopy(), bzero(), bcmp()
bcopy() has a confusing argument order and is actually a move, not a
copy; they're all deprecated since POSIX.1-2001 and removed in -2008,
and we shim them out to mem*() on Linux anyway

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12996
2022-03-15 15:13:42 -07:00
наб
7ada752a93 Clean up CSTYLEDs
69 CSTYLED BEGINs remain, appx. 30 of which can be removed if cstyle(1)
had a useful policy regarding
  CALL(ARG1,
  	ARG2,
  	ARG3);
above 2 lines. As it stands, it spits out *both*
  sysctl_os.c: 385: continuation line should be indented by 4 spaces
  sysctl_os.c: 385: indent by spaces instead of tabs
which is very cool

Another >10 could be fixed by removing "ulong" &al. handling.
I don't foresee anyone actually using it intentionally
(does it even exist in modern headers? why did it in the first place?).

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12993
2022-01-26 11:38:52 -08:00
наб
18168da727
module/*.ko: prune .data, global .rodata
Evaluated every variable that lives in .data (and globals in .rodata)
in the kernel modules, and constified/eliminated/localised them
appropriately. This means that all read-only data is now actually
read-only data, and, if possible, at file scope. A lot of previously-
global-symbols became inlinable (and inlined!) constants. Probably
not in a big Wowee Performance Moment, but hey.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12899
2022-01-14 15:37:55 -08:00
наб
14e4e3cb9f module: zfs: fix unused, remove argsused
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12844
2021-12-23 09:42:47 -08:00
Fedor Uporov
e39fe05b69
Skip spacemaps reading in case of pool readonly import
The only zdb utility require to read metaslab-related data during
read-only pool import because of spacemaps validation. Add global
variable which will allow zdb read spacemaps in case of readonly
import mode.

Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Fedor Uporov <fuporov.vstack@gmail.com>
Closes #9095
Closes #12687
2021-11-09 12:50:39 -08:00
Alexander Motin
dd3bda39cf
Add comment on metaslab_class_throttle_reserve() locking
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Issue #12314
Closes #12419
2021-07-26 16:30:20 -07:00
Alexander Motin
1b50749ce9
Optimize allocation throttling
Remove mc_lock use from metaslab_class_throttle_*().  The math there
is based on refcounts and so atomic, so the only race possible there
is between zfs_refcount_count() and zfs_refcount_add().  But in most
cases metaslab_class_throttle_reserve() is called with the allocator
lock held, which covers the race.  In cases where the lock is not
held, GANG_ALLOCATION() or METASLAB_MUST_RESERVE are set, and so we
do not use zfs_refcount_count().  And even if we assume some other
non-existing scenario, the worst that may happen from this race is
few more I/Os get to allocation earlier, that is not a problem.

Move locks and data of different allocators into different cache
lines to avoid false sharing.  Group spa_alloc_* arrays together
into single array of aligned struct spa_alloc spa_allocs.  Align
struct metaslab_class_allocator.

Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #12314
2021-07-21 06:40:36 -06:00
Alexander Motin
5b7053a9a5
Avoid 64bit division in multilist index functions
The number of sublists in a multilist is relatively small. We dont need
64 bits to calculate an index. 32 bits is sufficient and makes the
code more efficient.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> 
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #12288
2021-06-29 06:59:14 -06:00
jumbi77
86f5e0bbce
zfs_metaslab_mem_limit should be 25 instead of 75
According to current zfs man page zfs_metaslab_mem_limit should be
25 instead of 75.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: jumbi77@users.noreply.github.com
Closes #12273
2021-06-24 10:02:54 -07:00
Rich Ercolani
8e739b2c9f
Annotated dprintf as printf-like
ZFS loves using %llu for uint64_t, but that requires a cast to not 
be noisy - which is even done in many, though not all, places.
Also a couple places used %u for uint64_t, which were promoted
to %llu. 

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes #12233
2021-06-22 21:53:45 -07:00
Alexander Motin
29274c9f6d
Optimize small random numbers generation
In all places except two spa_get_random() is used for small values,
and the consumers do not require well seeded high quality values.
Switch those two exceptions directly to random_get_pseudo_bytes()
and optimize spa_get_random(), renaming it to random_in_range(),
since it is not related to SPA or ZFS in general.

On FreeBSD directly map random_in_range() to new prng32_bounded() KPI
added in FreeBSD 13.  On Linux and in user-space just reduce the type
used to uint32_t to avoid more expensive 64bit division.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #12183
2021-06-22 17:35:23 -06:00
Alexander Motin
ffdf019cb3
Re-embed multilist_t storage
This commit partially reverts changes to multilists in PR 7968
(multi-threaded spa-sync()) and adds some cache line alignments to
separate read-only multilists and heavily modified refcount's to different
cache lines.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-by: iXsystems, Inc.
Closes #12158
2021-06-10 10:42:31 -06:00
Matthew Ahrens
2b56a63457
Use a helper function to clarify gang block size
For gang blocks, `DVA_GET_ASIZE()` is the total space allocated for the
gang DVA including its children BP's.  The space allocated at each DVA's
vdev/offset is `vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE)`.

This commit makes this relationship more clear by using a helper
function, `vdev_gang_header_asize()`, for the space allocated at the
gang block's vdev/offset.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11744
2021-03-26 11:19:35 -07:00
Serapheim Dimitropoulos
793c958f6f
Initialize metaslab range trees in metaslab_init
= Motivation

We've noticed several zloop crashes within Delphix generated
due to the following sequence of events:

- A device gets expanded and new metaslabas are allocated for
  it. These metaslabs go through `metaslab_init()` but haven't
  gone through `metaslab_sync_done()` yet. This meas that the
  only range tree that's actually set is the `ms_allocatable`.
  All the others are NULL.

- A vdev_initialization is issues and `vdev_initialize_thread`
  starts processing one of these new metaslabs of the expanded
  vdev.

- As part of `vdev_initialize_calculate_progress()` we call
  into `metaslab_load()` and `metaslab_load_impl()` which
  in turn tries to dereference the metaslabs trees that
  are still NULL and therefore we crash.

The same failure can come up from the `vdev_trim` code paths.

= This Patch

We considered the following solutions to deal with this issue:

[A] Add logic to `vdev_initialize/trim` to skip those new
    metaslabs. We decided against this as it would be good
    to avoid exposing this lower-level detail to higer-level
    operations.

[B] Have `metaslab_load_impl()` return early for new metaslabs
    and thus never touch those range_trees that are NULL at
    that time. This seemed more of a work-around for the bug
    and not a clear-cut solution.

[C] Refactor our logic so all metaslabs have their range_trees
    created at the time of their creatin in `metaslab_init()`.

In this patch we decided to go with [C] because:

(1) It doesn't expose more metaslab details to higher level
    operations such as vdev initialize and trim.

(2) The current behavior of creating the range trees lazily
    in `metaslab_sync_done()` is unnecessarily complicated.

(3) Always initializing the metaslab range_trees makes other
    parts of the codebase cleaner. For example, we used to
    use `ms_freed` as the reference value for knowing whether
    all the range_trees have been initialized. Now we no
    longer need to do that check in most places (and in the
    few that we do we use the `ms_new` boolean field now
    which is more readable).

= Side Changes

Probably due to a mismerge we set `ms_loaded` to `B_TRUE` twice
in `metasloab_load_impl()`. In this patch we remove the extraneous
assignment.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #11737
2021-03-19 22:36:02 -07:00
Alan Somers
a0e01997ec Parallelize vdev_load
metaslab_init is the slowest part of importing a mature pool, and it
must be repeated hundreds of times for each top-level vdev.  But its
speed is dominated by a few serialized disk accesses.  That can lead to
import times of > 1 hour for pools with many top-level vdevs on spinny
disks.

Speed up the import by using a taskqueue to parallelize vdev_load across
all top-level vdevs.

This also requires adding mutex protection to
metaslab_class_t.mc_historgram.  The mc_histogram fields were
unprotected when that code was first written in "Illumos 4976-4984 -
metaslab improvements" (OpenZFS
f3a7f6610f).  The lock wasn't added until
3dfb57a35e, though it's unclear exactly
which fields it's supposed to protect.  In any case, it wasn't until
vdev_load was parallelized that any code attempted concurrent access to
those fields.

Sponsored by: Axcient
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alan Somers <asomers@gmail.com>
Closes #11470
2021-01-26 19:35:59 -08:00
Matthew Ahrens
aa755b3549
Set aside a metaslab for ZIL blocks
Mixing ZIL and normal allocations has several problems:

1. The ZIL allocations are allocated, written to disk, and then a few
seconds later freed.  This leaves behind holes (free segments) where the
ZIL blocks used to be, which increases fragmentation, which negatively
impacts performance.

2. When under moderate load, ZIL allocations are of 128KB.  If the pool
is fairly fragmented, there may not be many free chunks of that size.
This causes ZFS to load more metaslabs to locate free segments of 128KB
or more.  The loading happens synchronously (from zil_commit()), and can
take around a second even if the metaslab's spacemap is cached in the
ARC.  All concurrent synchronous operations on this filesystem must wait
while the metaslab is loading.  This can cause a significant performance
impact.

3. If the pool is very fragmented, there may be zero free chunks of
128KB or more.  In this case, the ZIL falls back to txg_wait_synced(),
which has an enormous performance impact.

These problems can be eliminated by using a dedicated log device
("slog"), even one with the same performance characteristics as the
normal devices.

This change sets aside one metaslab from each top-level vdev that is
preferentially used for ZIL allocations (vdev_log_mg,
spa_embedded_log_class).  From an allocation perspective, this is
similar to having a dedicated log device, and it eliminates the
above-mentioned performance problems.

Log (ZIL) blocks can be allocated from the following locations.  Each
one is tried in order until the allocation succeeds:
1. dedicated log vdevs, aka "slog" (spa_log_class)
2. embedded slog metaslabs (spa_embedded_log_class)
3. other metaslabs in normal vdevs (spa_normal_class)

The space required for the embedded slog metaslabs is usually between
0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop"
space that is not available for user data.

On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity,
and recordsize=8k, testing shows a ~50% performance increase on random
8k sync writes.  On even more fragmented systems (which hit problem #3
above and call txg_wait_synced()), the performance improvement can be
arbitrarily large (>100x).

Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11389
2021-01-21 15:12:54 -08:00
Matthew Ahrens
be5c6d9653
Only examine best metaslabs on each vdev
On a system with very high fragmentation, we may need to do lots of gang
allocations (e.g. most indirect block allocations (~50KB) may need to
gang). Before failing a "normal" allocation and resorting to ganging, we
try every metaslab.  This has the impact of loading every metaslab (not
a huge deal since we now typically keep all metaslabs loaded), and also
iterating over every metaslab for every failing allocation. If there are
many metaslabs (more than the typical ~200, e.g. due to vdev expansion
or very large vdevs), the CPU cost of this iteration can be very
impactful.  This iteration is done with the mg_lock held, creating long
hold times and high lock contention for concurrent allocations,
ultimately causing long txg sync times and poor application performance.

To address this, this commit changes the behavior of "normal" (not
try_hard, not ZIL) allocations.  These will now only examine the 100
best metaslabs (as determined by their ms_weight).  If none of these
have a large enough free segment, then the allocation will fail and
we'll fall back on ganging.

To accomplish this, we will now (normally) gang before doing a
`try_hard` allocation.  Non-try_hard allocations will only examine the
100 best metaslabs of each vdev.  In summary, we will first try normal
allocation.  If that fails then we will do a gang allocation.  If that
fails then we will do a "try hard" gang allocation.  If that fails then
we will have a multi-layer gang block.

Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11327
2020-12-16 14:40:05 -08:00
Alexander Motin
f8020c9363
Make metaslab class rotor and aliquot per-allocator.
Metaslab rotor and aliquot are used to distribute workload between
vdevs while keeping some locality for logically adjacent blocks.  Once
multiple allocators were introduced to separate allocation of different
objects it does not make much sense for different allocators to write
into different metaslabs of the same metaslab group (vdev) same time,
competing for its resources.  This change makes each allocator choose
metaslab group independently, colliding with others only sporadically.

Test including simultaneous write into 4 files with recordsize of 4KB
on a striped pool of 30 disks on a system with 40 logical cores show
reduction of vdev queue lock contention from 54 to 27% due to better
load distribution.  Unfortunately it won't help much ZVOLs yet since
only one dataset/ZVOL is synced at a time, and so for the most part
only one allocator is used, but it may improve later.

While there, to reduce the number of pointer dereferences change
per-allocator storage for metaslab classes and groups from several
separate malloc()'s to variable length arrays at the ends of the
original class and group structures.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes #11288
2020-12-15 10:55:44 -08:00
Brian Behlendorf
b2255edcc0
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID.  This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.

A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`.  No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.

    zpool create <pool> draid[1,2,3] <vdevs...>

Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons.  The supported options include:

    zpool create <pool> \
        draid[<parity>][:<data>d][:<children>c][:<spares>s] \
        <vdevs...>

    - draid[parity]       - Parity level (default 1)
    - draid[:<data>d]     - Data devices per group (default 8)
    - draid[:<children>c] - Expected number of child vdevs
    - draid[:<spares>s]   - Distributed hot spares (default 0)

Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.

```
  pool: tank
 state: ONLINE
config:

    NAME                  STATE     READ WRITE CKSUM
    slag7                 ONLINE       0     0     0
      draid2:8d:68c:2s-0  ONLINE       0     0     0
        L0                ONLINE       0     0     0
        L1                ONLINE       0     0     0
        ...
        U25               ONLINE       0     0     0
        U26               ONLINE       0     0     0
        spare-53          ONLINE       0     0     0
          U27             ONLINE       0     0     0
          draid2-0-0      ONLINE       0     0     0
        U28               ONLINE       0     0     0
        U29               ONLINE       0     0     0
        ...
        U42               ONLINE       0     0     0
        U43               ONLINE       0     0     0
    special
      mirror-1            ONLINE       0     0     0
        L5                ONLINE       0     0     0
        U5                ONLINE       0     0     0
      mirror-2            ONLINE       0     0     0
        L6                ONLINE       0     0     0
        U6                ONLINE       0     0     0
    spares
      draid2-0-0          INUSE     currently in use
      draid2-0-1          AVAIL
```

When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command.  These options are leverages
by zloop.sh to test a wide range of dRAID configurations.

    -K draid|raidz|random - kind of RAID to test
    -D <value>            - dRAID data drives per group
    -S <value>            - dRAID distributed hot spares
    -R <value>            - RAID parity (raidz or dRAID)

The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.

Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 13:51:51 -08:00
Ryan Moeller
76d04993a6
Update references to nonexistent man pages in code
Refer to the correct section or alternative for FreeBSD and Linux.

Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes #11132
2020-10-30 08:55:59 -07:00
Brian Behlendorf
dce63135ae Sequential scrub and resilver updated comments
Commit d4a72f2 which introduced multi-phase scrubs and resilvers
continued the work presented by Nexenta at the 2016 ZFS developer
summit.  Update the source to reflect their contribution.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2020-09-04 10:51:51 -07:00
Matthew Ahrens
d64c6a2eee
Use zfs_dbgmsg to log metaslab_load/unload
Metaslabs are now (usually) loaded and unloaded infrequently, but when
that is not the case, it is useful to have a log of when and why these
events happened.

This commit enables the zfs_dbgmsg() in metaslab_load(), and adds a
zfs_dbgmsg() in metaslab_unload().

Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10683
2020-08-12 10:10:50 -07:00
Matthew Macy
6d8da84106
Make use of ZFS_DEBUG consistent within kmod sources
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #10623
2020-07-25 20:07:44 -07:00
Matthew Ahrens
6774931dfa
Extend zdb to print inconsistencies in livelists and metaslabs
Livelists and spacemaps are data structures that are logs of allocations
and frees.  Livelists entries are block pointers (blkptr_t). Spacemaps
entries are ranges of numbers, most often used as to track
allocated/freed regions of metaslabs/vdevs.

These data structures can become self-inconsistent, for example if a
block or range can be "double allocated" (two allocation records without
an intervening free) or "double freed" (two free records without an
intervening allocation).

ZDB (as well as zfs running in the kernel) can detect these
inconsistencies when loading livelists and metaslab.  However, it
generally halts processing when the error is detected.

When analyzing an on-disk problem, we often want to know the entire set
of inconsistencies, which is not possible with the current behavior.
This commit adds a new flag, `zdb -y`, which analyzes the livelist and
metaslab data structures and displays all of their inconsistencies.
Note that this is different from the leak detection performed by
`zdb -b`, which checks for inconsistencies between the spacemaps and the
tree of block pointers, but assumes the spacemaps are self-consistent.

The specific checks added are:

Verify livelists by iterating through each sublivelists and:
- report leftover FREEs
- report double ALLOCs and double FREEs
- record leftover ALLOCs together with their TXG [see Cross Check]

Verify spacemaps by iterating over each metaslab and:
- iterate over spacemap and then the metaslab's entries in the
  spacemap log, then report any double FREEs and double ALLOCs

Verify that livelists are consistenet with spacemaps.  The space
referenced by livelists (after using the FREE's to cancel out
corresponding ALLOCs) should be allocated, according to the spacemaps.

Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sara Hartse <sara.hartse@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-66031
Closes #10515
2020-07-14 17:51:05 -07:00
Arvind Sankar
65c7cc49bf Mark functions as static
Mark functions used only in the same translation unit as static. This
only includes functions that do not have a prototype in a header file
either.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Closes #10470
2020-06-18 12:20:38 -07:00
Andrea Gelmini
dd4bc569b9
Fix typos
Correct various typos in the comments and tests.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes #10423
2020-06-09 21:24:09 -07:00
Matthew Ahrens
32d805c3e2
Use a struct to organize metaslab-group-allocator fields
Each metaslab group (of which there is one per top-level vdev) has
several (4, by default) "metaslab group allocators".  Each "allocator"
has its own metaslab that it prefers to allocate from (the "primary"
allocator), and each can perform allocations concurrently with the other
allocators.  In addition to the primary metaslab, there are several
other fields that need to be tracked separately for each allocator.
These are currently stored as several arrays in the metaslab_group_t,
each array indexed by allocator number.

This change organizes all the metaslab-group-allocator-specific fields
into a new struct, metaslab_group_allocator_t.  The metaslab_group_t now
needs only one array indexed by the allocator number - which contains
the metaslab_group_allocator_t's.

Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10213
2020-04-22 10:26:56 -07:00
Matthew Macy
2a8ba608d3 Replace ASSERTV macro with compiler annotation
Remove the ASSERTV macro and handle suppressing unused 
compiler warnings for variables only in ASSERTs using the 
__attribute__((unused)) compiler annotation.  The annotation
is understood by both gcc and clang.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9671
2019-12-05 12:37:00 -08:00
Matthew Macy
6501906280 Add kmem cache accessors
Make the metaslab platform agnostic again by adding
accessor functions which can be implemented by each
platform.

Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9404
2019-10-10 15:45:52 -07:00
Paul Dagnelie
ca5777793e Reduce loaded range tree memory usage
This patch implements a new tree structure for ZFS, and uses it to 
store range trees more efficiently.

The new structure is approximately a B-tree, though there are some 
small differences from the usual characterizations. The tree has core 
nodes and leaf nodes; each contain data elements, which the elements 
in the core nodes acting as separators between its children. The 
difference between core and leaf nodes is that the core nodes have an 
array of children, while leaf nodes don't. Every node in the tree may 
be only partially full; in most cases, they are all at least 50% full 
(in terms of element count) except for the root node, which can be 
less full. Underfull nodes will steal from their neighbors or merge to 
remain full enough, while overfull nodes will split in two. The data 
elements are contained in tree-controlled buffers; they are copied 
into these on insertion, and overwritten on deletion. This means that 
the elements are not independently allocated, which reduces overhead, 
but also means they can't be shared between trees (and also that 
pointers to them are only valid until a side-effectful tree operation 
occurs). The overhead varies based on how dense the tree is, but is 
usually on the order of about 50% of the element size; the per-node 
overheads are very small, and so don't make a significant difference. 
The trees can accept arbitrary records; they accept a size and a 
comparator to allow them to be used for a variety of purposes.

The new trees replace the AVL trees used in the range trees today. 
Currently, the range_seg_t structure contains three 8 byte integers 
of payload and two 24 byte avl_tree_node_ts to handle its storage in 
both an offset-sorted tree and a size-sorted tree (total size: 64 
bytes). In the new model, the range seg structures are usually two 4 
byte integers, but a separate one needs to exist for the size-sorted 
and offset-sorted tree. Between the raw size, the 50% overhead, and 
the double storage, the new btrees are expected to use 8*1.5*2 = 24 
bytes per record, or 33.3% as much memory as the AVL trees (this is 
for the purposes of storing metaslab range trees; for other purposes, 
like scrubs, they use ~50% as much memory).

We reduced the size of the payload in the range segments by teaching 
range trees about starting offsets and shifts; since metaslabs have a 
fixed starting offset, and they all operate in terms of disk sectors, 
we can store the ranges using 4-byte integers as long as the size of 
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle 
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not 
anticipate disks of this size in the near future, there should be 
almost no cases where metaslabs need 64-byte integers to store their 
ranges. We do still have the capability to store 64-byte integer ranges 
to account for cases where we are storing per-vdev (or per-dnode) trees, 
which could reasonably go above the limits discussed. We also do not 
store fill information in the compact version of the node, since it 
is only used for sorted scrub.

We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than 
they are for the avl tree, remove usually requires a find operation, 
while in the AVL tree model the element itself suffices. Some clever 
changes actually caused an overall speedup in metaslab loading; we use 
approximately 40% less cpu to load metaslabs in our tests on Illumos.

Another memory and performance optimization was achieved by changing 
what is stored in the size-sorted trees. When a disk is heavily 
fragmented, the df algorithm used by default in ZFS will almost always 
find a number of small regions in its initial cursor-based search; it 
will usually only fall back to the size-sorted tree to find larger 
regions. If we increase the size of the cursor-based search slightly, 
and don't store segments that are smaller than a tunable size floor 
in the size-sorted tree, we can further cut memory usage down to 
below 20% of what the AVL trees store. This also results in further 
reductions in CPU time spent loading metaslabs.

The 16KiB size floor was chosen because it results in substantial memory 
usage reduction while not usually resulting in situations where we can't 
find an appropriate chunk with the cursor and are forced to use an 
oversized chunk from the size-sorted tree. In addition, even if we do 
have to use an oversized chunk from the size-sorted tree, the chunk 
would be too small to use for ZIL allocations, so it isn't as big of a 
loss as it might otherwise be. And often, more small allocations will 
follow the initial one, and the cursor search will now find the 
remainder of the chunk we didn't use all of and use it for subsequent 
allocations. Practical testing has shown little or no change in 
fragmentation as a result of this change.

If the size-sorted tree becomes empty while the offset sorted one still 
has entries, it will load all the entries from the offset sorted tree 
and disregard the size floor until it is unloaded again. This operation 
occurs rarely with the default setting, only on incredibly thoroughly 
fragmented pools.

There are some other small changes to zdb to teach it to handle btrees, 
but nothing major.
                                           
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy seb@delphix.com
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9181
2019-10-09 10:36:03 -07:00
Matthew Macy
03fdcb9adc Make module tunables cross platform
Adds ZFS_MODULE_PARAM to abstract module parameter
setting to operating systems other than Linux.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes #9230
2019-09-05 14:49:49 -07:00
Serapheim Dimitropoulos
65a91b166e metaslab_verify_weight_and_frag() shouldn't cause side-effects
`metaslab_verify_weight_and_frag()` a verification function and
by the end of it there shouldn't be any side-effects.

The function calls `metaslab_weight()` which in turn calls
`metaslab_set_fragmentation()`. The latter can dirty and otherwise
not dirty metaslab fro the next TXGand set `metaslab_condense_wanted`
if the spacemaps were just upgraded (meaning we just enabled the
SPACEMAP_HISTOGRAM feature through upgrade).

This patch adds a new flag as a parameter to `metaslab_weight()` and
`metaslab_set_fragmentation()` making the dirtying of the metaslab
optional.

Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #9185 
Closes #9282
2019-09-05 09:57:55 -07:00
Andrea Gelmini
e1cfd73f7f Fix typos in module/zfs/
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes #9240
2019-09-02 17:56:41 -07:00
Paul Dagnelie
475aa97cab Prevent metaslab_sync panic due to spa_final_dirty_txg
If a pool enables the SPACEMAP_HISTOGRAM feature shortly before being
exported, we can enter a situation that causes a kernel panic. Any metaslabs
that are loaded during the final dirty txg and haven't already been condensed
will cause metaslab_sync to proceed after the final dirty txg so that the
condense can be performed, which there are assertions to prevent. Because of
the nature of this issue, there are a number of ways we can enter this
state. Rather than try to prevent each of them one by one, potentially missing
some edge cases, we instead cut it off at the point of intersection; by
preventing metaslab_sync from proceeding if it would only do so to perform a
condense and we're past the final dirty txg, we preserve the utility of the
existing asserts while preventing this particular issue.

Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9185
Closes #9186
Closes #9231
Closes #9253
2019-08-30 09:28:31 -07:00
Paul Dagnelie
eef0f4d84e Keep more metaslabs loaded
With the other metaslab changes loaded onto a system, we can 
significantly reduce the memory usage of each loaded metaslab and 
unload them on demand if there is memory pressure. However, none 
of those changes actually result in us keeping more metaslabs loaded. 
If we don't keep more metaslabs loaded, we will still have to wait 
for demand-loading to finish when no loaded metaslab can satisfy our 
allocation, which can cause ZIL performance issues. In addition,
performance is traditionally measured by IOs per unit time, while 
unloading is currently done on a txg-count basis. Txgs can take a 
widely varying range of times, from tenths of a second to several 
seconds. This can result in confusing, hard to predict behavior.

This change simply adds a time-based component to metaslab unloading. 
A metaslab will remain loaded for one minute and 8 txgs (by default) 
after it was last used, unless it is evicted due to memory pressure.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
External-issue: DLPX-65016
External-issue: DLPX-65047
Closes #9197
2019-08-29 10:20:36 -07:00
Paul Dagnelie
f09fda5071 Cap metaslab memory usage
On systems with large amounts of storage and high fragmentation, a huge 
amount of space can be used by storing metaslab range trees. Since 
metaslabs are only unloaded during a txg sync, and only if they have 
been inactive for 8 txgs, it is possible to get into a state where all 
of the system's memory is consumed by range trees and metaslabs, and 
txgs cannot sync. While ZFS knows how to evict ARC data when needed, 
it has no such mechanism for range tree data. This can result in boot 
hangs for some system configurations.

First, we add the ability to unload metaslabs outside of syncing 
context. Second, we store a multilist of all loaded metaslabs, sorted 
by their selection txg, so we can quickly identify the oldest 
metaslabs.  We use a multilist to reduce lock contention during heavy 
write workloads. Finally, we add logic that will unload a metaslab 
when we're loading a new metaslab, if we're using more than a certain 
fraction of the available memory on range trees.

Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9128
2019-08-16 09:08:21 -06:00
Paul Dagnelie
c81f1790e2 Metaslab max_size should be persisted while unloaded
When we unload metaslabs today in ZFS, the cached max_size value is
discarded. We instead use the histogram to determine whether or not we
think we can satisfy an allocation from the metaslab. This can result in
situations where, if we're doing I/Os of a size not aligned to a
histogram bucket, a metaslab is loaded even though it cannot satisfy the
allocation we think it can. For example, a metaslab with 16 entries in
the 16k-32k bucket may have entirely 16kB entries. If we try to allocate
a 24kB buffer, we will load that metaslab because we think it should be
able to handle the allocation. Doing so is expensive in CPU time, disk
reads, and average IO latency. This is exacerbated if the write being
attempted is a sync write.

This change makes ZFS cache the max_size after the metaslab is
unloaded. If we ever get a free (or a coalesced group of frees) larger
than the max_size, we will update it. Otherwise, we leave it as is. When
attempting to allocate, we use the max_size as a lower bound, and
respect it unless we are in try_hard. However, we do age the max_size
out at some point, since we expect the actual max_size to increase as we
do more frees. A more sophisticated algorithm here might be helpful, but
this works reasonably well.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9055
2019-08-05 14:34:27 -07:00
Serapheim Dimitropoulos
2fcf4481a6 mismerged log spacemap comment for metaslab_verify_weight_and_frag
When the log spacemap commit was merged in ZoL, the
metaslab_verify_unflushed_changes() debugging function
was deleted as the feature was pretty much stable by
then. Unfortunately though there was a reference to
it from a comment in metaslab_verify_weight_and_frag().

This patch deletes the reference and pastes that
comment as is.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #9097
2019-07-30 10:13:44 -07:00
Serapheim Dimitropoulos
7f31908913 Tricky semantics of ms_max_size in metaslab_should_allocate()
metaslab_should_allocate() is used in two places:
[1] When trying to select a metaslab to allocate from
[2] When trying to allocate from a metaslab

In [2] we always expect the metaslab to be loaded, and after
the refactoring of the log spacemap changes, whenever we load
a metaslab we set ms_max_size to the biggest range in the
ms_allocatable tree. Thus, when it is used in [2], if that
field is 0, it means that the metaslab doesn't have any
segments that can be used for allocations now (though it may
have some free space but that space can be in the freeing,
freed, or deferred trees).

In [1] a metaslab can be loaded or unloaded at which point 0
can either mean the metaslab doesn't have any space or the
metaslab is just not loaded thus we go ahead and try to make
an estimation based on its weight.

The issue here is when we call the above function for [2] and
the metaslab doesn't have any allocatable space, we still go
ahead and check its ms_weight which may be out of date because
we haven't ran metaslab_sync_done() yet. At that point we are
allowing an allocation to be attempted even though we know
there is no range that is allocatable.

This patch fixes this issue by explicitly checking if the
metaslab is loaded and if it is, the ms_max_size is used.

Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #9045
2019-07-19 11:19:50 -07:00
Serapheim Dimitropoulos
93e28d661e Log Spacemap Project
= Motivation

At Delphix we've seen a lot of customer systems where fragmentation
is over 75% and random writes take a performance hit because a lot
of time is spend on I/Os that update on-disk space accounting metadata.
Specifically, we seen cases where 20% to 40% of sync time is spend
after sync pass 1 and ~30% of the I/Os on the system is spent updating
spacemaps.

The problem is that these pools have existed long enough that we've
touched almost every metaslab at least once, and random writes
scatter frees across all metaslabs every TXG, thus appending to
their spacemaps and resulting in many I/Os. To give an example,
assuming that every VDEV has 200 metaslabs and our writes fit within
a single spacemap block (generally 4K) we have 200 I/Os. Then if we
assume 2 levels of indirection, we need 400 additional I/Os and
since we are talking about metadata for which we keep 2 extra copies
for redundancy we need to triple that number, leading to a total of
1800 I/Os per VDEV every TXG.

We could try and decrease the number of metaslabs so we have less
I/Os per TXG but then each metaslab would cover a wider range on
disk and thus would take more time to be loaded in memory from disk.
In addition, after it's loaded, it's range tree would consume more
memory.

Another idea would be to just increase the spacemap block size
which would allow us to fit more entries within an I/O block
resulting in fewer I/Os per metaslab and a speedup in loading time.
The problem is still that we don't deal with the number of I/Os
going up as the number of metaslabs is increasing and the fact
is that we generally write a lot to a few metaslabs and a little
to the rest of them. Thus, just increasing the block size would
actually waste bandwidth because we won't be utilizing our bigger
block size.

= About this patch

This patch introduces the Log Spacemap project which provides the
solution to the above problem while taking into account all the
aforementioned tradeoffs. The details on how it achieves that can
be found in the references sections below and in the code (see
Big Theory Statement in spa_log_spacemap.c).

Even though the change is fairly constraint within the metaslab
and lower-level SPA codepaths, there is a side-change that is
user-facing. The change is that VDEV IDs from VDEV holes will no
longer be reused. To give some background and reasoning for this,
when a log device is removed and its VDEV structure was replaced
with a hole (or was compacted; if at the end of the vdev array),
its vdev_id could be reused by devices added after that. Now
with the pool-wide space maps recording the vdev ID, this behavior
can cause problems (e.g. is this entry referring to a segment in
the new vdev or the removed log?). Thus, to simplify things the
ID reuse behavior is gone and now vdev IDs for top-level vdevs
are truly unique within a pool.

= Testing

The illumos implementation of this feature has been used internally
for a year and has been in production for ~6 months. For this patch
specifically there don't seem to be any regressions introduced to
ZTS and I have been running zloop for a week without any related
problems.

= Performance Analysis (Linux Specific)

All performance results and analysis for illumos can be found in
the links of the references. Redoing the same experiments in Linux
gave similar results. Below are the specifics of the Linux run.

After the pool reached stable state the percentage of the time
spent in pass 1 per TXG was 64% on average for the stock bits
while the log spacemap bits stayed at 95% during the experiment
(graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png).

Sync times per TXG were 37.6 seconds on average for the stock
bits and 22.7 seconds for the log spacemap bits (related graph:
sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result
the log spacemap bits were able to push more TXGs, which is also
the reason why all graphs quantified per TXG have more entries for
the log spacemap bits.

Another interesting aspect in terms of txg syncs is that the stock
bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8,
and 20% reach 9. The log space map bits reached sync pass 4 in 79%
of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This
emphasizes the fact that not only we spend less time on metadata
but we also iterate less times to convergence in spa_sync() dirtying
objects.
[related graphs:
stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png
lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png]

Finally, the improvement in IOPs that the userland gains from the
change is approximately 40%. There is a consistent win in IOPS as
you can see from the graphs below but the absolute amount of
improvement that the log spacemap gives varies within each minute
interval.
sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png
sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png

= Porting to Other Platforms

For people that want to port this commit to other platforms below
is a list of ZoL commits that this patch depends on:

Make zdb results for checkpoint tests consistent
db587941c5

Update vdev_is_spacemap_addressable() for new spacemap encoding
419ba59145

Simplify spa_sync by breaking it up to smaller functions
8dc2197b7b

Factor metaslab_load_wait() in metaslab_load()
b194fab0fb

Rename range_tree_verify to range_tree_verify_not_present
df72b8bebe

Change target size of metaslabs from 256GB to 16GB
c853f382db

zdb -L should skip leak detection altogether
21e7cf5da8

vs_alloc can underflow in L2ARC vdevs
7558997d2f

Simplify log vdev removal code
6c926f426a

Get rid of space_map_update() for ms_synced_length
425d3237ee

Introduce auxiliary metaslab histograms
928e8ad47d

Error path in metaslab_load_impl() forgets to drop ms_sync_lock
8eef997679

= References

Background, Motivation, and Internals of the Feature
- OpenZFS 2017 Presentation:
youtu.be/jj2IxRkl5bQ
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project

Flushing Algorithm Internals & Performance Results
(Illumos Specific)
- Blogpost:
sdimitro.github.io/post/zfs-lsm-flushing/
- OpenZFS 2018 Presentation:
youtu.be/x6D2dHRjkxw
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm

Upstream Delphix Issues:
DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320
DLPX-63385

Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #8442
2019-07-16 10:11:49 -07:00
Paul Dagnelie
fe0ea84812 Don't activate metaslabs with weight 0
We return ENOSPC in metaslab_activate if the metaslab has weight 0, 
to avoid activating a metaslab with no space available.  For sanity 
checking, we also assert that there is no free space in the range 
tree in that case.

Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #8968
2019-07-05 16:45:20 -07:00
Paul Dagnelie
679b0f2abf Concurrent small allocation defeats large allocation
With the new parallel allocators scheme, there is a possibility for 
a problem where two threads, allocating from the same allocator at 
the same time, conflict with each other. There are two primary cases 
to worry about. First, another thread working on another allocator
activates the same metaslab that the first thread was trying to
activate. This results in the first thread needing to go back and
reselect a new metaslab, even though it may have waited a long time
for this metaslab to load. Second, another thread working on the same
allocator may have activated a different metaslab while the first
thread was waiting for its metaslab to load. Both of these cases
can cause the first thread to be significantly delayed in issuing 
its IOs. The second case can also cause metaslab load/unload churn; 
because the metaslab is loaded but not fully activated, we never set 
the selected_txg, which results in the metaslab being immediately 
unloaded again. This process can repeat many times, wasting disk and 
cpu resources. This is more likely to happen when the IO of the first 
thread is a larger one (like a ZIL write) and the other thread is 
doing a smaller write, because it is more likely to find an 
acceptable metaslab quickly.

There are two primary changes. The first is to always proceed with 
the allocation when returning from metaslab_activate if we were 
preempted in either of the ways described in the previous section. 
The second change is to set the selected_txg before we do the call 
to activate so that even if the metaslab is not used for an 
allocation, we won't immediately attempt to unload it.

Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
External-issue: DLPX-61314
Closes #8843
2019-06-26 11:00:12 -07:00
Matthew Ahrens
d3230d761a looping in metaslab_block_picker impacts performance on fragmented pools
On fragmented pools with high-performance storage, the looping in
metaslab_block_picker() can become the performance-limiting bottleneck.
When looking for a larger block (e.g. a 128K block for the ZIL), we may
search through many free segments (up to hundreds of thousands) to find
one that is large enough to satisfy the allocation. This can take a long
time (up to dozens of ms), and is done while holding the ms_lock, which
other threads may spin waiting for.

When this performance problem is encountered, profiling will show
high CPU time in metaslab_block_picker, as well as in mutex_enter from
various callers.

The problem is very evident on a test system with a sync write workload
with 8K writes to a recordsize=8k filesystem, with 4TB of SSD storage,
84% full and 88% fragmented. It has also been observed on production
systems with 90TB of storage, 76% full and 87% fragmented.

The fix is to change metaslab_df_alloc() to search only up to 16MB from
the previous allocation (of this alignment). After that, we will pick a
segment that is of the exact size requested (or larger). This reduces
the number of iterations to a few hundred on fragmented pools (a ~100x
improvement).

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-62324
Closes #8877
2019-06-13 13:06:15 -07:00
Paul Dagnelie
893a6d62c1 Allow metaslab to be unloaded even when not freed from
On large systems, the memory used by loaded metaslabs can become
a concern. While range trees are a fairly efficient data structure, 
on heavily fragmented pools they can still consume a significant 
amount of memory. This problem is amplified when we fail to unload 
metaslabs that we aren't using. Currently, we only unload a metaslab 
during metaslab_sync_done; in order for that function to be called 
on a given metaslab in a given txg, we have to have dirtied that 
metaslab in that txg. If the dirtying was the result of an allocation, 
we wouldn't be unloading it (since it wouldn't be 8 txgs since it 
was selected), so in effect we only unload a metaslab during txgs 
where it's being freed from.

We move the unload logic from sync_done to a new function, and 
call that function on all metaslabs in a given vdev during 
vdev_sync_done().

Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #8837
2019-06-06 19:10:43 -07:00