Commit Graph

10 Commits

Author SHA1 Message Date
Rob Norris
d3c12383c9 compress: change compression providers API to use ABDs
This commit changes the provider compress and decompress API to take ABD
pointers instead of buffer pointers for both data source and
destination. It then updates all providers to match.

This doesn't actually change the providers to do chunked compression,
just changes the API to allow such an update in the future. Helper
macros are added to easily adapt the ABD functions to their buffer-based
implementations.

Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
2024-08-22 16:22:24 -07:00
Rob Norris
522816498c compress: standardise names of compression functions
This is mostly to make searching easier.

Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
2024-08-22 16:22:24 -07:00
Rich Ercolani
3bbc26097e
Unbreak zstd build on sparc64
It turns out that wrapping the atomic macro in () breaks build
on Linux/SPARC64. Oops.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes #13506
2022-05-25 09:18:49 -07:00
Rich Ercolani
f375b23c02
Tiered early abort, zstd edition
It turns out that "do LZ4 and zstd-1 both fail" is a great heuristic
for "don't even bother trying higher zstd tiers".

By way of illustration:
$ cat /incompress | mbuffer | zfs recv -o compression=zstd-12 evenfaster/lowcomp_1M_zstd12_normal
summary: 39.8 GiByte in  3min 40.2sec - average of  185 MiB/s
$ echo 3 | sudo tee /sys/module/zzstd/parameters/zstd_lz4_pass
3
$ cat /incompress | mbuffer -m 4G | zfs recv -o compression=zstd-12 evenfaster/lowcomp_1M_zstd12_patched
summary: 39.8 GiByte in 48.6sec - average of  839 MiB/s
$ sudo zfs list -p -o name,used,lused,ratio evenfaster/lowcomp_1M_zstd12_normal evenfaster/lowcomp_1M_zstd12_patched
NAME                                         USED        LUSED  RATIO
evenfaster/lowcomp_1M_zstd12_normal   39549931520  42721221632   1.08
evenfaster/lowcomp_1M_zstd12_patched  39626399744  42721217536   1.07
$ python3 -c "print(39626399744 - 39549931520)"
76468224
$

I'll take 76 MB out of 42 GB for > 4x speedup.

Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes #13244
2022-05-24 09:43:22 -07:00
Damian Szuberski
6d680e61ef
Update checkstyle workflow env to ubuntu-20.04
- `checkstyle` workflow uses ubuntu-20.04 environment
- improved `mancheck.sh` readability

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Signed-off-by: szubersk <szuberskidamian@gmail.com>
Closes #12713
2021-11-02 14:02:57 -06:00
Rich Ercolani
b1a1c64313
Fix cross-endian interoperability of zstd
It turns out that layouts of union bitfields are a pain, and the
current code results in an inconsistent layout between BE and LE
systems, leading to zstd-active datasets on one erroring out on
the other.

Switch everyone over to the LE layout, and add compatibility code
to read both.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes #12008
Closes #12022
2021-08-30 14:13:46 -07:00
Mateusz Guzik
c4ede65bdf
zstd: track allocator statistics
Note that this only tracks sizes as requested by the caller.
Actual allocated space will almost always be bigger (e.g., rounded up to
the next power of 2 or page size). Additionally the allocated buffer may
be holding other areas hostage. Nonetheless, this is a starting point
for tracking memory usage in zstd.

Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Closes #11129
2020-10-30 15:26:10 -07:00
Sebastian Gottschall
8a171ccd92
do a cyclic seek for unused memory objects in pool
In non regular use cases allocated memory might stay persistent in memory
pool. This small patch checks every minute if there are old objects which
can be released from memory pool.

Right now with regular use, the pool is checked for old objects on each
allocation attempt from this pool. so basically polling by its use. Now
consider what happens if someone writes a lot of files and stops use of
the volume or even unmounts it. So the code will no longer check if
objects can be released from the pool. Already allocated objects will
still stay in pool cache. this is no big issue for common use. But
someone discovered this issue while doing tests. personally i know this
behavior and I'm aware of it. Its no big issue. just a enhancement

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Closes #10938 
Closes #10969
2020-09-30 13:22:34 -07:00
Sebastian Gottschall
184df27eef
Avoid symbol collision with in-kernel zstdlib
For Linux, when zfs is compiled as an in kernel static variant
and the in kernel zstd library is compiled statically into the kernel
a symbol collision will occur.  This wrapper header renames all
of the relevant zstd functions to avoid this problem.

Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Closes #10775
2020-08-24 12:20:41 -07:00
Michael Niewöhner
10b3c7f5e4 Add zstd support to zfs
This PR adds two new compression types, based on ZStandard:

- zstd: A basic ZStandard compression algorithm Available compression.
  Levels for zstd are zstd-1 through zstd-19, where the compression
  increases with every level, but speed decreases.

- zstd-fast: A faster version of the ZStandard compression algorithm
  zstd-fast is basically a "negative" level of zstd. The compression
  decreases with every level, but speed increases.

  Available compression levels for zstd-fast:
   - zstd-fast-1 through zstd-fast-10
   - zstd-fast-20 through zstd-fast-100 (in increments of 10)
   - zstd-fast-500 and zstd-fast-1000

For more information check the man page.

Implementation details:

Rather than treat each level of zstd as a different algorithm (as was
done historically with gzip), the block pointer `enum zio_compress`
value is simply zstd for all levels, including zstd-fast, since they all
use the same decompression function.

The compress= property (a 64bit unsigned integer) uses the lower 7 bits
to store the compression algorithm (matching the number of bits used in
a block pointer, as the 8th bit was borrowed for embedded block
pointers).  The upper bits are used to store the compression level.

It is necessary to be able to determine what compression level was used
when later reading a block back, so the concept used in LZ4, where the
first 32bits of the on-disk value are the size of the compressed data
(since the allocation is rounded up to the nearest ashift), was
extended, and we store the version of ZSTD and the level as well as the
compressed size. This value is returned when decompressing a block, so
that if the block needs to be recompressed (L2ARC, nop-write, etc), that
the same parameters will be used to result in the matching checksum.

All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`,
`zio_prop_t`, etc.) uses the separated _compress and _complevel
variables.  Only the properties ZAP contains the combined/bit-shifted
value. The combined value is split when the compression_changed_cb()
callback is called, and sets both objset members (os_compress and
os_complevel).

The userspace tools all use the combined/bit-shifted value.

Additional notes:

zdb can now also decode the ZSTD compression header (flag -Z) and
inspect the size, version and compression level saved in that header.
For each record, if it is ZSTD compressed, the parameters of the decoded
compression header get printed.

ZSTD is included with all current tests and new tests are added
as-needed.

Per-dataset feature flags now get activated when the property is set.
If a compression algorithm requires a feature flag, zfs activates the
feature when the property is set, rather than waiting for the first
block to be born.  This is currently only used by zstd but can be
extended as needed.

Portions-Sponsored-By: The FreeBSD Foundation
Co-authored-by: Allan Jude <allanjude@freebsd.org>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Co-authored-by: Michael Niewöhner <foss@mniewoehner.de>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
Closes #6247
Closes #9024
Closes #10277
Closes #10278
2020-08-20 10:30:06 -07:00